如何核算碳源的投加量
- 格式:doc
- 大小:22.00 KB
- 文档页数:5
污水处理乙酸钠(碳源)投加量的计算很多城市的污水存在低碳相对高氮磷的水质特点,由于有机物含量偏低,在采用常规脱氮工艺时无法满足缺氧反硝化阶段对碳源的需求,导致反硝化过程受阻,并抑制异养好氧细菌增值,使得氨氮(NH4-N)的同化作用下降,因此大大影响了污水处理厂的脱氮效果。
通过实践证明,投加碳源是污水处理厂解决这类问题的重要手段。
1、乙酸钠作为碳源的优点目前污水处理厂解决低碳源污水处理常用的外加碳源有甲醇、淀粉、乙酸钠等,其中甲醇和乙酸钠均为易降解物质,本身不含有营养物质(如氮、磷),分解后不留任何难于降解的中间产物。
而淀粉为多糖结构,水解为小分子脂肪酸所需的时间长,且在水中的溶解性差,不易完全溶于水,容易造成残留和污泥絮体偏多等问题。
研究表明,乙酸钠作为碳源时其反硝化速率要远高于甲醇和淀粉。
其主要原因在于,乙酸钠为低分子有机酸盐,容易被微生物利用。
而淀粉等高分子的糖类物质需转化成乙酸、甲酸、丙酸等低分子有机酸等最易降解的有机物,然后才被利用;甲醇虽然是快速易生物降解的有机物,但甲醇必须转化成乙酸等低分子有机酸才能被微生物利用,所以出现了利用乙酸钠作为碳源比用淀粉、甲醇进行反硝化速度快很多的现象。
同时,甲醇作为一种易燃易爆的危险品,当采用甲醇作为外加碳源时,其加药间本身具有一定的火灾危险性。
当甲醇储罐发生火灾时,易导致储罐破裂或发生突沸,使液体外溢发生连续性火灾爆炸,危及范围较大,因此甲醇加药间对周边环境要求一定的安全距离。
同时由于其挥发蒸汽与空气混合易形成爆炸性气体混合物,故其范围内的电力装置均须采用特殊设计。
而乙酸钠本身不属于危险品,方便运输及储存,绝对价格也比甲醇便宜,因此对于一些已建的污水处理厂来说,由于其用地限制,当需要外加碳源时,采用乙酸钠作为外加碳源比甲醇更具有优势。
2、乙酸钠投加量的计算在缺氧反硝化阶段,污水中的硝态氮(NO3-N)在反硝化菌的作用下,被还原为气态氮(N2)的过程。
污水处理乙酸钠(碳源)投加量的计算很多城市的污水存在低碳相对高氮磷的水质特点,由于有机物含量偏低,在采用常规脱氮工艺时无法满足缺氧反硝化阶段对碳源的需求,导致反硝化过程受阻,并抑制异养好氧细菌增值,使得氨氮(NH4-N)的同化作用下降,因此大大影响了污水处理厂的脱氮效果。
通过实践证明,投加碳源是污水处理厂解决这类问题的重要手段。
1、乙酸钠作为碳源的优点目前污水处理厂解决低碳源污水处理常用的外加碳源有甲醇、淀粉、乙酸钠等,其中甲醇和乙酸钠均为易降解物质,本身不含有营养物质(如氮、磷),分解后不留任何难于降解的中间产物。
而淀粉为多糖结构,水解为小分子脂肪酸所需的时间长,且在水中的溶解性差,不易完全溶于水,容易造成残留和污泥絮体偏多等问题。
研究表明,乙酸钠作为碳源时其反硝化速率要远高于甲醇和淀粉。
其主要原因在于,乙酸钠为低分子有机酸盐,容易被微生物利用。
而淀粉等高分子的糖类物质需转化成乙酸、甲酸、丙酸等低分子有机酸等最易降解的有机物,然后才被利用;甲醇虽然是快速易生物降解的有机物,但甲醇必须转化成乙酸等低分子有机酸才能被微生物利用,所以出现了利用乙酸钠作为碳源比用淀粉、甲醇进行反硝化速度快很多的现象。
同时,甲醇作为一种易燃易爆的危险品,当采用甲醇作为外加碳源时,其加药间本身具有一定的火灾危险性。
当甲醇储罐发生火灾时,易导致储罐破裂或发生突沸,使液体外溢发生连续性火灾爆炸,危及范围较大,因此甲醇加药间对周边环境要求一定的安全距离。
同时由于其挥发蒸汽与空气混合易形成爆炸性气体混合物,故其范围内的电力装置均须采用特殊设计。
