有效数字运算及修约复习过程
- 格式:ppt
- 大小:1.36 MB
- 文档页数:7
有效数字及有效数字计算、修约基础知识一、有效数字1、末的概念末:指任何一个数最末一位数字所对应的单位量值。
例:用分度值为0.1mm的卡尺测量物体的长度,结果为19.8mm,最末一位的量值0.8mm,即为最末一位数8与所对应的单位量0.1mm的乘积,故19.8mm的末为0.1mm。
2、有效数字的界定1~9都为有效数字,数字之间的0、末尾的0也为。
二、近似数计算1、“+-”以小数位数最少为准,修约比该数多一位,计算后修约以小数点最少数的位数为准。
如:18.3+1.4545+0.876≈18.3+1.45+0.88=20.63≈20.62、“×÷”各数修约到有效数字最少多一位,最后结果以有效数字最少的那个为准。
如:3.670×45.3×5.6735≈3.670×45.3×5.674=943.31≈9433、乘方、开方,参加运算有几位有效数字,结果就得保留几位数字。
81=9.000 9.002=81.0.00如几级运算,乘方开方多保留一位。
0.81+4.359=9.000=4.3594、混合运算:不管如何运算,结果必须以位数最少为准。
三、修约规则1、舍去数第一位小于5则舍,大于5则进。
4.254→4.25 38.735→392、舍去数第一位为5,5后并非全为0则进。
9.55033→9.63、舍去数第一位为5,5后无数或全为0,奇进偶舍。
0.0415→0.042 0.0425→0.0424、注意不得连续修约。
如:37.4546→37.455→37.46→37.5→385、按GB 8170-2008《数值修约规则》对“1”“2”“5”修约间隔做了规定,即k×10n(k=1、2、5,n为正、负整数)另外,0.5、0.2修给采用分别乘以2与5,修约后再除以2与5来修约。
如:以0.5修约60.2560.25×2得120.5修约为120,再除以2得60.0练习题:一、说出下列数值有几位有效数字?1、60.0002、0.60003、0.06004、6.001×107二、近似数计算:1、19.3+1.5837+0.9762、3.780×47.5×6.57453、00025.三、数值修约:1、5.256、5.254、5.255、5.265保留三位有效数字?2、60.25以0.2修约。
有效数字运算和修约规则计算过程咱先来说说这有效数字,您可别小瞧它,在各种计算里那可是相当重要!就好比您去买菜,人家说一斤三两,这“一斤三两”就是有效数字。
那啥是有效数字呢?简单说,就是能反映实际测量精度的数字。
比如说您量一个长度,是 12.34 厘米,这里面 123 是确定的,4 是估读的,那这 12.34 都是有效数字。
可要是写成 12.340 厘米,那后面的 0 可就不一定是有效数字了,得看测量工具和精度。
运算的时候可得注意啦!加、减运算,以小数点后位数最少的为准。
比如说 12.34 加上 2.1,那结果就得保留到小数点后一位,就是 14.4。
这就好比搭积木,最短的那块决定了能搭多高,不是吗?乘、除运算呢,以有效数字位数最少的为准。
像 1.23×4.567,就得按三位有效数字来算,结果约是 5.6。
这就像跑步比赛,跑得最慢的决定了整体速度。
再说说修约规则。
这就像是给数字“美容”,但得美得有规矩。
四舍六入五成双,您听说过没?比如说 4.55 修约到一位小数,那就是 4.6;4.45 呢,就是 4.4 。
要是遇到5 后面还有数字,那就进一。
比如4.551 修约到一位小数,那就是 4.6 。
可要是 5 后面没数字了,就得看前面是奇数还是偶数。
奇数就进一,偶数就舍去。
这就有点像抽奖,奇数运气好就往前进一步,偶数就维持现状。
您想想,要是在科学研究或者工程计算里,数字修约错了,那结果能对吗?这就好比盖房子,尺寸算错了,这房子能结实吗?所以啊,咱可得把有效数字运算和修约规则弄明白,要不然得出错误结果,那可就麻烦大啦!您说是不是这个理儿?总之,有效数字运算和修约规则是咱进行准确计算的重要保障,只有严格遵守,才能得出可靠的结果,为我们的工作和学习提供有力的支持!。
