沪教版(上海)初中数学八年级第一学期 19.9 勾股定理 教案
- 格式:doc
- 大小:70.18 KB
- 文档页数:3
(精品教案)沪科版《勾股定理》讲课稿(精选6篇)帮大伙儿整理的沪科版《勾股定理》讲课稿(精选6篇),欢迎大伙儿借鉴与参考,希翼对大伙儿有所帮助。
勾股定理是学生在差不多掌握了直角三角形的有关性质的基础上举行学习的,它是直角三角形的一条很重要的性质,是几何中最重要的定理之一,它揭示了一具三角形三条边之间的数量关系,它能够解决直角三角形中的计算咨询题,是解直角三角形的要紧依照之一,在实际日子中用途非常大。
教材在编写时注意培养学生的动手操作能力和分析咨询题的能力,经过实际分析、拼图等活动,使学生获得较为直观的印象;经过联系和比较,明白勾股定理,以利于正确的举行运用。
据此,制定教学目标如下:1、明白并掌握勾股定理及其证明。
2、可以灵便地运用勾股定理及其计算。
3、培养学生观看、比较、分析、推理的能力。
4、经过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
教法和学法是体如今整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学日子动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生经过观看、分析、讨论、操作、归纳,明白定理,提高学生动手操作能力,以及分析咨询题和解决咨询题的能力。
3、经过演示实物,引导学生观看、操作、分析、证明,使学生得到获得新知的成功感觉,从而激发学生钻研新知的欲望。
本节内容的教学要紧体如今学生动手、动脑方面,依照学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公讲,把一根直尺折成直角,两端连接得到一具直角三角形。
假如勾是3,股是4,这么弦等于5。
如此引起学生学习兴趣,激发学生求知欲。
2、是别是所有的直角三角形都有那个性质呢?教师要善于激疑,使学生进入乐学状态。
教学目标知识目标:掌握勾股定理的内容,会用面积法证明勾股定理;并能用勾股定理解决简单的问题。
能力目标:经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,体会“数形结合”和“特殊到一般”的思想方法。
情感目标:简单介绍古代在研究勾股定理方面取得的伟大成就。
在探索问题的过程中,培养学生的合作交流意识和探索精神。
2学情分析八年级的学生对几何证明推理有了初步的认识和理解,本节课是学生学习了三角形的有关概念及二次根式知识后,研究如何探索直角三角形三边关系的一课。
勾股定理是几何中的几个重要定理之一,它揭示了直角三角形中三边之间的数量关系,是解直角三角形的主要根据之一,将数与形紧密地联系在一起,在数学的发展和现实世界中有着广泛作用。
3重点难点教学重点:探索和验证勾股定理。
教学难点:1.在方格中通过计算面积探索勾股定理。
2.用拼图的方法验证勾股定理。
4教学过程4.1 第一学时4.1.1教学活动活动1【导入】观察图形,得出新知(一)观察图形,得出新知观察黑板上的直角三角形让人学生判断那条边最长,并说出理由,通过这一环节,得出:定理1:在直角三角形中,斜边大于直角边。
活动2【活动】创设情境,引入思考(二)创设情境,引入思考数学智慧树课件展示,引入学生讨论图中的基本元素1、看一看,算一算:红色正方形面积为( )平方单位,用边长AC表示为( );蓝色正方形面积为( )平方单位,用边长BC表示为( );绿色正方形面积为( )平方单位,用边长AB表示为( )。
得出: 在这个直角三角形中,两条直角边的平方和等于斜边的平方活动3【导入】活动操作,验证定理要求如下:1、将你准备好的四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边c)拿出来,用这四个直角三角形拼成一个正方形.2、思考:用含a,b,c的代数式表示所拼出正方形的面积。
学生活动操作,拼图展示:并通过如下图形推出活动4【讲授】运用定理,快速解答1:在Rt△ABC中,已知∠C=90°,(1) 已知a=1, b=2,则c为( )(2) 已知a=3,c=5, 则b为( )(3) 已知b=1,c=2, 则a为( )活动5【讲授】例题讲解,运用新知例题1.在RT△ABC中,已知∠B=90°,BC =3,AC=x+3,AB=x+2 求AB的长度。
1.掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2.能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用.要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中已知线段的长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,, . (4)勾股数:满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……② 如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.③(是自然数)是直角三角形的三条边长;④(是自然数)是直角三角形的三条边长;⑤(是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以. a b ,c 222a b c +=222a c b =-222b c a =-()222c a b ab =+-222x y z +=x y z 、、a b c 、、t at bt ct 、、22121n n n -+,,1,n n >2222,21,221n n n n n ++++n 2222,,2m n m n mn -+,m n m n >、方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.1、长方形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图方式折叠,使点B 与点D 重合,折痕为EF ,求DE 的长.要点三、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点四、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).a b c ,,222a b c +=c(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.2、如图所示,四边形ABCD 中,AB ⊥AD ,AB =2,AD =,CD =3,BC =5,求∠ADC 的度数.举一反三:【变式1】△ABC 三边满足,则△ABC 是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【变式2】在四边形ABCD 中,AB=AD=2,∠A=60°,BC=2,CD=4.求∠ADC 的度数.2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c 23a b c ,,222338102426a b c a b c +++=++3、如图所示,在一棵树的10高的B 处有两只猴子,一只爬下树走到离树20处的池塘A 处,另外一只爬到树顶D 后直接跃到A 处,距离的直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?