而乙酸钠本身不属于危险品,方便运输及储存,绝对价格也比甲醇便宜,因此对于一些已建的污水处理厂来说,由于其用地限制,当需要外加碳源时,采用乙酸钠作为外加碳源比甲醇更具有优势。
2、乙酸钠投加量的计算在缺氧反硝化阶段,污水中的硝态氮(N03—N)在反硝化菌的作用下,被还原为气态氮(N2)的过程。
投加碳源的计算方法
投加碳源的计算方法可以根据具体需求和条件来确定。
下面是一种常用的方法:
1. 确定碳源需求:首先确定所需要的碳源类型和数量。
根据需要生产的产物和反应过程需要消
耗的碳源,计算所需碳源的摩尔数或质量。
2. 碳源的摩尔质量:根据碳源的分子式和摩尔质量,计算出单位质量的碳源所含的碳的摩尔数。
3. 碳源含碳摩尔数计算:将碳源的需求摩尔数乘以碳源含碳的摩尔数,得出碳源中所含的碳的
摩尔数量。
4. 碳源的投加量计算:根据所需碳的摩尔数量和碳源中碳的摩尔数量的比值,计算出需要投加
的碳源量。
可以将所需碳的摩尔数量与碳源中碳的摩尔数量的比值乘以碳源的摩尔质量,得到
所需碳源的质量。
5. 确定投加方式和时间:根据实际情况确定碳源的投加方式和时间,以确保碳源能够被有效利用。
需要注意的是,上述方法仅为一种常用计算方法,实际应用中可能需要考虑其他因素,如反应
底物之间的摩尔比、反应速率等。
因此,在具体情况下应根据实际需求和条件进行具体的计算
和调节。
污水处理中碳源投加量计算思路污水处理中碳源投加量计算思路1. 引言在污水处理过程中,为了促进微生物的生长和污染物的去除,通常需要添加外部碳源来提供能量和营养物质。
碳源投加量的正确计算对于污水处理工艺的稳定运行和效果的优化至关重要。
本文将介绍污水处理中碳源投加量计算的基本思路。
2. 污水处理中碳源投加量计算的基本参数在计算碳源投加量之前,需要了解以下几个基本参数:- 污泥产率(Y)- 污泥比例(X)- 污泥浓度(Xs)- 污泥产量(VSS)- 销毁速率常数(k)- 污水流量(Q)3. 碳源投加量计算的方法3.1 需氧池中的碳源投加量计算方法在需氧池中,碳源投加量的计算可根据需氧池中有机物负荷和污泥负荷进行。
需氧池中的有机物负荷(F)可以通过以下公式进行估算:F = Q COD其中,Q为污水流量,COD为化学需氧量。
需氧池中的污泥负荷(RAS)可以通过以下公式进行估算:RAS = Xs X Q其中,Xs为污泥浓度,X为污泥比例,Q为污水流量。
碳源投加量(C)可以根据以下公式计算:C = K (F - RAS) / (Y Xs)其中,K为投加碳源的碳含量。
3.2 厌氧消化池中的碳源投加量计算方法在厌氧消化池中,碳源投加量的计算可根据污泥产生速率和销毁速率常数进行。
污泥产生速率(P)可以通过以下公式进行估算:P = VSS k其中,VSS为污泥产量,k为销毁速率常数。
碳源投加量(C)可以根据以下公式计算:C = P / (Y Xs)其中,Y为污泥产率,Xs为污泥浓度。
4. 碳源投加量计算的注意事项在进行碳源投加量计算时需要注意以下几点:- 确定各个参数的取值时应基于实际调查和研究数据。
- 不同的污水处理工艺和场景可能需要不同的计算方法和参数。
- 计算结果应根据实际情况进行调整和优化,以达到最佳的处理效果和经济效益。
5. 结论碳源投加量的正确计算是污水处理工艺优化的关键步骤之一。
本文介绍了污水处理中碳源投加量计算的基本思路和方法,并指出了计算过程中需要注意的事项。