目的●正确地进行有效数字判定、修约及运算●规范取样规则依据●药典“凡例”●国家标准《数值修约规程》●《中国药品检定标准操作规范》●适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
主要内容1、有效数位的判断1.1有效数字的基本概念有效数字系指在药检工作中所能得到有实际意义的数值。
是由可靠数字和最后一位不确定数字组成的。
最后一位数字的欠准程度通常只能是上下差1单位。
1.2有效数位的判断1.2.1从非零数字最左一位向右数得到的位数减去无效零。
例:350×102 保留三位有效数,两个无效零。
35×103 保留二位有效数,三个无效零。
1.2.2从非零数字最左一位向右数而得到的位数。
例: 3.2 两位有效数字0.032 两位有效数字0.0320 三位有效数字1.2.3有效位数可视为无限多位的1.2.3.1 非连续型数值(如个数、分数、倍数)1.2.3.2 常数π,e和系数√21.2.3.3 (0.1 mol/L)滴定液的名义值1.2.3.4 规格、标示量1.2.4 pH值,其有效位数是由其小数点后的位数决定的,其整数部分只表明其真数的乘方次数。
例:pH=11.26([H+]=5.5×10-12 mol/L),其有效位数只有两位。
1.2.5有效数字的首位数字为8或9时,其有效位数可以多计一位。
例:85% 三位有效位数115% 三位有效位数99.0% 四位有效数字101.0% 四位有效数字。
2、数值的修约及取舍规则进舍规则:四舍六入五考虑。
五后非零则进一,五后全零看五前,五前偶舍奇进一,不论数字多少位,都要一次修约成。
RSD修约:只进不舍例:0.163% 修约成2位有效数位→0.17%不许连续修约:拟修约数字应在确定修约位数后一次修约获得结果,而不得多次连续修约。
例:修约15.4546,修约间隔为 1正确的做法为:15.4546—15;不正确的做法为:15.4546→15.455→15.46→15.5→16修约间隔为0.5(熔点值修约)50.8、50.9 修约值为5150.1、50.2 修约为50。
有效数字和数值的修约及其运算本规程系根据中国药典2010年版凡例和国家标准GB 8170-2008《数值修约规则与极限数值的表示和判定》制订,适用于药检工作中除生物检定统计法以外的各种测量或计算而得的数值。
1.数值修约通过省略原数值的最后若干位数字,调整所保留的末位数字,使最后所得到的值最接近原数值的过程。
2.修约间隔确定修约保留位数的一种方法。
注:修约间隔的数值一经确定,修约值即为该数值的整数倍。
例1:如指定修约间隔为0.1,修约值应在0.1的整数倍中选取,相当于将数值修约到一位小数。
例2:如指定修约间隔为100,修约值应在100的整数倍中选取,相当于将数值修约到“百”数位。
2.3极限数值limiting values标准(或技术规范)中规定考核的以数量形式给出且符合该标准(或技术规范)要求的指标数值范围的界限值。
3数值修约规则3. 1确定修约间隔a)指定修约间隔为10-n(n为正整数),或指明将数值修约到n位小数;b)指定修约间隔为1,或指明将数值修约到“个”数位;c)指定修约间隔为10n (n为正整数),或指明将数值修约到10n数位,或指明将数值修约到“十”、“百”、“千”……数位。
3. 2进舍规则3.2.1拟舍弃数字的最左一位数字小于5,则舍去,保留其余各位数字不变。
例:将12. 149 8修约到个数位,得12;将12. 149 8修约到一位小数,得12.l。
3.2.2拟舍弃数字的最左一位数字大于5,则进一,即保留数字的末位数字加1.例:将1 268修约到“百”数位,得13 × 102(特定场合可写为1 300)。
注:本标准示例中,“特定场合”系指修约间隔明确时。
3.2.3拟舍弃数字的最左一位数字是5,且其后有非0数字时进一,即保留数字的末位数字加1。
例:将10. 500 2修约到个数位,得1。
