因式分解乘法公式
- 格式:doc
- 大小:323.00 KB
- 文档页数:14
乘法公式和因式分解(一)、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。
m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(a+b)(c+d)=ac+ad+bc+bd(二)、知识要点 1、乘法公式2、因式分解因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
注、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
(2)多项式的乘法与多项式因式分解的区别简单地说:乘法是积化和,因式分解是和化积。
3、因式分解的方法: (1)、提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
(2)、运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。
(3)、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. (4)、十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明: 注意:我们在用十字相乘法之前一定要根据第一步判断是否能用十字相乘法。
我们在分解常数项和二次项系数时变化多端,目的是交叉相乘之和要等于一次项系数,如何分配常数项和二次项系数要根据情况而定。
乘法公式与因式分解乘法公式和因式分解是数学中常见的概念和工具。
它们在各个数学领域都有广泛的应用,尤其是在代数和方程中。
本文将详细介绍乘法公式和因式分解的概念、原理和应用。
一、乘法公式乘法公式是指将两个或多个数相乘所遵循的规则。
在代数中,乘法公式往往涉及到字母表示的变量和表达式。
以下是常见的乘法公式:1. 两个数的乘积等于它们的因数相乘:a * b = b * a。
2. 两个数相乘再乘以另一个数等于每个因数分别乘以这个数再相乘:(a * b) * c = a * (b * c)。
3. 任何数与1相乘等于它本身:a * 1 = a。
4. 任何数与0相乘等于0:a * 0 = 0。
乘法公式在解决方程、计算等多个数学问题中起着重要作用。
它们能够简化计算过程、发现规律、推导定理等。
二、因式分解因式分解是将一个数或表达式分解成多个因数相乘的过程。
它是乘法公式的逆运算。
因式分解在求解方程、因式的化简和分析函数图像等方面具有重要意义。
1. 将一个数分解成质因数的乘积是因式分解的基本思想。
质因数是指只能被1和自身整除的数,如2、3、5、7等。
例如,将12分解成质因数的乘积等于2 * 2 * 3。
2. 除法和因式分解之间有密切的关系。
将一个数分解成两个因数相乘,可以使用除法的思想。
例如,用因式分解的方法将24分解成2 * 12,相当于24除以2得到12。
3. 多项式的因式分解需要应用乘法公式的原理。
对于多项式,我们可以先找出公因式,然后使用乘法公式将多项式分解为多个因式相乘的形式。
例如,将x^2 - 4分解成(x - 2)(x + 2)。
因式分解不仅在代数中有重要应用,也在数论、几何等数学分支中有广泛的运用。
它能够帮助我们更好地理解数学问题,简化运算,并发现问题的规律和性质。
三、乘法公式与因式分解的应用乘法公式和因式分解在数学中有广泛的应用。
以下列举其中几个常见的应用:1. 方程的求解:通过应用乘法公式和因式分解,我们可以将方程进行变形和化简,从而更容易求得方程的解。
乘法公式与因式分解乘法公式和因式分解是数学中重要的概念和方法。
乘法公式是指计算两个或多个数的乘积的规则,而因式分解是将一个多项式分解为其因子的过程。
在本文中,我将详细介绍乘法公式和因式分解的概念、应用和相关的数学知识。
一、乘法公式乘法公式是数学中常用的计算乘积的方法。
常见的乘法公式包括加法乘法公式、减法乘法公式、平方差公式和立方差公式等。
1. 加法乘法公式加法乘法公式是指将一个数的乘积转化为一系列加法运算的规则。
例如,对于两个数a和b,它们的乘积可以表示为(a+b)(a-b)=a^2-b^2。
这个公式可以通过展开括号和合并同类项来证明。
2. 减法乘法公式减法乘法公式是指将一个带有减法的乘积转化为一系列加法运算的规则。
例如,对于两个数a和b,它们的乘积可以表示为(a-b)(a+b)=a^2-b^2。
这个公式可以通过展开括号和合并同类项来证明。
3. 平方差公式平方差公式是指将一个数的平方差转化为一个差的平方的规则。
例如,对于两个数a和b,它们的平方差可以表示为(a-b)(a+b)=a^2-b^2。
这个公式可以通过展开括号和合并同类项来证明。
4. 立方差公式立方差公式是指将一个数的立方差转化为一个差的立方的规则。
例如,对于两个数a和b,它们的立方差可以表示为(a-b)(a^2+ab+b^2)=a^3-b^3。
这个公式也可以通过展开括号和合并同类项来证明。
二、因式分解因式分解是将一个多项式分解为其因子的过程。
在因式分解中,我们要找到多项式中的公因式,然后将多项式分解为公因式和余项的乘积。
因式分解在解方程、求极值和简化计算等方面具有重要的应用。
常见的因式分解方法包括公因式提取法、配方法和因式定理等。
1. 公因式提取法公因式提取法是指将多项式中的公因式提取出来,然后将多项式分解为公因式和余项的乘积。
例如,对于多项式4x+8,我们可以提取公因式4,然后将这个多项式分解为4(x+2)。
2. 配方法配方法是指将一个多项式分解为两个因子的乘积的规则。