反硝化碳源投加量的计算1、外部碳源投加量简易计算方法统一的计算式为:Cm=5N(式1)式中Cm—必须投加的外部碳源量(以COD计)mg/l;5—反硝化1kgNO-3-N需投加外部碳源(以COD计)5kg;N—需要外部碳源去除的TN量,mg/l2、需用外部碳源反硝化去除的氮量计算N=Ne-Ns (式2)式中Ne—二沉池出水实际TN浓度mg/l;Ns—二沉池TN排放标准mg/l3、简易碳源计算公式的说明(1)将公式中碳源改用COD表示,这样有利于计算各种外加碳源量。
当前使用的外部碳源除甲醇外,还有乙酸、乙酸钠、葡萄糖等。甲醇最经济,但属于易燃易爆的危险化学药品,适用于长期使用且用量大的污水处理厂,偶尔使用或用量较小时,宜采用其他较安全的碳源(2)对公式中中的系数值2.47(以COD表示为3.7)进行修正,把理论计算值修正为实际工程检验后的数值。
德国ATV标准是针对单段活性污泥法污水处理厂设计的指导性文件,其中规定反硝化1kgNO-3-N需投加外部碳源(以COD计)5kg,(相当于甲醇3.33kg),这是从大量工程实践中得出的经验值,应该更接近实际情况。(3)所有反硝化的氮均按硝态氮计算,忽略亚硝态氮的积累,从而简化计算。
生物脱氮工艺处于稳态运行时,系统中不会产生亚硝酸盐积累,通常在反应池中亚硝酸盐浓度很低,往往可以忽略不计。只有在特殊情况下,系统按短程硝化反硝化运行时,才需要考虑亚硝酸盐的积累,一般情况下不予考虑。(4)反硝化池中溶解氧很低,所需要的碳源量极少,可以忽略不计,以简化计算。
如A/O工艺的A池通常控制DO<0.5mg/L,所需的外加碳源量为0.5×0.87×1.5=0.65[(COD)mg/L],只相当于0.13mg/L 氮所需的外加碳源量,比检测和计算误差还小,省去该项对结果基本无影响。。
乙酸钠(碳源)投加量的计算!附实例计算!很多城市的污水存在低碳相对高氮磷的水质特点,由于有机物含量偏低,在采用常规脱氮工艺时无法满足缺氧反硝化阶段对碳源的需求,导致反硝化过程受阻,并抑制异养好氧细菌增值,使得氨氮(NH4-N)的同化作用下降,因此大大影响了污水处理厂的脱氮效果。
通过实践证明,投加碳源是污水处理厂解决这类问题的重要手段。
1、乙酸钠作为碳源的优点目前污水处理厂解决低碳源污水处理常用的外加碳源有甲醇、淀粉、乙酸钠等,其中甲醇和乙酸钠均为易降解物质,本身不含有营养物质(如氮、磷),分解后不留任何难于降解的中间产物。
而淀粉为多糖结构,水解为小分子脂肪酸所需的时间长,且在水中的溶解性差,不易完全溶于水,容易造成残留和污泥絮体偏多等问题。
研究表明,乙酸钠作为碳源时其反硝化速率要远高于甲醇和淀粉。
其主要原因在于,乙酸钠为低分子有机酸盐,容易被微生物利用。
而淀粉等高分子的糖类物质需转化成乙酸、甲酸、丙酸等低分子有机酸等最易降解的有机物,然后才被利用;甲醇虽然是快速易生物降解的有机物,但甲醇必须转化成乙酸等低分子有机酸才能被微生物利用,所以出现了利用乙酸钠作为碳源比用淀粉、甲醇进行反硝化速度快很多的现象。
同时,甲醇作为一种易燃易爆的危险品,当采用甲醇作为外加碳源时,其加药间本身具有一定的火灾危险性。
当甲醇储罐发生火灾时,易导致储罐破裂或发生突沸,使液体外溢发生连续性火灾爆炸,危及范围较大,因此甲醇加药间对周边环境要求一定的安全距离。
同时由于其挥发蒸汽与空气混合易形成爆炸性气体混合物,故其范围内的电力装置均须采用特殊设计。
而乙酸钠本身不属于危险品,方便运输及储存,绝对价格也比甲醇便宜,因此对于一些已建的污水处理厂来说,由于其用地限制,当需要外加碳源时,采用乙酸钠作为外加碳源比甲醇更具有优势。
2、乙酸钠投加量的计算在缺氧反硝化阶段,污水中的硝态氮( NO3-N) 在反硝化菌的作用下,被还原为气态氮(N2) 的过程。
碳源计算公式1、碳源选择通常反硝化可利用的碳源分为快速碳源(如甲醇、乙酸、乙酸钠等)、慢速碳源(如淀粉、蛋白质、葡萄糖等)和细胞物质。