3.2.4拟舍弃数字的最左一位数字为5,且其后无数字或皆为0时,若所保留的末位数字为奇数(1,3,5,7,9)则进一,即保留数字的末位数字加1;若所保留的末位数字为偶数((0,2,4,6,8),则舍去。
分析化学有效数字的修约与运算规则-分析化学论文-化学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——无机及分析化学是我校化工、制药、应化、环境、海洋、食品、环工、生物、高分子及材料类等专业大一学生必修的重要基础课程之一.它是一门实践性很强的学科.在国民经济的许多部门如资源勘探、生产控制、产品检验、环境监测等方面应用非常广泛.在分析工作的理论研究和实验测定中,如何正确地运用有效数字对分析数据作正确记录、处理、计算及结果表示等具有十分重要的意义.1有效数字定义在科学实验中,需要记录很多测量数据,一般允许最后一位是估计的,虽不太准确,但不是随意的,它们全是有效的,所以称为有效数字.有效数字即指实际工作中能够测量到的数字,包括最后一位估计的不确定的数字[1-2].记录数据和计算结果时,究竟应该保留几位数字,应根据所用的测定方法和所用仪器的准确程度来决定,并且在记录数据和计算实验结果时,所保留的有效数字中,只允许最后一位是可疑的数字.有效数字保留几位是根据测量仪器的准确度来确定的,因此对于各种分析仪器的准确度应十分清楚,比如滴定分析中消耗滴定剂的体积由终读数减初读数得到:24.05-0.02=24.03(mL)为4位有效数字.又如台秤称量某称量瓶为20.8g,因为台秤只能准确地称到0.1g,所以该称量瓶质量可表示为20.8g,它的有效数字是3位.如果将该称量瓶在分析天平上称量,得到结果是20.8126g,由于分析天平能准确地称量到0.0001g,所以它的有效数字是6位. 100 mL容量瓶表示为100.0mL;250mL容量瓶表示为250.0mL;25 mL移液管表示为25.00mL.对于数字0来说,可以是有效数字,也可以不是有效数字.当用其表示与测量精度有关的数值大小时,为有效数据,而仅仅用来指示小数点位置时,则是非有效数字.在一个数中,确定数字0是否是有效数字的方法是,左边第一个非零数字之前的所有0都是非有效数字,仅仅作为标定小数点位置而已;而位于右边的最后一个非零数字之后的那些0都是有效数字.有效数字末尾的0表示可疑数字的位置,随意增减会人为地夸大测量的准确度或测量误差!不得在测量数据的末尾随意添加或删减数字.2有效数字的修约规则记录和表示计算结果时要按照确定了的有效数字将多余的数字予以修约.弃去多余的或无意义的数字一律按四舍六入五考虑原则取舍.其取舍方法是:凡末位有效数字的后面第一位数字(即尾数)大于等于6(指6、7、8或9)以及5后面还有任何非零数字时,则在末位有效数字上增加1.尾数小于等于4(指4、3、2、1或0)时,则舍去不计.尾数恰为5时(5后没有数字或全为0时),这时要看5之前的数字即末位有效数字是奇数还是偶数而定,若为奇数,则在末位有效数字位上增加1;是偶数,则舍去不计.尾数为5(5后面还有任何非零数字时),则在末位有效数字上增加1.不论舍去多少位,必须一次修完毕.例如,将下列测量数据修约为四位有效数字时:尾数4时舍:0.726535------- 0.7265尾数6时入:12.1585------- 12.16尾数=5时,若后面数为0或没数时,舍5成偶:15.51500--15.52,415.45--415.4若尾数5后面还有不为0的任何数全进:512.0500100------- 512.13有效数字的运算规则实验中不仅要正确记录数据,而且还要进行数据的计算.由于任何测量都存在误差,只能是近似值,所以数据记录和计算结果反映了近似值的大小,这在某种程度上表明了误差.因此,数据处理运算也是重要环节.3.1加减运算结果的绝对误差应不小于各项中绝对误差最大的数(计算结果的小数点后面的位数与各数中小数点后面位数最少者一致)。
有效数据定义、运算及其修约规则一、有效数据1.1有效数字定义有效数字是指实际能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。