整式乘法、乘法公式、因式分解(一)1.因式分解:(a﹣b)2﹣(b﹣a)=.2.如果x+y=5,xy=﹣3,则x2y+xy2=,x2+y2=.3.分解因式:2x2y﹣12xy+18y=.4.若a=2,a﹣2bc=3,则2a2﹣4abc的值为.5.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b 均为整数,则a+3b=.6.分解因式:4a2﹣25b2=.7.分解因式9(a+b)2﹣(a﹣b)2=.8.因式分解:16x3y﹣4xy=.9.多项式3x﹣12x3分解因式的结果是.10.分解因式:3x2﹣12xy+12y2=.12.因式分解:3x3﹣12x=.13.把代数式4a2b﹣3b2(4a﹣3b)进行因式分解得:.14.分解因式:a2﹣b2+2b﹣1=.15.如果多项式9x2﹣axy+4y2﹣b能用分组分解法分解因式,则符合条件的一组整数值是a =,b=.16.分解因式:x2+4xy+4y2+x+2y﹣2=.17.因式分解:x3﹣6x2+11x﹣6=.18.已知多项式x2﹣8x+m因式分解得(x+n)(x﹣6),则m+n=.19.若x2﹣3x﹣28=(x+a)(x+b),则a+b=,ab=.20.若x2﹣3x﹣10=(x+a)(x+b),则a=,b=.22.已知x2﹣5x+m=(x﹣2)(x﹣n),则m=,n=.23.分解因式:x2﹣7x+10=.24.如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个长方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.24.若a2+a=0,求2a2+2a+2015的值.25.﹣4x3+16x2﹣26x.28.下面是某同学对多项式(x2﹣4x+2)(x2﹣4x+6)+4进行因式分解的过程.解:设x2﹣4x=y原式=(y+2)(y+6)+4(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请问:(1)该同学第二步到第三步运用了因式分解的A.提取公因式法B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学因式分解的结果是否彻底?.(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果(2)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.29.因式分解:(1)xy(x﹣y)﹣x(x﹣y)2(2)(a2+b2)2﹣4a2b2.30.分解因式:(1)x4﹣1;(2)a2+4ab+4b2.。
因式分解2—乘法公式1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字,单项式,多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右向左逆用(因式分解)。
要记住一些重要的公式变形及其逆运算——除法等。
2.基本公式就是最常用,最基础的公式,可以由此而推导出其它公式。
完全平方公式:222()2a b a ab b ±=±+。
平方差公式:22()()a b a b a b +-=-。
立方和(差)公式:2233()()a b a ab b a b ±+=± 。
3.公式的推广:①多项式平方公式:22222()222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++ 即:多项式的平方等于各项的平方和,加上每两项积的2倍。
②二项式定理:33223()33a b a a b ab b ±=±+±;4432234()464a b a a b a b ab b ±=±+±+;……注意观察右边展开式的项数,指数,系数,符号的规律(可以借助杨辉三角推出系数)③由平方差,立方和(差)公式引申的公式322344()()a b a a b ab b a b +-+-=-;43223455()()a b a a b a b ab b a b +-+-+=+;5432234566()()a b a a b a b a b ab b a b +-+-+-=-…………注意观察左边第二个因式的项数,指数,系数,符号的规律。
在正整数指数的条件下,可归纳如下:设n 为正整数⑴2122232222122()()n n n n n n n a b a a b a b ab b a b -----+-+-⋅⋅⋅+-=-⑵ 2212222122121()()n n n n n n n a b a a b a b ab b a b ---+++-+-⋅⋅⋅-+=+ 类似地:⑶123221()()n n n n n n n a b a a b a b ab b a b ------+++⋅⋅⋅++=-。
因式分解常用的六种方法详解因式分解常用的六种方法详解因式分解是代数式变形的基本形式之一,它被广泛地应用于初等数学中,并成为解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
本文将介绍因式分解的方法、技巧和应用。
1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) $a^2-b^2=(a+b)(a-b)$;2) $a^2±2ab+b^2=(a±b)^2$;3) $a^3+b^3=(a+b)(a^2-ab+b^2)$;4) $a^3-b^3=(a-b)(a^2+ab+b^2)$。