不同的外加碳源对系统的反硝化影响不同,即使外加碳投加量相同,反硝化效果也不同。
与慢速碳源和细胞物质相比,甲醇、乙醇、乙酸、乙酸钠等快速碳源的反硝化速率最快,因此应用较多。
表1 对比了四种快速碳源的性能。
2、碳源投加量计算1)氮平衡进水总氮和出水总氮均包括各种形态的氮。
进水总氮主要是氨氮和有机氮,出水总氮主要是硝态氮和有机氮。
进水总氮进入到生物反应池,一部分通过反硝化作用排入大气,一部分通过同化作用进入活性污泥中,剩余的出水总氮需满足相关水质排放要求。
2)碳源投加量计算同化作用进入污泥中的氮按BOD5 去除量的5%计,即0.05(Si-Se),其中Si、Se 分别为进水和出水的BOD5 浓度。
反硝化作用去除的氮与反硝化工艺缺氧池容大小和进水BOD5 浓度有关。
反硝化设计参数的概念,是将其定义为反硝化的硝态氮浓度与进水BOD5 浓度之比,表示为Kde(kgNO3--N/kgBOD5)。
由此可算出反硝化去除的硝态氮[NO3--N]=KdeSi。
从理论上讲,反硝化1kg 硝态氮消耗2.86kgBOD5,即:Kde=1/2.86(kg NO3--N/kgBOD5)=0.35(kg NO3--N/kgBOD5)污水处理厂需消耗外加碳源对应氮量的计算公式为:N=Ne 计-NsNe 计=Ni - KdeSi - 0.05(Si-Se)式中:N—需消耗外加碳源对应氮量,mg/L;Ne 计—根据设计的污水水质和设计的工艺参数计算出能达到的出水总氮,mg/L;Ns—二沉池出水总氮排放标准,mg/L;Kde—0.35,kgNO3--N/kgBOD5;Si—进水BOD5 浓度,mg/L;Se—出水BOD5 浓度,mg/L;Ne 计需通过建立氮平衡方程计算,生化反应系统的氮平衡见图1。
通过计算出的氮量,折算成需消耗的碳量。
污水处理中碳源投加量计算思路污水处理中碳源投加量计算思路一、引言污水处理是保护水环境和人民健康的重要工作,其中污水中的有机物质的处理是关键环节之一。
碳源投加是污水处理过程中常用的方法,通过添加适量的碳源,促进微生物的生长和代谢过程,加速有机物的降解和氮磷的去除。
本文将详细介绍在污水处理中计算碳源投加量的思路和方法。
二、污水处理过程概述1.污水的处理流程2.主要污水处理技术和工艺3.碳源投加在污水处理中的作用原理三、碳源投加量计算思路1.确定目标污水处理效果●COD(化学需氧量)去除率●氨氮去除率●总磷去除率2.碳源需求量计算●根据目标污水处理效果,计算所需的碳源量●考虑碳源的化学需氧量和添加剂的纯度3.碳源投加方式和周期确定●确定碳源的投加方式:一次性投加还是分次投加●确定碳源的投加周期:每天投加、每周投加或其他4.考虑实际操作因素●污水处理设备的情况、处理能力和运行参数●污水水质的变化和波动●碳源投加的实际可行性和成本考虑四、碳源投加量计算实例以某污水处理厂为例,根据其目标处理效果和具体情况,计算碳源投加量和投加方式。
五、附件本文档附带以下附件供参考:1.目标污水处理效果计算表2.碳源需求量计算表3.碳源投加量计算实例表六、法律名词及注释1.COD(化学需氧量):指水中存在的各种有机物质,包括可溶性有机物、悬浮性有机物和胶体态物质等对氧的化学需氧量。
2.氨氮:指污水中氨态氮的含量,通常是作为污水中氮的一种指标。
3.总磷:指污水中各种无机磷和有机磷的总量,包括可溶性磷酸盐、悬浮态和胶体态磷物质等。
(注:以上注释仅供参考,请根据实际情况进行修订或添加)。
(推荐)如何核算碳源的投加量碳源构成微生物细胞碳水化合物中碳架的营养物质,供给微生物生长发育所需能量。