举一反三:【变式】如图①,有一个圆柱,它的高等于12,底面半径等于3,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)4、某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口1小时后相距20海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?mm cmcm要点五、互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.5、下列命题中,逆命题错误的是()A.平行四边形的对角线互相平分B.有两对邻角互补的四边形是平行四边形C.平行四边形的一组对边平行,另一组对边相等D.两组对边分别相等的四边形是平行四边形举一反三:【变式】下列命题中,逆命题是真命题的是()A.对顶角相等B.如果两个实数相等,那么它们的平方数相等C.等腰三角形两底角相等D.两个全等三角形的对应角相等要点六、直角三角形全等的判定(HL)在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简称“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.6、已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.8、如图,已知在△ABC中,AB=AC,∠BAC=90°,分别过B、C向过A的直线作垂线,垂足分别为E、F.(1)如图①过A的直线与斜边BC不相交时,求证:EF=BE+CF;(2)如图②过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,求:FE长.类型一、与勾股定理有关的证明1、在△ABC中,AB=AC,D是BC延长线上的点,求证:类型二、与勾股定理有关的线段长2、如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE 丄DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.举一反三:【变式】如图,∠C=30°,PA⊥OA于A,PB⊥OB于B,PA=2,PB=11,求OP的长.类型三、与勾股定理有关的面积计算3、问题背景:在△ABC中,AB,BC,AC三边的长分别为,3,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积;思维拓展:(2)如果△MNP三边的长分别为,2,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.举一反三:【变式】如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是4、6、3、4,则最大正方形E的面积是()A . 17B . 36C . 77D .941.在直线上依次摆着7个正方形(如图),已知倾斜放置的3个正方形的面积分别为1,2,3,水平放置的4个正方形的面积是则______.2. △ABC 的两边分别为5,12,另一边为奇数,且是3的倍数,则应为______,此三角形为______.3.如果三角形的三边a ,b ,c 满足a 2+b 2+c 2+50=6a+8b+10c ,则三角形为 三角形.4. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______. 1234S S S S ,,,,1234S S S S +++=a b ,c a b c ++c5.在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S,PR=PS,AQ=PQ,则下面三个结论:①AS=AR;②PQ∥AR;③△BRP≌△CSP.其中正确的是.6. 将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点.(1)当点P在∠ABC的平分线上时,求DP的长;(2)当点PD=BC时,求此时∠PDA的度数.7.如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯勾股定理教学目标:1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
教学重点:探索勾股定理教学难点:以直角三角形为边的正方形面积的计算。
教学过程设计(一)提出问题:首先创设这样一个问题情境:相传2500年前,古希腊著名数学家毕达哥拉斯从朋友家的地砖铺成的地面上发现了一个伟大的数学结论.同学们一定很好奇,究竟毕达哥拉斯从图中发现了什么结论。
下面,我们也来做一回数学家。
提问:教师:同学们,你们从图中发现有什么几何图形?学生:图中有等腰直角三角形和正方形。
师:我们以等腰直角三角形的三条边为边长,向外做三个正方形。
这三个正方形的面积有什么样的数量关系?生:问:如何找到这种数量关系?答:借助于正方形的面积。
问:现在我们是否可以肯定这个结论是正确的?为什么?答:不能,因为现在只是在等腰直角三角形这种特殊的三角形中,而且还没有证明。
(设计意图:1、由于第一环节中呈现了模型及指向性,所以为本节在发现问题中降低了难度。
2.让学生感受数学问题往往来源于平常的生活事物中,加强学生善于用数学的眼光观察、思考问题的意识。
3、初步形成借助于面积来解决问题的策略,为第三环节的开展作铺垫)(二)、探究问题,基本形成解决策略。
1、请同学们在正方形网格中利用上面的方法探究其它的直角三角形的三边关系,并填写表格(学生自主探究、合作交流)。
2、展示结果,并解释原理。
关注:学生能否讲清楚正方形C的面积是通过割补得到的。
3、多媒体展示,得出结论。
4、引起数学思考。
(1)上述的结论是怎样得到的?(2)上述的结论是否确保正确?为什么?(3)那么怎样才能确保这个结论正确?答:(1)上述的结论是借助正方形的面积关系得到的。
沪教版数学八年级上册19.3《勾股定理》教学设计一. 教材分析勾股定理是八年级数学的重要内容,也是古代中国数学的瑰宝。
沪教版教材通过引入几何图形,引导学生探索并证明勾股定理,培养学生的逻辑思维能力和空间想象能力。
本节课的内容包括勾股定理的发现、证明及应用,通过学习,学生能理解勾股定理的含义,并能运用勾股定理解决实际问题。
二. 学情分析学生在七年级已经学习了相似三角形、直角三角形等基础知识,对数学图形有一定的认识。
但勾股定理的证明和应用还需要学生具备一定的逻辑推理能力和空间想象能力。
此外,学生可能对古代数学文化感兴趣,可以从这方面激发学生的学习积极性。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理的证明方法。
2.能够运用勾股定理解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和空间想象能力,激发学生对古代数学文化的兴趣。
四. 教学重难点1.重难点:勾股定理的证明方法。
2.难点:如何引导学生理解和证明勾股定理,并运用到实际问题中。
五. 教学方法1.讲授法:讲解勾股定理的定义、证明方法及应用。
2.启发式教学:引导学生通过观察、思考、讨论,自主探索勾股定理的证明方法。
3.案例教学:通过具体例子,让学生学会运用勾股定理解决实际问题。
4.小组合作:分组讨论,培养学生的团队协作能力。
六. 教学准备1.课件:制作勾股定理的相关课件,包括勾股定理的定义、证明方法及应用实例。