1.2实际意义有效数字能反映出测量时的准确程度。
例如,用最小刻度为0.1cm的直尺量出某物体的长度为11.23cm,显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,如测得物体的长度可能是11.24cm,亦可能是11.22cm,测量的结果有±0.01cm的误差。
我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。
这个数值就是四位有效数字。
在确定有效数字位数时,特别需要指出的是数字“0”来表示实际测量结果时,它便是有效数字。
例如,分析天平称得的物体质量为7.1560g,滴定时滴定管读数为20.05mL,这两个数值中的“0”都是有效数字。
在0.006g中的“0”只起到定位作用,不是有效数字。
(1)容量器皿;滴定管;移液管;容量瓶;4位有效数字(2)分析天平(万分之一)取4位有效数字(3)标准溶液的浓度,用4位有效数字表示:0.1000 mol/L(4)pH 4.34 ,小数点后的数字位数为有效数字位数对数值,lg X =2.38;lg(2.4´102)1.3有效数字中"0"的意义"0"在有效数字中有两种意义:一种是作为数字定值,另一种是有效数字.例如在分析天平上称量物质,得到如下质量:以上数据中“0”所起的作用是不同的。
“0”是有效数字:10.0780,6位有效数字。
1.2056中,5位有效数字。
“0”作为数字定值:0.2044中,小数前面的“0”是定值用的,不是有效数字;0.0120中,“1”前面的两个“0”都是定值用的,而在末尾的“0”是有效数字,所以它有3位有效数字。
称量精确至0.0002g;15000m 和10000g很难肯定其中的0 是否是有效数字还是数字定值,写为1.5×104m,则表示有效数字是二位;如果把它写为1.50×104m则表示有效数字是三位。
数字修约规矩【1 】一.有用数字所谓有用数字,就是现实能测得的数字.它的末一位为不精确数字,其余数字均为精确数字.有用数字中“0”的意义▪“0”有两种意义:▪1.是作为数字定位,如:在0.312中,小数点前面的“0”是定位用的,它有3位有用数字;在0.012中,“1”前面的2个“0”是定位用的,它有2位有用数字.▪2.是有用数字,如:在10.1430中,两个“0”都是有用数字,所以它有6位有用数字.有用数字中“0”的意义▪综上所述,数字之间的“0”和末尾的“0”都是有用数字,而数字前面所以的“0”只起定位感化.以“0”结尾的正整数,有用数字的位数不肯定.例如4500这个数,就不好肯定几位有用数字.应依据现实有用数字位数书写来肯定:×103 2 位有用数字×103 3 位有用数字×103 4 位有用数字数字修约规矩▪为了顺应临盆和科技工作的须要,我国已经正式颁布了GB8170-87《数字修约规矩》,平日称为“四舍六入五成双”轨则.即当位数≤4时舍去,尾数≥6时进位,尾数=5时,应视保存的末尾数是奇数照样偶数,5前为偶数时5应舍去,5前为奇数则进位.▪数字修约规矩这一轨则具体运用如下:▪被舍弃的第一位数字大于5,则其前一位加1▪若被舍弃的第一位数字等于5而厥后数字全体为零,则按“四舍六入五成双”轨则而定进或舍.▪若被舍弃的第一位数字等于5而厥后数字并不是全为零则进1▪若被舍弃的数字包含几位数字时,不得对该数字进行持续修约,而应依据以上各条只做1次处理.有用数字运算规矩▪加减法在加减法运算中,保存有用数字的位数,以小数点后位数起码的为准,即以绝对误差最大的数为准.有用数字运算规矩▪乘除法在乘除法运算中,保存有用数字的位数,以位数起码的数为准,即以相对误差最大的数为准.有用数字运算规矩▪天然数在剖析化学运算中,有时会碰到一些倍数或分数的关系.例如:水的相对分子质量=2×个中“2”不克不及看做1位有用数字.因为它们长短测量所得到的数,是天然数,其有用数字位数,可视为无穷的.。
有效数字及有效数字计算、修约基础知识一、有效数字1、末的概念末:指任何一个数最末一位数字所对应的单位量值。