含有碳元素且能被微生物生长繁殖所利用的一类营养物质统称为碳源。
一、普通活性污泥法的碳源投加简易计算普通活性污泥法中CNP比100:5:1,在实际污水处理中TP往往是过量的,很多需要配合化学除磷达标,所以以TP计算的碳源往往会偏大,实际中以氨氮的量来计算碳源的投加量。
1、外部碳源投加量简易计算方法统一的计算式为:Cm=20N-C(式1)式中Cm—必须投加的外部碳源量(以COD计)mg/l;20—CN比;N—需要去除的XXX的量,mg/lC—收支水的碳源差值(以COD计)mg/l需用去除的氮量计算N=Ne-Ns(式2)式中Ne—进水实际TKN浓度mg/l;Ns—二沉池TKN排放指标mg/l进出水的碳源差值的计算C=Ce-Cs(式3)式中Ce—进水实际COD浓度mg/l;Cs—二沉池COD排放指标mg/l2、案例计算某城镇污水处理厂范围Q=1万m3/d,已建成不乱运转,进水COD:100mg/L,进水氨氮15mg/L,进水TP:2mg/L,二沉池出水COD≤10mg/L,氨氮N排放尺度≤5mg/L,求外加碳源量。
解:按式(2)计算:N=Ne-Ns=10-5=10(mgN/L)代入式(3)得:C=Ce-Cs=100-10=90mg/L代入式(1)得:Cm=20N-C=20×10-90=110(mgCOD/L)则每日需外加COD量:Cd=QCm=1×10^4×110×10^-3=1100(kgCOD/d)若选用乙酸为外加碳源,其COD当量为 1.07kgCOD/kg 乙酸,乙酸量为:二、脱氮系统碳源投加简易计算在硝化反硝化体系中,因内回流携带DO的影响,实践中投加碳源的量并和实践值相差很大,运营中每每是依照经历公式来计算的,简朴方便快捷,脱氮体系的CN比的经历值通俗掌握在4~6,良多工夫会接纳中间值计算或者经由过程对化验出水TN来调解投加量!1、外部碳源投加量浅易计算办法统一的计算式为:Cm=5N(式4)式中Cm—必须投加的外部碳源量(以COD计)mg/l;5—反硝化1kgNO-3-N需投加外部碳源(以COD计)5kg;N—需求外部碳源去除的TN量,mg/l需用外部碳源反硝化去除的氮量计算N=Ne-Ns(式5)式中Ne—二沉池出水实际TN浓度mg/l;Ns—二沉池TN排放标准mg/l2、案例计算:某城镇污水处理厂范围Q=1万m3/d,已建成不乱运转,二沉池出水排放尺度总氮Ns≤15mg/L,氨氮N≤5mg/L,运转数据解释氨氮已达标,而出水总氮Ne超标,经统计阐发Ne=20mg/L,求外加碳源量。
反硝化碳源投加量的计算引言:反硝化是指将硝酸盐还原成氮气的过程,这是一种重要的自然地球系统氮循环过程,也是工业废气处理领域中一种重要的氮气去除方法。
在环境工程中,为了控制和降低废水废气中的硝酸盐浓度,一种常见的方法就是通过投加反硝化碳源来实现。
本文将介绍反硝化碳源的种类、投加原理,以及如何计算反硝化碳源的投加量。
一、反硝化碳源的种类反硝化碳源主要包括有机物和无机物两大类。
有机物包括可溶性有机物和微生物可降解的有机物,如醋酸、乳酸、蔗糖等;无机物碳源主要包括甲醇、丙酮、乙醇等。
选择适当的反硝化碳源需要考虑其价格、降解性能、对环境的影响等因素。
二、投加原理1.供给碳源:反硝化微生物需要碳源才能进行代谢和生长。
投加反硝化碳源可以为微生物提供适当的营养。
2.降低氧气浓度:碳源的投加可以使废水中的氧气迅速消耗,降低氧气浓度,从而创造有利于反硝化作用的微氧环境。
3.创造还原条件:反硝化过程需要在无氧或缺氧条件下进行,投加碳源可以结合微生物的代谢作用,创造有利于还原环境的条件。
根据反硝化碳源的投加原理,可以通过计算投加量来控制反硝化过程。
