乘法公式与因式分解复习课
- 格式:ppt
- 大小:292.00 KB
- 文档页数:11
第十四章“整式的乘法与因式分解”单元备课一、课程学习目标1.使学生掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算。
使学生掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。
2.使学生会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。
3.使学生掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
4.使学生理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。
二、教学重点、难点和关键本章的教学重点之一是整式的乘法,包括乘法公式。
从整式乘除的地位和作用可知,如果不掌握好这部分内容,会给以后的学习带来极大的困难。
因此要有针对性地加强练习,务必使学生对整式的乘除运算,包括其中运用乘法公式进行计算达到熟练的程度。
整式的乘除中,单项式的乘除是关键。
这是因为其他乘除都要转化为单项式的乘除。
实际上,单项式的乘除进行的是幂的运算与有理数的运算,因此幂的运算是学好整式乘除的基石。
乘法公式的结构特征以及公式中字母的广泛含义学生不易掌握,运用时容易混淆,因此乘法公式的灵活运用是本部分的难点。
在教学中要引导学生分析公式的结构特征,并在练习中与所运用公式的结构特征联系起来,对所发生的错误多做具体分析,以加深学生对公式结构特征的理解。
添括号时,括号内符号的确定是本部分的另一个难点。
掌握添括号法则的关键是要把添上括号后括号内的多项式与括号前面的符号看成统一体,对于这一点学生不易理解,要结合例题进行分析。
学生在学习添括号时,感觉添括号比去括号要难,括号前是“—”号比括号前是“+”号要难。
遇到括号前是“—”号时,学生容易漏掉括号内一部分项的变号,在讲解例题时要强调法则中“各项”的含义。
一、学习目标:1.了解公式的几何解释,并能运用公式进行简单计算.2、在应用乘法公式进行计算的过程中,感受乘法公式的作用和价值.3、会用提公因式法、公式法进行因式分解.4、了解因式分解的一般步骤.5、在因式分解中,经历观察、探索和作出推断的过程,提高分析能力和解决问题的能力.二、学习重点、难点和关键:1.学习重点:(1)乘法公式及其运用;(2)用提公因式法和公式法进行因式分解.2.学习难点:(1)在具体问题中,正确地运用乘法公式;(2)在具体问题中,正确地运用提公因式法和公式法分解因式.3.关键:关键在于使学生正确理解乘法公式和因式分解的意义,认识乘法公式的结构特征以及字母的广泛含义.三、课前延伸:(一)梳理知识:1、乘法公式:①完全平方公式:﹍﹍﹍﹍②平方差公式:﹍﹍﹍﹍2、因式分解:(1)把一个多项式写成几个整式的乘积的形式,叫做因式分解。
(2)因式分解的方法:①提公因式法;②运用公式法;③十字相乘法④分组分解法①提公因式法:公因式的确定(系数、字母、指数、多项式)②运用公式法:a2-b2=(a+b)(a-b)a2±2ab+b2=(a±b)2③十字相乘法:x2+(p+q)x+pq=(x+p)(x+q)x2+5x+6 = x2+5x-6=x 2-5x+6 = x 2-5x-6=④分组分解法:a 2-ab+ac-bc=a 2+c 2-2ac-1=(3)因式分解的步骤:一提、二用、三分、四查。
3、区别乘法运算和因式分解: ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍四、课内探究:(一)自主学习(学生独立完成)(二)合作探究:1、(x -2y) ﹒(x+2y) -(x+2y)2+8y 2; 2 、(a+2b+3c) ﹒(a+2b -3c);3 、(a+b)3;4 、10012×9992(三)精讲点拨:(1) 4x 3y +4x 2y2+xy3; (2) b 2 +c 2-2bc -a 2()()()()()()()()()()()()()______124.6_____1414.5_____111.4___;1___1.349___3___3.2125____15.143322222222的公因式是y