下面再补充几个常用的公式:5) $a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2$;6) $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$;7) $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+…+ab^{n-2}+b^{n-1})$,其中$n$为正整数;8) $a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…+ab^{n-2}-b^{n-1})$,其中$n$为偶数;9) $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…-ab^{n-2}+b^{n-1})$,其中$n$为奇数。
在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。
例如,分解因式:1) $-2x^{5n-1}y^n+4x^{3n-1}y^n+2-2x^{n-1}y^n+4$原式=$-2x^{n-1}y^n(x^{4n-2}-2x^{2n}y^2+y^4)$2x^{n-1}y^n[(x^{2n})^2-2x^{2n}y^2+(y^2)^2]$2x^{n-1}y^n(x^{2n}-y^2)^2$2x^{n-1}y^n(x^n-y)^2(x^n+y)^2$。
乘法公式与因式分解乘法公式和因式分解是数学中重要的概念和操作,它们在代数运算、方程求解、多项式的化简等方面具有广泛的应用。
本文将介绍乘法公式和因式分解的概念、性质以及应用。
一、乘法公式乘法公式是指在对两个或多个数进行乘法运算时,有一些特定的规律可以简化运算过程。
其中,常见的乘法公式包括:1. 乘法交换律:a × b = b × a乘法交换律指出,两个数的乘积与它们的顺序无关。
2. 乘法结合律:(a × b) × c = a × (b × c)乘法结合律指出,三个数相乘时,可以按照不同的顺序进行运算,最终结果相同。
3. 乘法分配律:a × (b + c) = a × b + a × c乘法分配律指出,一个数与括号中的和相乘,等于这个数分别与和中的每个数相乘之后再相加。
以上三个乘法公式是数学运算中常用的基本规律,能够简化计算过程,提高效率。
二、因式分解因式分解是将一个数或者多项式表示为两个或多个因子的乘积的过程。
因式分解有助于化简复杂的表达式、解方程和求极限。
1. 常见因式分解公式(1) 完全平方差公式:a^2 - b^2 = (a + b)(a - b)该公式表示一个完全平方式减去另一个完全平方式的结果可以被分解为两个因子的乘积。
(2) 三项平方差公式:a^3 - b^3 = (a - b)(a^2 + ab + b^2)该公式表示一个立方形式减去另一个立方形式的结果可以被分解为两个因子的乘积。
2. 因式分解的应用(1) 化简表达式:通过因式分解,可以将复杂的代数表达式转化为简单的因式乘积形式,便于计算和理解。
(2) 解方程:因式分解是求解一元高次方程的重要方法之一。
通过将方程进行因式分解,可以将原方程化简为多个一次方程的乘积形式,从而找到方程的解。
(3) 求极限:在一些复杂的极限求解问题中,通过因式分解可以将被极限运算影响的部分拆分为若干个因子,从而简化运算过程。
一、提公因式法.:)(c b a m mc mb ma ++=++二、运用公式法.由乘法公式,将其反向使用,即为因式分解中常用的公式,(1)(a+b)(a-b) = a 2-b 2 ---------a 2-b 2=(a+b)(a-b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a-b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a-b)(a 2+ab+b 2).补充公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab-bc-ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是:A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。
解:原式=)()(bn bm an am +++=)()(n m b n m a +++ =))((b a n m ++ 例2、分解因式:bx by ay ax -+-5102解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。
乘法公式与因式分解乘法公式、多项式与因式分解1.乘法公式1.$(a+b)^2=a^2+2ab+b^2$(和的平方)2.$(a-b)^2=a^2-2ab+b^2$(差的平方)3.$(a+b)(a-b)=a^2-b^2$(平方差)4.$(a+b)(c+d)=ac+ad+bc+bd$(乘法分配律)5.$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$(三项和的平方)6.$(a+b)^3=a^3+3a^2b+3ab^2+b^3$(和的立方)7.$(a-b)^3=a^3-3a^2b+3ab^2-b^3$(差的立方)8.$(a+b)(a^2-ab+b^2)=a^3+b^3$(立方和)9.$(a-b)(a^2+ab+b^2)=a^3-b^3$(立方差)10.$(a+ab+b)(a-ab+b)=a^3+b^3$(立方和)2.求值公式:1.$a+b=(a+b)^2-2ab=(a-b)^2+2ab$若已知$a+b$和$ab$,欲求$a-b$时,需先算出$(a-b)^2$,再用平方根来求)2.$x+\frac{1}{2}x^2=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}$3.$a+b+c+ab+bc+ca=\left(a+b\right)^2+\left(b+c\right)^2+\le ft(c+a\right)^2$4.$a+b=(a-b)+4ab$5.$a-b=(a+b)-4ab$3.乘法公式的应用与式子的展开:1.$(ax+b)(cx+d)=acx^2+(ad+bc)x+bd$2.$(ax+b)^2=a^2x^2+2abx+b^2$3.$(ax-b)^2=a^2x^2-2abx+b^2$4.$(ax+b)(ax-b)=a^2x^2-b^2$5.$(-ax+b)^2=(ax-b)^2$;$(-ax-b)^2=(ax+b)^2$主题二:多项式1.多项式的定义:由数和文字符号$x$进行加法和乘法运算所构成的式子。