2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。
3.板书设计:设计板书,突出勾股定理的关键信息。
七. 教学过程1.导入(5分钟)通过引入古代中国数学家毕达哥拉斯的故事,激发学生对勾股定理的兴趣。
同时,让学生了解到勾股定理在数学发展史上的重要性。
2.呈现(10分钟)展示勾股定理的定义,引导学生理解直角三角形三边之间的关系。
然后,通过动画演示勾股定理的证明过程,让学生初步掌握勾股定理的证明方法。
3.操练(10分钟)让学生分组讨论,每组选取一个证明方法,用自己的语言描述证明过程。
19.9(1) 勾股定理 导学案学习目标:1、经历勾股定理的探索过程,能熟记定理的内容。
2、能运用勾股定理由直角三角形的已知两边求第三边。
3、能运用勾股定理解一些简单的实际问题。
学习过程:一、知识回顾(用学过的知识完成下列填空)1、含有一个 的三角形叫做直角三角形。
2、已知Rt △ABC 中的两条直角边长分别为a 、b ,则. =∆ABC S3、已知梯形上下两底分别为a 和b ,高为)(b a +,则该梯形的面积为 。
4、完全平方公式:2)(b a ±= 。
5、在Rt △ABC 中,已知∠A =30°,∠C =90°,直角边BC =1, 则斜边AB = 。
二、自学交流1、根据图形填空(每个小方格的边长为1)(1)观察图1,你能发现各图中三个正方形的面积之间有什么关系吗? (2)观察图2两幅图,填表。
2、猜想命题:如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么 。
三、合作探究1、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:222c b a =+证明:=+∆小正S S 4 =大正S 根据等量关系: 得出:2、归纳定理:直角三角形两条 的平方和等于 的平方。
1B 图1 图2CA BD 如果直角三角形的两条直角边分别为a 、b ,斜边为c ,那么_________________。
3、证法积累:利用下图,模仿上述推导,能否得到相同的结果?四、新知运用1、在Rt △ABC 中,∠C=90°(1)已知a=3,b=4,则c= ; (2)已知a=8,c=10,则b= ; (3)已知a=23,b=2,则c= ; (4)已知a=5,b=12,则c= ; (5)已知c=25,b=24,则a= ; (6)已知a=1,c=2,则b= ; (7)已知a=b=1,则c= ; (8)已知a=b=2,则c= ;2、在Rt △ABC 中,∠A=90°(1)已知b=4,c=5,则a= ; (2)已知a=13,b=5,则c= ;3、在等腰Rt △ABC 中,∠C=90°,c=4,求a 、b 的值。
本章节主要讲解两部分内容,一是直角三角形的三条边之间的数量关系即勾股定理,包括勾股定理的证明、应用及逆定理的证明和应用两方面;二是两点间的距离公式.难点是勾股定理的证明及应用,它是解决直角三角形三边之间关系的常用方法,是一个工具公式,在以后的学习中运用非常广泛.1、勾股定理:(1)直角三角形中,两条直角边的平方和,等于斜边的平方.利用勾股定理往往构造方程,已达到解决问题的目的;(2)应用勾股定理解决实际问题,要注意分析题目的条件,关注其中是否存在直角三角形,如果存在直角三角形,根据所给的三边条件,建立方程,从而解决问题;如果问题中没有直角三角形,可以通过添加辅助线构造出直角三角形,寻求等量关系,再根据勾股定理建立相应的方程,因此,在解决直角三角形中有关边长的问题时,要灵活的运用方程的思想.勾股定理及两点间的距离公式知识结构模块一:勾股定理的证明及应用例题解析知识精讲内容分析【例1】 (1)在直角△ABC 中,∠C =90°,∠A =30°,BC =1,则AB =_________; (2)在直角△ABC 中,∠C =90°,∠A =45°,AB =3,则AC =_________.【答案】(1)2;(2)223.【解析】(1)由直角三角形性质推论即可得结论;(2)设x BC AC ==,则由勾股定理可得:2223=+x x ,解得:223=x , ∴223=AC . 【总结】考察直角三角形的性质和勾股定理的综合应用.【例2】 (1)等边三角形的边长是3,则此三角形的面积是___________;(2)等腰三角形底边上的长为2,腰长为4,则它底边上的高为__________.【答案】(1)349;(2)15.【解析】(1)作出等边三角形的高,则可得高为323,则三角形的面积为349; (2)作底边上的高,由三线合一性质和勾股定理可得底边上的高为15 【总结】考察等腰三角形的三线合一和勾股定理的综合运用.【例3】 (1)直角三角形两边长为3和4,则此三角形第三边长为_________;(2)直角三角形两直角边长为3和4,则此三角形斜边上的高为_________; (3)等腰三角形两边长是2、4,则它腰上的高是____________.【答案】(1)5或7;(2)512;(3)215.【解析】(1)3和4可以是两直角边长,也可以是一个直角边和斜边; (2)由勾股定理可得:斜边长为5,则由等面积法可知:三角形斜边上的高为512543=⨯;(3)∵2、2、4不能构成三角形,所以三角形的三边长为4、4、2, 作等腰三角底边上的高,则由等腰三角形三线合一性质和勾股定理可得:底边上的高为15,则由等面积法可知:此三角形腰上的高为2154152=⨯. 【总结】考察等腰三角形的性质和勾股定理的应用,注意分类讨论.【例4】 (1)若直角三角形的三边长分别为N +1,N +2,N +3则N 的值是____________;(2)如果直角三角形的三边长为连续偶数,则此三角形的周长为______________.【答案】(1)2;(2)24.【解析】(1)由题意有:()()()222321+=+++N N N ,解:2=N (负值舍去);(2)可设直角三角形的三边长分别为N -2,N ,N +2 ∴()()22222+=+-N N N ,∴8=N∴三角形的周长为243=N【总结】考察勾股定理的应用.【例5】 如图,在直角△ABC 中,∠ACB =90°,∠B=60°,D 是斜边AB 的中点,BC =2,求△ADC 的周长. 【答案】324+.【解析】∵∠ACB =90°,D 是斜边AB 的中点,∴AB AD CD BD 21===.∵∠B=60°,∴△BDC 是等边三角形,∴BC CD =.∵∠ACB =90°,∠B=60°,∴∠A=30°,∴4=AB .∵AB AD CD BD 21===,∴2=CD .∵∠ACB =90°,BC =2,4=AB ,∴322422=-=AC ,∴3243222+=++=++=AC CD AD C ADC △ 【总结】考察直角三角形的性质和勾股定理的运用.【例6】 如图,已知:R t △ABC 中,∠ACB 是直角,BC =15,AB 比AC 大9,CD ⊥AB 于点D ,求CD 的长.【答案】17120.【解析】设9AC x AB x ==+,, ∵222CB AC AB +=,∴()222159+=+x x ,解得:8=x∴817AC AB ==,由等面积法可知:1712017158=÷⨯=÷⋅=AB BC AC CD . 【总结】考察勾股定理和等面积法的应用.【例7】 已知已直角三角形的周长为4+26,斜边上的中线为2,求这个直角三角形的面积.【答案】52.【解析】∵斜边上的中线为2,所以斜边长为4.A BCDBC D∵直角三角形的周长为4+26,∴两直角边之和为26. ∵斜边长为4,则两直角边的平方和为16,∴设两直角边分别为x y ,,则有⎩⎨⎧=+=+261622y x y x ,解得:()()52222=+-+=y x y x xy ,∴直角三角形的面积为25. 