x z y x m m x x x a b b a x x b a a a a a -=-+=+-+-=+-=--=--+--=+()()()()______.11_____228.10_____22.9_____3.83235=-=-+=+---x x mn mn n m x n mx mn b a b a 分解因式:的公因式是()()_________124.722的公因式是和m n mn n m m +-+-(3)x4-16 (4) (a 2-4ab+4b 2)-(2a-4b)+1 (5)25(a+b)2-9(a-b)2(四)巩固提升:1、因式分解:(1)25m 2-4n 2(2)(m+n)2-8(m+n)+16 (3)(x2+4)2-16x22、计算:(1)1982(2)9.92-9.9×0.2+0.013、解方程:(2x+5)2-(2x+1)2=25(1-x)4.(1)若一个正方形的面积是9x2+12xy+4y2,则这个正方形的边长是____;(2)当k=____时,100x2–kxy+49y2是一个完全平方式(3)若二项式4m2+1加上一个单项式后是一含m的完全平方式,则单项式为____五、作业:课本p127.8题 10题六、课后提升:1. 将下列各式因式分解(1).(t-1)(t+4)-6 (2). ax2+3x2-4a-122. 求值计算:(1).2005+20052-20062(2).x,,y满足x2+xy=35,求出满足条件的自然数x和y.。
乘法公式和因式分解(一)、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。
m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(a+b)(c+d)=ac+ad+bc+bd(二)、知识要点 1、乘法公式2、因式分解因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
注、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
(2)多项式的乘法与多项式因式分解的区别简单地说:乘法是积化和,因式分解是和化积。
3、因式分解的方法: (1)、提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
(2)、运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。
(3)、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. (4)、十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明: 注意:我们在用十字相乘法之前一定要根据第一步判断是否能用十字相乘法。
我们在分解常数项和二次项系数时变化多端,目的是交叉相乘之和要等于一次项系数,如何分配常数项和二次项系数要根据情况而定。
整式的乘法与因式分解全章教案第一章:整式的乘法1.1 整式乘法的基本概念理解整式的定义及表示方法掌握整式乘法的基本原理1.2 整式的乘法法则学习整式乘法的基本法则练习整式乘法的计算方法1.3 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法1.4 单项式乘多项式理解单项式乘多项式的概念掌握单项式乘多项式的计算方法第二章:平方差公式与完全平方公式2.1 平方差公式推导平方差公式练习应用平方差公式解题2.2 完全平方公式推导完全平方公式练习应用完全平方公式解题2.3 平方根与乘方理解平方根与乘方的概念掌握平方根与乘方的计算方法第三章:因式分解3.1 因式分解的概念理解因式分解的定义及意义掌握因式分解的基本方法3.2 提取公因式法学习提取公因式法的方法练习提取公因式法解题3.3 公式法学习公式法的方法练习公式法解题3.4 分组分解法学习分组分解法的方法练习分组分解法解题第四章:应用题与综合练习4.1 应用题解法学习应用题的解法练习解决实际问题4.2 综合练习综合运用所学知识解决实际问题提高解题能力与思维水平第五章:复习与总结5.1 复习重点知识复习整式的乘法与因式分解的重点知识巩固所学内容5.2 