1.确定反硝化需求:根据废水中硝酸盐的浓度,确定需要去除的硝酸盐量。
2.选择碳源:根据具体情况选择合适的反硝化碳源,并了解其降解效果和应用条件。
3.碳源投加量的计算:根据反硝化碳源的降解效率和反应的化学方程式,计算反硝化碳源的投加量。
以丙酮为例:反硝化反应方程式:CH3COCOOH+5NO2-+4H+→3N2↑+2CO2+3H2O4.考虑安全因素:投加量的计算还需要考虑反硝化碳源的安全性和环境适应性。
确保投加量不超过环境容忍度和相关法规的限制。
四、实际应用案例以废水处理厂的二次沉淀池为例,二次沉淀池中硝酸盐浓度为100mg/L,想要将其降低到20 mg/L以下。
选择了甲醇作为反硝化碳源。
按照甲醇和硝酸盐的摩尔比1:6进行计算,可以得出投加甲醇的量。
投加量可能根据具体工程要求和实际情况进行微调和实验验证。
碳源构成微生物细胞碳水化合物中碳架的营养物质,供给微生物生长发育所需能量。
含有碳元素且能被微生物生长繁殖所利用的一类营养物质统称为碳源。
碳源物质通过细胞内的一系列化学变化,被微生物用于合成各种代谢产物。
微生物对碳素化合物的需求是极为广泛的,根据碳素的来源不通,可将碳源物质氛围无机碳源物质和有机碳源物质。
因污水中自带无机碳源及曝气会补充无机碳源(CO2),在实际生产中并不需要投加无机碳源,污水处理中所称的碳源为有机碳源!
一、普通活性污泥法的碳源投加简易计算
普通活性污泥法中CNP比100:5:1,在实际污水处理中TP往往是过量的,很多需要配合化学除磷达标,所以以TP计算的碳源往往会偏大,实际中以氨氮的量来计算碳源的投加量。
1、外部碳源投加量简易计算方法
统一的计算式为:
Cm=20N-C (式1)
式中
Cm—必须投加的外部碳源量(以COD计)mg/l;
20—CN比;
N—需要去除的TKN的量,mg/l
C—进出水的碳源差值(以COD计)mg/l
需用去除的氮量计算
N=Ne-Ns (式2)
式中
Ne—进水实际TKN浓度mg/l;
Ns—二沉池TKN排放指标mg/l
进出水的碳源差值的计算
C=Ce-Cs (式3)
式中
Ce—进水实际COD浓度mg/l;
Cs—二沉池COD排放指标mg/l
2、案例计算
某城镇污水处理厂规模Q=1万m3/d,已建成稳定运行,进水COD:100mg/L,进水氨氮15mg /L,进水TP:2mg/L,二沉池出水COD≤10mg/L,氨氮N排放标准≤5mg/L,求外加碳源量。
解:按式(2)计算:
N=Ne-Ns=10-5=10(mgN/L)
代入式(3)得:
C=Ce-Cs=100-10=90mg/L
代入式(1)得:
Cm=20N-C=20×10-90=110(mgCOD/L)
则每日需外加COD量:
Cd=QCm=1×10^4×110×10^-3=1100(kgCOD/d)
若选用乙酸为外加碳源,其COD当量为1.07kgCOD/kg乙酸,乙酸量为:
1100/1.07=1028kg/d
若选用甲醇为外加碳源,其COD当量为1.5kgCOD/kg甲醇,甲醇量为:1100/1.5=733kg/d
若选用乙酸钠为外加碳源,其COD当量为0.68kgCOD/kg乙酸钠,乙酸钠量为:1100/0.68=1617kg/d
若选用葡萄糖为外加碳源,其COD当量为 1.06kgCOD/kg葡萄糖,葡萄糖量为:1100/1.06=1037kg/d
二、脱氮系统碳源投加简易计算
在硝化反硝化系统中,因内回流携带DO的影响,实际中投加碳源的量并和理论值相差很大,运营中往往是按照经验公式来计算的,简单方便快捷,脱氮系统的CN比的经验值一般控制在4~6,很多时间会采用中间值计算或者通过对化验出水TN来调整投加量!