【总结】考察勾股定理和直角三角形性质的应用,解题时注意方法的运用.【例8】 如图,直线MN 是沿南北方向的一条公路,某施工队在公路的点A 测得北偏西30°的方向上有一栋别墅C ,朝正北方向走了400米到达点B 后,测得别墅C 在北偏西75°的方向上,如果要从别墅C 修一条通向MN 的最短小路, 请你求出这条小路的长(结果保留根号). 【答案】3100100+.【解析】根据垂线段最短,过C 作垂线的垂线段是最短的. 过C 作CD ⊥MN ,垂足为D ,过B 作BE ⊥AC ,垂足为E . 由题意可知:︒=∠30CAB ,︒=∠75CBM ,∴︒=∠45BCA .在Rt △ABE 中,︒=∠30CAB ,400=AB ,∴20021==AB BE .∴由勾股定理可得:3200=AE在Rt △CBE 中,︒=∠45BCA ,200=BE ,∴200=CE ∴2002200+=+=CE AE AC在Rt △ACD 中,︒=∠30CAB ,3200200+=AC ,∴3100100+=CD .【总结】考察勾股定理和直角三角形性质的应用.【例9】 如图,公路MN 和公里PQ 在点P 处交汇,且∠QPN =30°,点A 处有一所中学,AP =160米,假设拖拉机行驶时,周围100米以内会受到噪音的影响,那么拖拉机在MN 上沿PN 方向行驶时,学校是否会受到噪音的影响?请说明理由;如果受影响,已知拖拉机的速度是18千米/时,那么学校受影响的时间是多少秒? 【答案】24秒.【解析】过A 做AB ⊥MN ,垂足为B .A BCM M ND ME M APQ MNB在Rt △ABP 中,∠QPN =30°,160=AP ,∴8021==AP AB∵80<100,所以学校会受到噪音的影响.假设在C 处开始受到噪音影响,在D 处开始不受影响, ∴100100==AD CA ,由勾股定理可得:60==BD CB∴受影响的路程为120米=0.12千米∴学校受影响的时间为秒2436001812.0=⨯.【总结】考察勾股定理和直角三角形性质的应用,解题时注意对题意的分析.【例10】 如图,矩形ABCD 中,AB =8,BC =4,将矩形沿AC 进行翻折,点D 落在E 处,求出重叠部分△AFC 的面积. 【答案】10.【解析】∵AB DC ∥,ACF DCA ∠=∠,∴CAF ACF ∠=∠,∴FC AF = 设x FC AF ==,则x FB -=8∵222CF BF BC =+,∴()22284x x =-+,解得:5=x∴10452121=⨯⨯=⋅⋅=CB AF S AFC △ 【总结】考察翻折图形的性质和勾股定理的应用.【例11】 如图,AB 两个村子在河边CD 的同侧,A 、B 两村到河边的距离分别为AC =1千米,BD =3千米,CD =3千米.现在河边CD 建一座水厂,建成后的水厂,可以直接向A 、B 两村送水,也可以将水送一村再转送另一村.铺设水管费用为每千米2万元,试在河边CD 选择水厂位置P 确定方案,使铺设水管费用最低,并求出铺设水管的总费用(精确到0.01万元). 【答案】10万元.【解析】延长AC 至点E ,使得CE =AC ,连接EB 交CD 于一点,,则此时铺设水管费用最低. 过E 作EF ∥CD ,交BD 延长线于F ∵四边形CEFD 是长方形,∴1==DF CEABCDEFABC D AB C D PEF∵34EF BF ==,,∴由勾股定理可得:5=BE 此时5==+=+BE BP EP PB AP ∴总费用为1025=⨯万元.【总结】考察勾股定理在实际问题中的应用.【例12】 如图,在直角△ABC 中,∠BAC =90°,AB =AC ,E 、F 是BC 上的两点,且∠EAF =45°,求证:222+=BE CF EF . 【答案】见解析【解析】过C 作CG ⊥BC ,使CG CE =,连接AG 、FG .∵∠BAC =90°,AB =AC , ∴45B BCA ∠=∠=.∵CG ⊥BC , ∴45ACG BCA ∠=∠=, ∴ACG B ∠=∠. ∵AB =AC ,BE =CG , ∴AEB AGC △≌△∴AE AG BAE CAG =∠=∠,. ∵︒=∠45EAF , ∴︒=∠+∠45CAF BAE ,∴45CAF CAG ∠+∠=︒,即45FAG ∠=︒, ∴GAF EAF ∠=∠∵AF AF =,AE AG =, ∴AFG AFE △≌△, ∴EF GF =.在Rt CFG 中,由勾股定理,可得:222GF CG CF =+, 又EF GF =,CG CE =,∴222+=BE CF EF .【总结】本题综合性较强,本质上是对三角形的旋转,同时结合了勾股定理进行解题.ABC EFG2、 逆定理:(1) 如果三角形一条边的平方等于其他两边的平方和,那么这个三角形是直角三角形;利用逆定理来判断三角形是否为直角三角形.(2) 在直角三角形的三边中,首先弄清楚哪条边是斜边,另外应用逆定理时,最大边的平方和等于较小两边的平方和.【例13】 下列命题中是假命题的是()A . 在△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形 B . 在△ABC 中,若2()()a b c b c =+-,则△ABC 是直角三角形 C . 在△ABC 中,若∠B :∠C :∠A =3:4:5,则△ABC 是直角三角形D . △ABC 中,若::5:4:3a b c =,则△ABC 是直角三角形 【答案】C【解析】A 答案中:C A B ∠=∠+∠,且C A B ∠-︒=∠+∠180,∴︒=∠90C ,所以是直角三角形;B 答案中:222c b a -=,∴222b c a =+,所以是直角三角形;C 答案中:x A x C x B 5,4,3=∠=∠=∠,∴︒=++180543x x x ,∴︒=15x ,∴︒=∠75C , ∴不是直角三角形;D 答案中:设543a m b m c m ===,,,∵222c b a +=,所以是直角三角形. 【总结】考察判断直角三角形的方法.模块二:勾股定理的逆定理的证明及应用例题解析知识精讲【例14】 (1)将直角三角形的三边都扩大相同的倍数后,得到的三角形是______三角形;(2)若△ABC 的三边A 、B 、C 满足222()()0a b a b c -+-=则△ABC 是________三角形. 【答案】(1)直角三角形;(2)等腰三角形或直角三角形.【解析】(1)直角三角形的三边都扩大相同的倍数后,三边也满足勾股定理,所以得到的三角形是直角三角形;(2)由题意有:b a =或222c b a =+,∴三角形为等腰三角形或直角三角形. 【总结】考察勾股定理的应用.【例15】 (1)一根旗杆在离地面9米处断裂,旗杆顶部落在离旗杆底部12米处,则旗杆折断之前有多少米?(2)如果梯子的底端离建筑物8米,那么17米长的梯子可以到达建筑物的高度是__________米.【答案】(1)24米;(2)15米.【解析】(1)由题意可知:折断的旗杆的部分长度为1512922=+,则旗杆长为9+15=24米;(2)由题意可得:可达到建筑物的高度为1581722=-. 【总结】考察勾股定理在实际问题中的应用.【例16】 ABC ∆的三边分别为A 、B 、C ,且满足222506810a b c a b c +++=++, 判断△ABC 的形状.【解析】∵222506810a b c a b c +++=++,∴()()()0543222=-+-+-c b a ,∴345a b c ===,,.∵222c b a =+,∴△ABC 是直角三角形.