总结全章内容总结整式的乘法与因式分解的主要概念和方法提高学生的综合运用能力第六章:多项式的乘法与除法6.1 多项式乘多项式理解多项式乘多项式的概念掌握多项式乘多项式的计算方法6.2 单项式乘多项式与多项式乘单项式理解单项式乘多项式与多项式乘单项式的概念掌握单项式乘多项式与多项式乘单项式的计算方法6.3 多项式除以单项式理解多项式除以单项式的概念掌握多项式除以单项式的计算方法6.4 多项式除以多项式理解多项式除以多项式的概念掌握多项式除以多项式的计算方法第七章:分式与分式方程7.1 分式的概念与性质理解分式的定义及表示方法掌握分式的基本性质7.2 分式的运算学习分式的运算规则练习分式的计算方法7.3 分式方程理解分式方程的定义及解法掌握解分式方程的方法7.4 应用题与综合练习学习解决实际问题中涉及分式与分式方程的问题提高解决实际问题的能力第八章:二次三项式的因式分解8.1 二次三项式的概念理解二次三项式的定义及表示方法掌握二次三项式的性质8.2 二次三项式的因式分解学习二次三项式的因式分解方法练习二次三项式的因式分解技巧8.3 应用题与综合练习学习解决实际问题中涉及二次三项式的因式分解的问题提高解决实际问题的能力第九章:方程的解法与应用9.1 方程的解法学习方程的解法掌握解一元二次方程的方法9.2 方程的应用理解方程在实际问题中的应用练习解决实际问题中涉及方程的问题9.3 应用题与综合练习学习解决实际问题中涉及方程的问题提高解决实际问题的能力第十章:复习与总结10.1 复习重点知识复习本章的重点知识巩固所学内容10.2 总结全章内容总结本章的主要概念和方法提高学生的综合运用能力重点和难点解析1. 整式乘法的基本概念和原理:理解整式乘法的定义和表示方法,掌握整式乘法的原理是学习整式乘法的基础,需要重点关注。
整式乘除与因式分解复习教案第一篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。
通过练习,熟悉常规题型的运算,并能灵活运用。
教学目标通过知识的梳理和题型训练,提高学生观察、分析、推导能力,培养学生运用数学知识解决问题的意识。
教学分析重点根据新课标要求,整式的乘除运算法则与方法和因式分解的方法与应用是本课重点。
难点整式的除法与因式分解的应用是本课难点。
教学方法与手段采用多媒体课件,由于本课内容较多,故设计了大量的练习,使学生理解各种类型的运算方法。
本课教学以练习为主。
教学过程一.回顾知识点(一)整式的乘法1、同底数的幂相乘2、幂的乘方3、积的乘方4、同底数的幂相除5、单项式乘以单项式6、单项式乘以多项式7、多项式乘以多项式8、平方差公式9、完全平方公式(二)整式的除法1、单项式除以单项式2、多项式除以单项式(三)因式分解1、因式分解的概念2、因式分解与整式乘法的关系3、因式分解的方法4、因式分解的应用二.练习巩固(一)单项式乘单项式(1)(5x3)⋅(-2x2y),(2)(-3ab)2⋅(-4b3)(3)(-am)2b⋅(-a3b2n),231(4)(-a2bc3)⋅(-c5)⋅(ab2c)343(二)单项式与多项式的乘法(1)(-2a)⋅(x+2y-3c),(2)(x+2)(y+3)-(x+1)(y-2)(3)(x+y)(-2x-1y)2(三)乘法公式应用(1)(-6x+y)(-6x-y)(2)(x+4y)(x-9y)(3)(3x+7y)(-3x-7y)(四)整式的除法1(1)(-a6b4c)÷((2a3c)41(2)6(a-b)5÷[(a-b)2]3(3)(5x2y3-4x3y2 +6x)÷(6x)13(4)x3my2n-x2m-1y2+x2m+1y3)÷(-0.5x2m-1y2)3 4(五)提取公因式法因式分解(1)3ay-3by+3y(2)-4a3b2+6a2b-2ab(3)3(x-y)3-6(x-y)2(4)5m(a-b)4-4m2(b-a)3(六)乘法公式因式分解(1)25-16x2(2)-81x2+4(y-1)2(3)x2-14x+49(4)(x+y)2-6(x+y)+9(七)因式分解的应用1、解方程(1)9x2+4x=0(2)x2=(2x-5)22、计算(1)(2mp-3mq+4mr)÷(2p-3q+4r)(2)(16-x4)÷(4+x2)÷(x-2)探究活动:求满足4x2-9y2=31的正整数解。