解得:m≤2
所以 3-m≠0
3m-1 (m+3)
又 ∵方程 △= (1)2 4 (3 m)=m1-2 4
当m=2 时 △=0, ∴方程有两个相等得就是实数根;
当m<2时 △<0, ∴方程无实数根。
例5、 已知关于x得方程mx2 14x 7 0 有两个
x x 实数根 1与 2,关于y 得方程 y2 2(n 1) y n2 2n 0
3
2
这时原方程转换成关于k得一元一次方程, 解得:k=1。故选 (B)
例2、方程 x2 4x 2 得正根为
()
A、2 6 B、 2 6 C、2 6 D、 2 6
解析:利用配方法或公式法求解得正根 x= -2+ 6、
故选(D)
例3、 (2008江苏省苏州市)解不等式组:
x 3 0, 2(x 1) 3≥3x.
2
所以m= 4 2 (6) (4)2 =-8, 42
∵当n=0时,m=-6; 当n=4时,m=10、 ∴m得取值范围就是-8≤m<10、
例6、 (2007江苏扬州课改)为了加强公民得节水意识,合理利 用水资源,某市采用价格调控手段达到节水得目得、该市自 来水收费价格见价目表、
若某户居民月份用水 8m3,
第二讲方程与不等式
在求解方程时应灵活选用,值得注意得就是分式方程求解,验 根。
对于一元一次不等式(组)得求解,要熟练地掌握不等 式得基本性质,它就是不等式求解得基础,在解不等式(组) 时,若不等式两边同时乘以或除以同一个负数时不等号方向 要改变。而不等式组得解就是每个不等式解得公共部分,它常 通过数轴这一步骤来得到不等式解得。
价目表
则应收水费:
2 6 4 (8 6) 2元0、