例:用分度值为0.1mm的卡尺测量物体的长度,结果为19.8mm,最末一位的量值0.8mm,即为最末一位数8与所对应的单位量0.1mm的乘积,故19.8mm的末为0.1mm。
2、有效数字的界定1~9都为有效数字,数字之间的0、末尾的0也为。
二、近似数计算1、“+-”以小数位数最少为准,修约比该数多一位,计算后修约以小数点最少数的位数为准。
如:18.3+1.4545+0.876≈18.3+1.45+0.88=20.63≈20.62、“×÷”各数修约到有效数字最少多一位,最后结果以有效数字最少的那个为准。
如:3.670×45.3×5.6735≈3.670×45.3×5.674=943.31≈9433、乘方、开方,参加运算有几位有效数字,结果就得保留几位数字。
81=9.000 9.002=81.0.00如几级运算,乘方开方多保留一位。
0.81+4.359=9.000=4.3594、混合运算:不管如何运算,结果必须以位数最少为准。
三、修约规则1、舍去数第一位小于5则舍,大于5则进。
4.254→4.25 38.735→392、舍去数第一位为5,5后并非全为0则进。
9.55033→9.63、舍去数第一位为5,5后无数或全为0,奇进偶舍。
0.0415→0.042 0.0425→0.0424、注意不得连续修约。
如:37.4546→37.455→37.46→37.5→385、按GB 8170-2008《数值修约规则》对“1”“2”“5”修约间隔做了规定,即k×10n(k=1、2、5,n为正、负整数)另外,0.5、0.2修给采用分别乘以2与5,修约后再除以2与5来修约。
如:以0.5修约60.2560.25×2得120.5修约为120,再除以2得60.0练习题:一、说出下列数值有几位有效数字?1、60.0002、0.60003、0.06004、6.001×107二、近似数计算:1、19.3+1.5837+0.9762、3.780×47.5×6.57453、00025.三、数值修约:1、5.256、5.254、5.255、5.265保留三位有效数字?2、60.25以0.2修约。
1 有效数字的定义有效数字是指实际上能测量到的数值,在该数值中只有最后一位是可疑数字,其余的均为可靠数字。
它的实际意义在于有效数字能反映出测量时的准确程度。
例如:用最小刻度为0.1cm的直尺量出某物体的长度为11.23 cm。
显然这个数值的前3位数是准确的,而最后一位数字就不是那么可靠,因为它是测试者估计出来的,这个物体的长度可能是11.24cm,亦可能是11.22cm,测量的结果有±0.01cm的误差。
我们把这个数值的前面3位可靠数字和最后一位可疑数字称为有效数字。
在确定有效数字位数时,特别需要指出的是数字“0”来表示实际测量结果时,它便是有效数字。
例如:分析天平称得的物体质量为7.1560g滴定时滴定管读数为20.05mL这两个数值中的“0”都是有效数字在0.006g中的“0”只起到定位作用,不是有效数字有效位数及数据中的“0 ”:1.0005,五位有效数字0.5000,31.05% 四位有效数字0.0540, 1.86 三位有效数字0.0054,0.40% 两位有效数字0.5,0.002% 一位有效数字2 有效数字的计算规则2.1 有效数字的修约规则在运算时,按一定的规则舍入多余的尾数,称为数字的修约。
2.1.1 四舍六入五六双。
即测量数值中被修订的那个数,若小于等于4,则舍弃;若大于等于6,则进一;若等于5(5后无数或5后为0),5前面为偶数则舍弃,5前面为奇数则进一,当5后面还有不为0的任何数时,无论5前面是偶数还是奇数一律进一。
例如,将下列测量值修约为四位数:3.142 45 3.1423.215 60 3.2165.623 50 5.6245.624 50 5.6243.384 51 3.3853.384 5 3.3842.1.2 修约数字时,对原测量值要一次修约到所需位数,不能分次修约。
例如,将3.314 9 修约成三位数,不能先修约成3.315,再修约成3.32;只能一次修约为3.31。