【总结】考察完全平方公式的应用和勾股定理逆定理的运用.【例17】 如图,公路上A 、B 两点相距25千米,C 、D 为两村庄,DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA =15千米,CB =10千米,现要在公路AB 上建一车站E . (1) 若使得C 、D 两村到E 站的距离相等,E 站建在离A 站多少千米处? (2) 若使得C 、D 两村到E 站的距离和最小,E 站建在离A 站多少千米处?【答案】(1)10=AE ;(2)15AE =.ABCDE E’【解析】(1)设25AE x BE x ==-,则,∴()222222152510ED x EC x =+=-+,,∵EC ED =,∴()2222102515+-=+x x ,∴10=x ,即10=AE .(2)找出C 点关于AB 的对称点F ,联结DF 交AB 于点E ', 则此时的E '满足C 、D 两村到E 站的距离和最小, 设x BE x AE -==25,,∴()222222152510ED x EF x =+=-+,, ∵225252522=+=DF ,∴()2251025152222=+-++x x ,解得:15x =,∴15AE =【总结】考察勾股定理的应用,注意最小值的求法.【例18】 如图,在四边形ABCD 中,AB =BC =2,CD =3,DA =1,且∠B =90°,求∠DAB的度数. 【答案】135°. 【解析】连接AC∵AB =BC =2,∠B =90°,∴222222=+=AC ,︒=∠45BAC . ∵2213AC AD CD ===,,,∴222CD AC AD =+, ∴︒=∠90DAC ,∴︒=∠+∠=∠135BAC DAC DAB . 【总结】考察勾股定理及其逆定理的综合运用.【例19】 如图,已知在△ABC 中,∠B =90°,AB =BC ,AD 是BC 边上的中线,EF 是AD的垂直平分线,交AB 于点E ,交AC 于点F ,求AE :BE 的值. 【答案】5:3. 【解析】连接ED ,∵EF 是AD 的垂直平分线,∴ED AE = 设2==BC AB ,x ED AE ==,则x BE -=2∵222ED BD BE =+,∴()22212x x =+-,解得:45=x . 则434522=-=-=x BE , ABCD AB CD EF∴3:543:45:==BE AE . 【总结】考察勾股定理和线段垂直平分线性质的综合运用.【例20】 如图,∆ABC 是等边三角形,P 是三角形内一点,P A =3,PB =4,PC =5,求∠APB 的度数.【答案】150°.【解析】在BC 的下方作︒=∠60PBD ,在BD 上截取一点D ,使得BD=BP ,连接CD 、PD∵︒=∠+∠60PBC ABP ,︒=∠+∠60PBC DBC ∴CBD ABP ∠=∠∵BC AB =,CBD ABP ∠=∠,BP BD = ∴CBD ABP ≌△△,∴3==AP CD∵︒=∠60PBD ,BP BD =,∴△BPD 为等边三角形,∴4==BP DP . ∵435DP DC PC ===,,,∴222PC DC DP =+,∴︒=∠90PDC ∴︒=∠+∠=∠150PDC BDP BDC ∵CBD ABP ≌△△, ∴︒=∠=∠150BDC APB【总结】考察旋转辅助线的作法和勾股定理逆定理的应用.【例21】 如图,P 是凸四边形内一点,过点P 作AB 、BC 、CD 、DA 的垂线,垂足分别为E 、F 、G 、H ,已知AH =3,DH =4,DG =1,GC =5,CF =6,BF =4,且BE -AE =1, 求四边形ABCD 的周长. 【答案】34.【解析】由勾股定理可得:22222PE AE PH AH AP +=+=, 22222PF BF PE BE BP +=+=, 22222PG CG CF PF CP +=+=, 22222PH DH GP DG DP +=+=,等式相加后代入数据可得:2222222454163+++=+++AE BE ,ABCDEFGHPBAP CD整理得:2211BE AE -=,即()()11BE AE BE AE +-=,∵BE -AE =1, 解得:65BE AE ==,. 所以周长为:3415646534+++++++=. 【总结】考察勾股定理的应用,注意解题方法的合理选择.【例22】 已知,如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,设AC =b ,BC =a ,AB =c ,CD =h . 求证:(1)c h a b +>+;(2)以a b +、c h +、h 为三边可构成一个直角三角形.【解析】(1)由等面积可知:ch ab =,∵222c b a =+,∴()ch c b ab a b a 222222+=++=+,()ch h c h c 2222++=+. ∵ch h c ch c 22222++<+,∴()()22h c b a +<+,∴c h a b +>+.(2)∵()ch h c h c 2222++=+;()ab b a h b a h 222222+++=++,222c b a =+,ch ab = ∴()()222b a h h c ++=+,∴以a b +、c h +、h 为三边可构成一个直角三角形.【总结】考察勾股定理及其逆定理的应用、等面积法的综合应用.3、 距离公式:如果平面内有两点11()A x y ,、22()B x y ,,则A 、B 两点间的距离为:221212()()x x y y -+-.(1) 当11()A x y ,、22()B x y ,两点同在x 轴上或平行于x 轴的直线上,则有12y y =,AB =12||x x -;(2) 当11()A x y ,、22()B x y ,两点同在y 轴上或平行于y 轴的直线上,则有12x x =,AB =12||y y -.例题解析模块三:两点间的距离公式知识精讲AB CD【例23】 已知点A (2,2)、B (5,1).(1) 求A 、B 两点间的距离; (2) 在x 轴上找一点C ,使AC =BC . 【答案】(1)10;(2)()30C ,. 【解析】(1)()()10125222=-+-=AB ;(2)设()0C x ,, ∵AC =BC ,∴()()22221522+-=+-x x ,3=x ,∴()30C ,. 【总结】考察两点之间距离公式的应用.【例24】 (1)已知A (x ,3)、B (3,x +1)之间的距离为5,则x 的值是_________;(2)已知点P 在第二、四象限的平分线上,且到Q (2,-3)的距离为5,则点P 的坐标为_________.【答案】(1)16-=或x ;(2)()66P -,或()11P -,. 【解析】(1)由题意有:()()513322=--+-x x ,∴16-=或x ;(2)设()a a P -,,∴()()53222=+-+-a a ,∴16-=或a ,∴()66P -,或()11P -,. 【总结】考察两点之间距离公式的应用.【例25】 (1)以点A (1,2)、B (-2,-1),C (4,-1)为顶点的三角形是________;(2)已知点A (0,3)、B (0,-1),△ABC 是等边三角形,则点C 的坐标是_______.【答案】(1)等腰直角三角形;(2)()1C 或()1C -.【解析】(1)∵233322=+=AB ,60622=+=BC ,233322=+=AC ,∴222BC AC AB =+,AC AB =, ∴该三角形为等腰直角三角形; (2)()C a b ,,(3)∵4=AB ,∴()4322=-+=b a AC ,()4122=++=b a BC ,解得:a =±,1b =,∴()1C 或()1C -. 