乘法的分解公式乘法的分解公式是数学中常用的一种方法,用于将一个复杂的乘法表达式转化为更简单的形式。
通过分解,我们可以更好地理解和计算乘法操作。
本文将详细介绍乘法的分解公式,并提供一些常见的应用示例。
乘法的分解公式是指将一个乘法表达式拆解成两个或多个更简单的乘法因子形式的公式。
这有助于我们更方便地进行计算和求解。
在乘法的分解公式中,常见的形式有以下几种:1. 乘法分配律:a. a * (b + c) = a * b + a * cb. (a + b) * c = a * c + b * c乘法分配律是乘法的基本分解公式,它将含有括号的乘法表达式分解成两个或多个乘法因子相加。
例如,对于表达式 2 * (3 + 4),我们可以使用乘法分配律将其分解为 2 * 3 + 2 * 4,然后进行计算得到最终结果。
2. 因式分解:a. a * b + a * c = a * (b + c)b. a * b - a * c = a * (b - c)因式分解是将含有相同乘法因子的两个或多个项转化为一个公因式相乘的形式。
例如,对于表达式 3 * x + 3 * y,我们可以使用因式分解将其写成 3 * (x + y) 的形式。
同理,对于表达式 5 * a - 5 * b,可以写成5 * (a - b)。
3. 方块型公式:a. (a + b)^2 = a^2 + 2ab + b^2b. (a - b)^2 = a^2 - 2ab + b^2方块型公式是一种特殊的分解公式,用于计算平方的结果。
通过这些公式,我们可以将一个平方的表达式分解成两个或多个乘法因子相加。
例如,根据公式 (a + b)^2 = a^2 + 2ab + b^2,可以将表达式 (2x + 3)^2 分解成 2x^2 + 12x + 9。
乘法的分解公式在代数、几何和其他数学领域中都有广泛的应用。
通过分解乘法表达式,我们可以更好地理解和解决问题。
以下是一些常见的应用示例:1. 计算多项式的乘法:通过应用乘法的分解公式,我们可以将一个多项式的乘法转化为更简单的形式,例如将 (x + 2)(x - 3) 分解为 x^2 - x - 6。
乘法公式知识点:平方差公式:(a+b)(a-b)=a 2-b 2完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2立方公式:(a+b)(a 2-ab+b 2)=a 3+b 3 (a-b)(a 2+ab+b 2)=a 3-b 3例1.计算(1))3121)(3121(b a b a +- (2)(2x+3)(3-2x )(3)(-y+2x)(-y-2x) (4))3)(3(22-+m m例2.计算(1)2)(b a - (2)2)2(y x +(3)2)3221(y x +- (4)2)(c b a ++例3.计算22)2()2)(2(2)2(n m n m n m n m -+-+-+例4.计算(1)(3x+4y-2z)(3x-4y+2z) (2))23)(32()1(42x x x x x -++-例5.计算(1))12)(12)(12)(12)(12(16842+++++ (2)298.99例6.已知a+b=1,21-=ab 、求(1)22b a + (2)2)(b a -基础练习1.计算(1)49.8×50.2 (2)89×91(3)31493250⨯ (4)29952.运用乘法公式计算(1)2)]12)(21[(+-a a (2)))((z y x z y x +-++ (3))2131)(3121(x y y x +-(4))4)(2)(2(2--+x x x (5)22)12()12(--+x x3.计算(1)(x-1)(x+2)-(x+3)(x-3) (2)(3x+4y)(-4y-3x)+9x(x+y)(3))(8)2(22b a b b a +-- (4)22)221()221)(221(2)221(b a b a b a b a ++-++-4.解方程)1)(1()12(2)31(22y y y y +-=---5.已知5)( , 4)(22=-=+b a b a 、求22b a +及ab 。
提高题1.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007200820061⨯+.2. (科交叉题)解方程:x (x+2)+(2x+1)(2x -1)=5(x 2+3).3. 计算(1)(a -2b +3c )2-(a +2b -3c )2;(2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3);(3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x .4. (6分)解方程x (9x -5)-(3x -1)(3x +1)=5.5. (规律探究题)已知x ≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n )=______.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n =______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______.②(a -b )(a 2+ab+b 2)=______.③(a -b )(a 3+a 2b+ab 2+b 3)=______.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值B 组:5.已知6,4a b ab +==,求22223a b a b ab ++的值。
