§5.1.1 扩散定律
第一定律推导:
如右图所示,设有一金属棒,沿x轴方向存在着浓度梯度,并设: (1)有两个垂直于X轴方向的单位面积的原子平面l和2,其面间距离 为dx。 (2)当温度和浓度恒定时,每一扩散原子的平均跃迁领率为f。 (3)C1和C2分别代表平面l和平面2的扩散原子体积浓度.
由假设可知:
§5.1.2 扩散定律的应用
② 扩散的抛物线规律:由式(3.11)和(3.12)看出,如果要求距 焊接面为x处的浓度达到C,则所需要的扩散时间可由下式计算
x K Dt
(3.13)
式中,K是与晶体结构有关的常数。此关系式表明,原子的扩散距离与时间呈 抛物线关系,许多扩散型相变的生长过程也满足这种关系。
c
x
Cp:平均成分;A0:振幅Cmax- Cp;λ:晶粒间距的一半。 例:对于均匀化退火,若要求晶粒中心成分偏析振幅降低 到1/100,则:
[C(λ/2,t)- Cp]/( Cmax- Cp)=exp(-π2Dt/λ2)=1/100。 (4)高斯解(薄膜解) Cx=(M/√πDT)exp(-x2/4Dt) 适用条件:限定扩散源、衰减薄膜源(扩散物质总量M不变;t=0,c=0) 例:半导体Si中P的掺杂。
令
1 1 1 1 dC f (n1 n2 ) f (C1 C2 )dx (C2 C1)dx f (dx)2 2 2 2 2 dx dC 1 2 J D ( ) D f (dx) 并代入上式,有: dx 2 J
同时可写出y、z方向的菲克第一定律表达式。
§5.1.1 扩散定律
2
A1 A2
解出积分常数
A1
C1 C 2
, A2