【总结】考察两点之间距离公式的应用.【例26】 已知直角坐标平面内的点A (4,1)、B (6,3),在坐标轴上求点P ,使P A =PB . 【答案】()70P ,或()07P ,. 【解析】①当点P 在x 轴上时,设()0P x ,,∵P A =PB ,∴()()22223614+-=+-x x ,7=x ,∴()70P ,②当点P 在y 轴上时, 设()0P y ,,∵P A =PB ,∴()()22226341+-=+-y y ,7=y ,∴()07P ,∴满足条件的P 点的坐标为()70P ,或()07P ,. 【总结】考察两点之间距离公式的应用,由于点P 在坐标轴上,注意分类讨论.【例27】 已知直角坐标平面内的点P (4,m ),且点P 到点A (-2,3)、B (-1,-2)的距离相等,求点P 的坐标.【答案】845P ⎛⎫⎪⎝⎭,.【解析】由题意可知:()()22225263++=+-m m ,解得:58=m ,∴845P ⎛⎫ ⎪⎝⎭,.【总结】考察两点之间距离公式的应用.【例28】 已知点A (2,3)B (4,5),在x 轴上是否存在点P ,使得PA PB +的值最小?若存在,求出这个最小值;若不存在,说明理由. 【答案】存在,最小值为172.【解析】找出A (2,3)关于x 轴对称的点为()23C -,,连接BC ,则PA PB +的值最小值为1728222=+=BC . 【总结】考察两点之间距离公式的应用.【例29】 已知直角坐标平面内的点A (4,32)、B (6,3),在x 轴上求一点C ,使得 △ABC 是等腰三角形.【答案】10704C ⎛⎫⎪⎝⎭,或()60C ,或()20C ,. 【解析】设()0C x ,, 当CA =CB 时,∴()()222236234+-=⎪⎭⎫ ⎝⎛+-x x ,16107=x ,∴10704C ⎛⎫⎪⎝⎭,; 当CA =AB 时,∴()2222223234+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-x ,62或=x ,∴()60C ,或()20C ,; 当CB =AB 时,∴()222222336+⎪⎭⎫ ⎝⎛=+-x ,方程无解,所以不存在.综上,满足条件的点C 的坐标为:10704C ⎛⎫⎪⎝⎭,或()60C ,或()20C ,. 【总结】考察两点之间距离公式的应用,注意分类讨论.【例30】 已知点A (4,0)、B (2,-1),点C 的坐标是(x ,2-x ),若△ABC 是等腰三角形,求C 的坐标.【答案】7322C ⎛⎫- ⎪⎝⎭,或662622C ⎛⎫++- ⎪ ⎪⎝⎭,或666222C ⎛⎫+- ⎪ ⎪⎝⎭,或()11C -,或()42C -,. 【解析】由两点间距离公式,可得:22(42)15AB =-+=,22(4)(2)AC x x =-+-,22(12)(2)BC x x =---+-.当CA =CB 时,即()()()()222221224x x x x +--+-=-+-,解得:27=x ,∴7322C ⎛⎫- ⎪⎝⎭,; 当CA =AB 时,即()()22221224+=-+-x x ,解得:266266-+=或x ,∴662622C ⎛⎫++- ⎪ ⎪⎝⎭,或666222C ⎛⎫+- ⎪ ⎪⎝⎭,;当CB =AB 时,即()()222221212+=+--+-x x ,解得:14x x ==或,所以()11C -,或()42C -,. 综上,满足条件的C 点的坐标为:7322⎛⎫- ⎪⎝⎭,或662622⎛⎫++- ⎪ ⎪⎝⎭,或666222⎛⎫+- ⎪ ⎪⎝⎭, 或()11-,或()42-,. 【总结】本题主要考察两点之间距离公式及勾股定理的应用,由于题目中并没有说明斜边是哪条边,因此要分类讨论.随堂检测【习题1】 六根细木棒,她们的长度分别是2、4、6、8、10、12(单位:cm )从中取出三根,首尾顺次连接搭成一个直角三角形,则这些木棒的长度分别为().A . 2、4、8B .4、8、10C .6、8、10D .8、10、12【答案】C【解析】只有C 答案满足勾股定理逆定理. 【总结】考察勾股定理逆定理的应用.【习题2】 已知点A (2,4)B (-1,-3)C (-3,-2),那么△ABC 的形状是()A .等腰三角形B .直角三角形C .等腰直角三角形D .以上都不是【答案】D【解析】∵587322=+=AB ,51222=+=BC ,616522=+=AC ,∴222BC AC AB ≠+,∴该三角形不是直角三角形,也不是等腰三角形. 【总结】考察两点之间的距离公式的应用.【习题3】 (1)如果等腰直角三角形一边长为2,另外两边长为_________;(2)如果直角三角形两边长为5和12,第三边长度为_______________. 【答案】(1)2,22或22,;(2)13或119.【解析】两题目中的边长可能为两直角边或一条直角边和一条斜边. 【总结】考察勾股定理的应用.【习题4】 如图,将长方形ABCD 沿AE 折叠,使得点D 落在BC 上的点F 处,AB =8,AD =10.求EC 的长. 【答案】3=CE .【解析】由翻折性质,可知:10==AF AD ,∴622=-=AB AF BF ,∴4610=-=-=BF BC CF . 设x DE EF x EC -===8,∵222EF CF CE =+,∴()22284x x -=+,解得:3=x .∴3=CE .A BCDEF【总结】考察勾股定理的应用.【习题5】 如图,在四边形ABCD 中,AB ⊥BC ,AB =9,BC =12,CD =15,DA =152.求四边形ABCD 的面积.【答案】2333.【解析】联结AC ,过C 作CE ⊥AD∵AB ⊥BC ,AB = 9,BC =12,∴15=AC .∵CD =15,15=AC ,152,∴222CD AC AD +=, ∴ACD 为直角三角形.∴1122ABC ADC ABCD S S S AB BC AD EC =+=⋅⋅+⋅⋅△△四边形111523339121522222=⨯⨯+⨯⨯=. 【总结】考察勾股定理及其逆定理的综合运用.【习题6】 如图,在△ABC 中,AD 为BC 边上的中线,AB =5,AC =3,AD =2.求:△ABC的面积. 【答案】6.【解析】延长AD 至E ,使得DF=AD ,联结CE∵CD BD =,CDE ADB ∠=∠,DF=AD , ∴CDE ABD ≌△△,∴5==CE AB∵345AC AE CE ===,,,∴222CE AE AC =+, ∴︒=∠90DAC ,∴321=⋅⋅=AC AD S ADC △. ∵CD BD =,∴62==ADC ABC S S △△.【总结】考察勾股定理逆定理的应用和等底同高的面积相等的应用.AB CDABDCE【习题7】 若A 、B 、C 是三角形的边长且关于x 的方程222()20x a b x c ab -+++=有两个相等的实数根,试判断这个三角形的形状.【答案】直角三角形.【解析】由题意可知:()[]()024222=+-+-ab c b a ,∴222c b a =+,∴这个三角形为直角三角形. 【总结】考察勾股定理逆定理的应用.【习题8】 如图,在一条公路上有P 、Q 两个车站,相距27km ,A 、B 是两个村庄,AP ⊥PQ ,BQ ⊥PQ ,且AP =15km ,BQ =24km ,现在要在公路上建立一个商场M 使得A 、B 两个村庄到商场M 的距离相等,求PM 的长 . 【答案】20=PM .