6.已知222450x y x y +--+=,求21(1)2x xy --的值。
7.已知16x x -=,求221x x +的值。
8、0132=++x x ,求(1)221x x +(2)441x x +9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
C 组:10、已知三角形 A BC 的三边长分别为a,b,c 且a,b,c 满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式 835-++cx bx ax 的值5、若123456786123456789⨯=M ,123456787123456788⨯=N试比较M 与N 的大小6、已知012=-+a a ,求2007223++a a 的值.【乘法公式应用的五个层次】第一层次──正用例1计算(2)(-2x-y)(2x-y).第二层次──逆用,即将这些公式反过来进行逆向使用.例2计算(1)19982-1998·3994+19972;第三层次──活用:根据待求式的结构特征,探寻规律,连续反复使用乘法公式;有时根据需要创造条件,灵活应用公式.例3化简:(2+1)(22+1)(24+1)(28+1)+1.例4计算:(2x-3y-1)(-2x-3y+5)第四层次──变用:解某些问题时,若能熟练地掌握乘法公式的一些恒等变形式,如a2+b2=(a+b)2-2ab,a3+b3=(a+b)3-3ab(a+b)等,则求解十分简单、明快.例5已知a+b=9,ab=14,求2a2+2b2和a3+b3的值.第五层次──综合后用:将(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2综合,可得(a+b)2+(a-b)2=2(a2+b2);(a+b)2-(a-b)2=4ab;等,合理地利用这些公式处理某些问题显得新颖、简捷.例6计算:(2x+y-z+5)(2x-y+z+5).整式的乘法巩固练习:1._____________.2.=_____ ________.3.=_____________.4.=_____________.5.=_____________.6.=_____________.7.=_____________.8. =_____________.9.=_____________.10. (1)(-5.5)1997×(211)1997; (2) 31151644⨯;(3)1998×1996-19972; (4) 121()()2176nn n +⨯⨯。
11. 先化简再求值(x-y)2+(3x-2y)(2x+y)-x(6x-y),其中x=12,y=1。
12. 先化简,再求值:()()()()232325121x x x x x +-----,其中31-=x . 13. 计算:(1)(-3a 3)2·a 3+(-4a)2·a 7-(5a 3)3 (2)3x(3x 2-2x-1)-2x 2(x-2) (3)()2232315x y-xy -y -4xy 426⎛⎫⎪⎝⎭(4)()()()()232233574x xy xy xy y y x -⋅--⋅-+-(5)(2a-3b)(a+5b) (6)14. 已知2xy 2-=,则)y xy y x (xy 322---的值。
15. 已知x 2+3x+5的值为7,那么3x 2+9x-2的值。
133(5)(2)354x y x y ---+16. 已知:x 2-x -2=0, 求(2x +3)(2x -5)+2的值。
17. 已知a 是方程x 2-5x+1= 0的解,则221aa +的值。
18. 若代数式2237x x ++的值是8,则代数式2469x x +-的值。
19. 若32=a ,62=b ,122=c ,求证:c a b +=2。
20. 现规定:b a ab b a -+=*,其中a 、b 为有理数,求b a b b a *-+*)(的值。
21. 已知:65312=-+x x ,715=++c b a ,试求:)1()1()1(222++++++++x x c x x b x x a 的值。
22. 已知:02=+b a ,求证: 04)(233=+++b b a ab a 。
23. 已知:2232b ab a A -+=,ab B 21-=,42334181b a b a C -=,求:C B A -⋅22。
24. 当)3)(8(22n x x mx x +-++展开后,如果不含2x 和3x 的项,求nm 3)(-的值。
25. 试证明代数式165)3(6)23)(32(+++-++x x x x x 的值与x 的值无关。
26. 已知xy 8-除某一多项式所得的商式是-22474921xy y x xy -+,余式是233y x ,则这个多项式的值是( )。
(A )32232214134y x y x y x --; (B )32232214154y x y x y x +-; (C )33232214154y x y x y x --; (D )32332214154y x y x y x --。
27. 已知:c x b x x a x x --++-=++)1()2)(1(4232求c b a ,,的值。