1、外部碳源投加量简易计算方法
统一的计算式为:
Cm=5N (式4)
式中
Cm—必须投加的外部碳源量(以COD计)mg/l;
5—反硝化1kgNO-3-N需投加外部碳源(以COD计)5kg;
N—需要外部碳源去除的TN量,mg/l
需用外部碳源反硝化去除的氮量计算
N=Ne-Ns (式5)
式中
Ne—二沉池出水实际TN浓度mg/l;
Ns—二沉池TN排放标准mg/l
2、案例计算:
某城镇污水处理厂规模Q=1万m3/d,已建成稳定运行,二沉池出水排放标准总氮Ns≤15mg /L,氨氮N≤5mg/L,运行数据表明氨氮已达标,而出水总氮Ne超标,经统计分析Ne=20 mg/L,求外加碳源量。
解:按式(5)计算:
N=Ne-Ns=20-15=5(mgN/L)
代入式(4)得:
Cm=5N=5×5=25(mgCOD/L)
则每日需外加COD量:
Cd=QCm=1×10^4×25×10^-3=250(kgCOD/d)
若选用乙酸为外加碳源,其COD当量为1.07kgCOD/kg乙酸,乙酸量为:
250/1.07=233kg/d
若选用甲醇为外加碳源,其COD当量为1.5kgCOD/kg甲醇,甲醇量为:250/1.5=166kg/d
若选用乙酸钠为外加碳源,其COD当量为0.68kgCOD/kg乙酸钠,乙酸钠量为:250/0.68=367kg/d
若选用葡萄糖为外加碳源,其COD当量为 1.06kgCOD/kg葡萄糖,葡萄糖量为:250/1.06=235kg/d
三、除磷系统碳源投加量简易计算
聚磷菌在厌氧阶段释磷所产生的能量,主要用于其吸收低分子有机基质以作为厌氧条件下生存的基础。
因此,进水中是否含有足够的有机质,是关系到聚磷菌能否在厌氧条件下顺利生存的重要因素。
一般认为,进水中COD/TP要大于15,才能保证聚磷菌有足够的基质,从而获得理想的除磷效果。
1、外部碳源投加量简易计算方法
统一的计算式为:
Cm=15P-C (式6)
式中
Cm—必须投加的外部碳源量(以COD计)mg/l;
15—CP比;
P—需要外部碳源去除的TP量,mg/l
C—进出水的碳源差值(以COD计)mg/l
2、需用外部碳源去除的TP量计算
P=Pe-Ps (式7)
式中
Pe—进水TP浓度mg/l;
Ps—二沉池TP排放标准mg/l
进出水的碳源差值的计算
C=Ce-Cs (式8)
式中
Ce—进水实际COD浓度mg/l;
Cs—二沉池COD排放标准mg/l
2、案例计算:
某城镇污水处理厂规模Q=1万m3/d,已建成稳定运行,进水COD:100mg/L,进水TP:
11mg/L,二沉池出水COD≤10mg/L,TP排放标准≤1mg/L,求外加碳源量。
解:按式(7)计算:
P=Pe-Ps=11-1=10(mgN/L)
代入式(8)得:
C=Ce-Cs=100-10=90mg/L
代入式(6)得:
Cm=15P-C=15×10-90=60(mgCOD/L)
则每日需外加COD量:
Cd=QCm=1×10^4×60×10^-3=600(kgCOD/d)
若选用乙酸为外加碳源,其COD当量为1.07kgCOD/kg乙酸,乙酸量为:
600/1.07=560kg/d
若选用甲醇为外加碳源,其COD当量为1.5kgCOD/kg甲醇,甲醇量为:600/1.5=400kg/d
若选用乙酸钠为外加碳源,其COD当量为0.68kgCOD/kg乙酸钠,乙酸钠量为:600/0.68=882kg/d
若选用葡萄糖为外加碳源,其COD当量为 1.06kgCOD/kg葡萄糖,葡萄糖量为:600/1.06=566kg/d。