【解析】设x MQ x PM -==27,,∵MB MA =,∴()2222242715+-=+x x ,解得:20=x , ∴20=PM .【总结】考察勾股定理的应用及对最小值的应用.【习题9】 已知点()()2814A B -,,,点C 在y 轴上,使ABC ∆为直角直角三角形,求满足条件的点C 的坐标.【答案】()066C +,或()066C -,或1902C ⎛⎫ ⎪⎝⎭,或1304C ⎛⎫⎪⎝⎭,. 【解析】设()0C y ,,则24(8)AC y =+-,21(4)BC y =+-,22345AB =+=.当222AB BC AC =+时,则()()222222431428+=+-++-y y , 解得:6666y y =+=-或,∴()066C +,或()066C -,; 当222BC AB AC =+时,则()()222222144328+-=+++-y y ,解得:219=y , ∴1902C ⎛⎫⎪⎝⎭,;当222AC AB BC =+时,则()()222222284314+-=+++-y y ,解得:413=y , ∴1304C ⎛⎫ ⎪⎝⎭,.∴综上所述,满足条件的C 点的坐标为:()066C +,或()066C -,或1902C ⎛⎫⎪⎝⎭,或 1304C ⎛⎫ ⎪⎝⎭,.【总结】考察两点之间的距离公式的运用,注意分类讨论.ABQPM【习题10】 如图,在ABC ∆中,90ACB AC BC M ∠==,,是ABC ∆内一点,且312AM BM CM ===,,,求BMC ∠的度数.【答案】135°.【解析】在过点C 作CD ⊥CM 于点C ,在CD 上截取一点D ,使得CD=CM ,连接BD∵︒=∠+∠90DCA ACM ,︒=∠+∠90BCM ACM ∴BCM DCA ∠=∠∵BC AC =,BCM DCA ∠=∠,CM CD = ∴BCM ACD ≌△△, ∴1==AD BM∵︒=∠90MCD ,CM CD =, ∴22=DM ,︒=∠45CDM ∵1223DA DM AM ===,,, ∴222AM DM DA =+, ∴︒=∠90ADM∴︒=∠+∠=∠135CDM ADM ADC ∵BCM ACD ≌△△, ∴︒=∠=∠135ADC BMC【总结】考察旋转辅助线的作法和勾股定理逆定理的应用.ABCMD【习题11】 若在△ABC 中,AB =c ,AC =b ,BC =a ,∠ACB =90°,则222a b c +=试用两种方法证明.【解析】方法一:如图,△CDE ≌△ADE ,且B 、C 、D 在一条直线上,联结AE∵△CDE ≌△ADE ,∴CED ACB ∠=∠∵︒=∠+∠90CED ECD ,∴︒=∠+∠90CED ACB ,∴︒=∠90ACE∴梯形ABDE 的面积为()()22121221c ab b a b a +⨯=++整理得:222a b c +=,即得证.方法二、如图,由四个△ABC 拼成以下图形, 则四边形BCEG 和四边形ADFH 都为正方形∵四边形BCEG 的面积为2c ,∴四边形ADFH 的面积为()22214b a c ab +=+⨯,整理得:222a b c +=,即得证.【总结】本题主要考查学生对勾股定理的理解及通过几何说理方法说明定理的正确性.【作业1】 下列命题中,正确的有()个(1) 腰长及底边上的高对应相等的两个等腰三角形全等 (2) 有一直角边和斜边对应相等的两个直角三角形全等 (3) 有两边和其中一边上的高对应相等的两个三角形全等 A .0 B .1 C .2 D .3【答案】C【解析】(1)(2)正确,(3)错误,分锐角三角形和钝角三角形两种情况.故选C . 【总结】考察三角形全等的判定.【作业2】 如图,图中的字母、数代表正方形的面积,则A =______. 【答案】22.【解析】根据勾股定理得A 的面积等于另外两正方形面积之差. 【总结】考察勾股定理的应用.【作业3】 如图,Rt ABC ∆中,斜边1AB =,则222AB BC AC ++的值是_________. 【答案】2.【解析】222=1+1=2AB BC AC ++. 【总结】考察勾股定理的应用.【作业4】 已知点()35A -,,点B 的横坐标为-3,且A 、B 两点之间的距离为10,那么点B 的坐标是____________. 【答案】()()33313B B ---,或,. 【解析】设()3B m -,,∵BA =10,∴()106522=++m ,解得:133-=或m ,∴()()33313B B ---,或,. 【总结】考察两点之间的距离公式的应用.【作业5】 现将直角三角形ABC 的直角边AC 沿直线AD 折叠,使它落在斜边AB 上,点C与点E 重合,已知AC =3,BC =4,则CD 等于_____________.课后作业5072A【答案】23=CD . 【解析】由翻折性质,可得:3==AE AC ,∴2=BE .设4CD DE x DB x ===-,则,∵222BD BE DE =+,∴()22242x x -=+,解得:23=x ,∴23=CD . 【总结】考察翻折性质及勾股定理的综合应用.【作业6】 如果ABC ∆的周长为12,而22AB BC AC AB BC +=-=,,那么ABC ∆的形状是____________.【答案】直角三角形.【解析】∵12=++AC BC AB ,22AB BC AC AB BC +=-=,, 联立方程,解得:534AB BC AC ===,,. ∵222CB AC AB +=,∴ABC ∆为直角三角形. 【总结】考察勾股定理逆定理的应用.【作业7】 已知等腰直角三角形ABC 斜边BC 的长为2,DBC ∆为等边三角形,那么A 、D两点的距离为_______. 【答案】13-=AD 或13+.【解析】∵CD BD AC AB ==,,∴DA 垂直平分BC .设DA 交BC 于E ,∵等腰直角三角形ABC 斜边BC 的长为2,∴1=AE∵DBC ∆为等边三角形,∴根据勾股定理和直角三角形的性质可得:3=DE 当A 点在DBC ∆内部时,13-=AD ; 当A 点在DBC ∆外部时,13+=AD .【总结】考察勾股定理和直角三角形的性质的综合运用,注意分类讨论.【作业8】 已知:如图,已知在Rt ABC ∆中,9030B C ∠=∠=,,将ABC ∆绕点A 逆时针旋转30后得到APQ ∆,若1AB =,则两个三角形重叠部分的面积为_________. 【答案】63.【解析】设AC 与PQ 相交于D由题意可得:︒=∠30BAO ,︒=∠30PAD ,1==AB AP ∵︒=∠90P ,︒=∠30PAD ,∴设2PD x AD x ==,ABCQPD∴()2221x x =+,解得:33=x . ∴6321=⋅⋅=PD AP S APD △. 【总结】考察勾股定理和直角三角形性质的综合运用.【作业9】 已知:如图,四边形ABCD 的三边(AB 、BC 、CD )和BD 都为5厘米,动点P 从A 出发(A B D →→),速度为2厘米/秒,动点Q 从点D 出发(D C B A →→→)到A ,速度为2.8厘米/秒,5秒后P 、Q 相距3厘米,试确定5秒时APQ ∆的形状. 【答案】直角三角形.【解析】P 点的运动路程为10厘米,则此时P 与D 重合;Q 点的运动路程为14厘米,此时BQ =4厘米. ∵534===BP PQ BQ ,,∴△BPQ 为直角三角形,且︒=∠90BQP ,即︒=∠90AQP . ∴APQ ∆的形状为直角三角形.【总结】考察动点背景下勾股定理逆定理的运用,注意对动点运动路线的判断.【作业10】 阅读下列题目的解题过程: 已知a 、b 、c 为ABC ∆的三边,且满足222244a c b c a b -=-,试判断ABC ∆的形状. 解:222244a c b c a b -=-(A ),()()()2222222c a b a b a b ∴-=+-(B ) 222c a b ∴=+(C ),∴ABC ∆是直角三角形.问:(1)上述解题过程中,从哪一步开始出错? 请写出该步的代号:____________; (2)错误的原因:_______________;(3)本题正确的结论为:____________.【答案】(1)C ;(2)两边同时除一个不为零的数,等式成立.(3)直角三角形或者等 腰三角形.【解析】C 步骤应该为:222220c a b a b =+-=或, 所以应为直角三角形或者等腰三角形.ABCDQP【总结】考察因式分解和勾股定理的综合应用.【作业11】 如图,一根长度为50CM 的木棒的两端系着一根长度为70CM 的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,求满足条件的点有几个,并且这个点将绳子分成的两段各有多长?【答案】满足条件的点有2个,一段长为30厘米,一段长为40厘米. 【解析】设其中的一段长为x cm ,则另一段长为()cm x -70∴()2225070=-+x x ,解得:4030或=x .∴满足条件的点有2个,一段长为30厘米,一段长为40厘米. 【总结】考察勾股定理的应用,注意两个点的考虑.【作业12】 在直角坐标平面内,已知()()1054A B -,,,,在坐标轴上求一点P ,使得PAB ∆为直角三角形,求点P 的坐标. 【答案】()05P ,或()01P -,或302P ⎛⎫- ⎪⎝⎭,或2302P ⎛⎫ ⎪⎝⎭,或()50P ,或()10P -,或2303P ⎛⎫⎪⎝⎭,. 【解析】当点P 在y 轴上时,设()0P y ,, 当222AB BP AP =+,∴()22222246541+=+-++y y ,解得:15-=或y , ∴()05P ,或()01P -,; 当222BP AB AP =+,∴()22222254461+-=+++y y ,解得:23-=y ,∴302P ⎛⎫- ⎪⎝⎭,; 当222AP AB BP =+,∴()22222214654+=+++-y y ,解得:223=y ,∴2302P ⎛⎫⎪⎝⎭,;当点P 在x 轴上时,设()0P x ,, 当222AB BP AP =+,∴()()222222464501+=+-+++x x ,解得:15-=或x , ∴()50P ,或()10P -, 当222BP AB AP =+,∴()()222222454601+-=++++x x ,解得:1-=x ,∴()10P -,当222AP AB BP =+,∴()()222222014645++=+++-x x ,解得:323=x ,∴2303P ⎛⎫⎪⎝⎭,. 综上所述:满足条件的点P 的坐标为:()05P ,或()01P -,或302P ⎛⎫- ⎪⎝⎭,或2302P ⎛⎫⎪⎝⎭,或 ()50P ,或()10P -,或2303P ⎛⎫⎪⎝⎭,. 【总结】考察勾股定理的运用和两点之间的距离公式的综合应用,本题综合性较强,要进行多角度的分类讨论.。
沪教版数学八年级上册19.3《勾股定理》教学设计一. 教材分析勾股定理是数学中的重要定理之一,对于八年级学生来说,是学习几何的重要基础。
沪教版数学八年级上册19.3《勾股定理》一课,通过介绍勾股定理的来历、证明及应用,使学生了解并掌握这一定理。
教材内容主要包括:勾股定理的定义,勾股定理的证明,勾股定理的应用以及勾股定理在实际问题中的应用。
二. 学情分析学生在学习本课之前,已经掌握了相似三角形的性质、三角形面积计算等知识,但对于勾股定理的理解和应用还需进一步引导。
学生应具备观察、分析、推理的能力,能够运用勾股定理解决实际问题。
三. 教学目标1.知识与技能:使学生了解勾股定理的来历、证明及应用,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、分析、推理等方法,引导学生发现并证明勾股定理。
3.情感态度价值观:培养学生对数学的兴趣,激发学生探究数学规律的热情。
四. 教学重难点1.重点:使学生掌握勾股定理的定义、证明及应用。
2.难点:引导学生理解并证明勾股定理。
五. 教学方法1.情境教学法:通过设置有趣的问题情境,激发学生的学习兴趣。
2.启发式教学法:引导学生主动思考、探究,培养学生的分析问题和解决问题的能力。
3.小组合作学习:鼓励学生之间相互讨论、交流,提高学生的合作能力。
六. 教学准备1.教学PPT:制作含有丰富图片、动画和例题的教学PPT。
2.教学素材:准备一些与勾股定理相关的实际问题作为教学素材。
3.板书设计:提前准备好勾股定理的板书设计。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生观察并思考这些三角形中是否存在某种特殊的关系。
2.呈现(10分钟)介绍勾股定理的来历,如古希腊数学家毕达哥拉斯的故事,引导学生了解勾股定理的历史背景。
3.操练(10分钟)引导学生通过观察、分析、推理等方法,发现并证明勾股定理。
可以分组讨论,每组选取一个实例进行证明。
§19.9勾股定理(1)
§19.9勾股定理(1)
【教学目标】
1、理解用面积割补方法证明勾股定理的思路。
2、初步掌握勾股定理,并能进行简单运用。
3、感受人类文明的力量,了解中国古代在勾股定理方面的成就,知道勾股定理在人类重大科技发现中的地位。
【教学重难点】
教学重点:面积割补法证明勾股定理。
教学难点:勾股定理的灵活应用。
【教学过程】
一、复习引入
复习关于直角三角形的性质。
二、新课探索
探究:1、小组合作,利用这四个全等的直角三角形拼成以斜边为边长的正方形。
(允许中间有空隙) 由正方形和三角形的面积公式可得:
22)a -b (ab 214c +⨯= 整理可得:222b a c +=
2、将四个直角三角形沿着斜边翻折,得到新图形
请同学们自行完成新的面积公式推导
由正方形和三角形的面积公式可得:
22ab 2
14b)(a c +⨯=+ 整理可得:222b a c +=
【设计说明】小组学习,互相交流,共同分享,由特殊到一般对直角三角形进行探索,利用几何画板的动态功能达到了其他教学手段所不能达到的效果,使直角三角形数与形的关系展示得更为直观,更易被学生接受,从而顺利地突破难点,为学生接下来归纳结论打下基础,让学生体会到观察、猜想、操作、归纳、验证
的数学过程,使学生分析问题和解决问题的能力得到提高,符合学生的认知规律。
3、加菲尔德证法。
加菲尔德在证出此结论5年后,
成为美国总统,所以人们又叫它总统证法。
【设计说明】通过介绍勾股定理的有关研究历史,
感受数学文化,鼓励学生善于观察,大胆猜想,勇于探索数学知识,从而体会到祖国数学历史的悠久,增强民族自豪感。
勾股定理:在直角三角形中,两条直角边的平方和等于斜
边的平方。
在Rt⊿ABC中,∠C=90°
AB2=BC2+AC2或者c2=a2+b2
课堂练习:在Rt△ABC中,∠A=90°,设a、b、c分别是
∠A、∠B、∠C的对边。
(1)b=4,c=5,求a
(2)a=13,b=12,求c
例题:求边长为1的等边三角形的面积。
想一想:如果等边三角形的边长为a,那么面积S可以用a来表示吗?
思考:
1、在一个直角三角形中较短两边的长为3、4,则最长边的边长是。
2、在一个直角三角形中有两边的长为
3、4,则最长边的边长是。
三、课堂小结
今天学习了什么?
【设计说明】1、学到了用“等积法”证明勾股定理及数形结合的思想。
2、感受到了数学的奇妙,也感受到了古人的伟大。
我们一定要将此传承下去。
四、回家作业
1、练习册19.9.1。