半导体激光器TEC温控实验
- 格式:docx
- 大小:150.54 KB
- 文档页数:3
半导体激光器温控方法回顾-光学论文-物理论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:温度对半导体激光器的工作特性有很大的影响, 所以对于半导体激光器温度控制的精度、响应速度要求都比较高。
虽然人们已经提出了很多控制方法, 并且在个别场合已有应用, 但是要实现精度、更快响应速度的控制还有很多需要解决。
本文对近几年有关半导体激光器温度控制的方法, 及一些改进措施进行了简单的介绍, 以供从事半导体激光器温度控制研究的人员参考。
关键词:温度控制; 半导体激光器; PID控制; 模糊控制;一、引言半导体激光器在各个领域的应用越来越广泛, 具有很好的应用前景。
但是半导体激光器的阈值电流、输出功率和输出光波长都很容易受到温度的影响[1-2], 所以, 半导体激光器的使用一般都伴随着对其温度的控制。
就目前诸文献显示表明, 对半导体激光器的温度控制一般使用的执行器件是半导体制冷器(TEC) [3], 半导体制冷器是一种集制冷与制热于一体的电流驱动温度控制装置。
对于半导体激光器的温度控制就是实现对TEC的精确控制。
二、PID温度控制方法半导体激光器温度控制使用最广泛的控制方法就是PID控制。
PID控制是比例、积分、微分控制的简称。
它是一种线性控制器, 根据给定值和实际输出值构成控制偏差, 将偏差按比例、积分和微分通过线性组合构成控制量, 对被控对象进行控制。
其数学模型可由下式表示[4]:控制系统结构如图1[5]:图1 PID控制结构图文献[6]中选用ADI公司的TEC专用控制器ADN8830和TI公司生产的32位定点DSP芯片TMS320F2812分别做为主控芯片, 来实现对半导体激光器PID温度控制, 并进行了对比。
两种温度控制方法的精度都可达到0.125℃, 但基于TMS320F2812的温控方法达到稳定需要的响应时间是180S, 而基于ADN8830的控制方法80S就能达到平衡状态, 并且该方法体积小、功耗低。
基于半导体制冷片TEC的温度控制器图文稿基于半导体制冷片T E C 的温度控制器集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)一、原理半导体制冷片也叫热电制冷片,其原理是Peltier效应,它既可制冷又可加热,通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理来实现的。
其实在原理上半导体制冷器只是一个热传递的工具。
其优缺点:1、不需要任何,可连续工作。
2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于1。
因此使用一个片件就可以代替分立的加热系统和制冷。
3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,,便于组成自动控制系统。
4、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下,通电不到一分钟,制冷片就能达到最大温差。
5、半导体制冷片的温差范围,从正温90℃到负温度130℃都可以实现。
二、使用说明:正确的安装、组装方法:1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于0.03mm,要除去毛刺、污物。
2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热脂。
3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。
正确的使用条件:1、使用直流电源电压不得超过额定电压,电源波纹系数小于10%。
2、电流不得超过组件的额定电流。
3、制冷片正在工作时不得瞬间通反向(须在5分钟之后)。
4、制冷片内部不得进水。
5、制冷片周围湿度不得超过80%。
三、半导体制冷器的驱动电路设计半导体制冷片根据流过半导体的电流方向和大小来决定其工作状态的(电流的方向决定制冷或者制热,电流的大小决定制冷或者制热的程度和效果)。
为了使半导体制冷片能够自动的进行恒温控制,就必须设计好其驱动电路和控制电路。
如何控制和补偿半导体制冷器摘要在很多需要精密温度控制的设备中经常可以看到半导体制冷器。
对温度及其敏感的组件往往与TEC和温度监视器集成到一个单一热工程模块。
半导体制冷器也可以通过翻转电流而制热。
TEC非常小的体积为精密控制单个组件(例如,光纤激光器驱动器,高精度的参考电压或任何温度敏感型设备)的温度提供了可能。
此应用手册简要讨论TEC设计的起源和历史,然后概述了TEC基本操作。
随后又说明了TEC的控制和补偿问题。
该文最后详细分析了TEC控制的优化以及优化方程。
关键字:PID、DWDM、SFF、SFP、光纤、激光模块、热电冷却器,热电偶、TEC,温度控制,热循环热敏电阻简介1821年托马斯·塞贝克发现,两个不同的材料的导体连在一起,并且两个材料各自的温度不同的时候,这个环路内就会有电流流过。
十二年后,皮尔贴(J.C.Peltier)发现了与这一现象相反的效果:通过削减环路中的一个导体,使外部电流流经环路,然后就可以发现两个连接点之间有温度差出现,这一现象后来被称作皮尔贴效应。
由于那时的材料所限,皮尔贴效应中材料之间的温度差有大部分都是大电流流过材料所产生的电阻热。
随着近来材料学的不断进步,这些连接点制热或制冷的效应越加变得实用化,它可以作为热电泵,使用起来和基于氟碳蒸气压缩的制冷方式并没有太大的差别。
虽然TEC仍然不如氟碳蒸发循环设备更加实用,但是它没有移动部件和工作流体,这就为制冷设备小型化提供了可能。
基本工作原理由于皮尔贴效应可以通过电流线性控制,半导体制冷器(TEC)已经在涉及精密温度控制的设备中得到了大量的应用。
温度敏感型器件、TEC、温度传感器被集成到一个单一的模块中。
TEC控制需要一个电平可以翻转的电源以提供正电压和负电压。
要想在单电源设备中做到这一点,那么完全可以使用H桥电路。
线性稳压电源总会有纹波,同时它的效率非常低,需要大体积的元件并且还要做好热隔离防止调整管发出的热量加载到制冷器上。
基于参数辨识的半导体激光器温度自动控制摘要:以保证半导体激光器的安全稳定运行为目标,提出基于参数辨识的半导体激光器温度自动控制方法。
通过分析温度对半导体激光器的影响及温度控制原理,设计半导体激光器温度控制系统,在该系统支持下利用半导体激光器温度控制数学模型描述其一阶纯滞后性,根据半导体激光器的热传递性获取半导体激光器的离散运行数据,建立半导体激光器参数辨识模型,确定其最佳预估量,并将其输入到PID中,利用遗传算法对PID参数进行实时调节,以满足半导体激光器温度变化量对PID参数的自整定需求,实现半导体激光器温度自动控制的目标。
实验结果表明,该方法可实现半导体激光器温度的快速控制,能够快速达到预期温度,温度波动范围在0.02℃以内,温度控制后的半导体激光器发光光谱波形平稳,能够保证半导体激光器的安全稳定运行。
关键词:参数辨识;半导体激光器;温度自动控制;一阶纯滞后;热传递性;预估量引言随着科技的不断革新与进步,半导体激光器的设计更加精细化,具备了低能效、小体积和轻量化等优势,在信息传输、医疗卫生和工业等领域均有重要用途。
半导体激光器对温度变化具有较强的敏感性,运行温度改变致使半导体激光器内部材料折射率发生变化,进而改变其输出功率及波长。
当半导体激光器运行温度增大,会使其内部结构遭受破坏,降低其使用寿命。
因此,如何对半导体激光器温度进行有效控制具有重要意义。
张安迪等针对半导体激光器温度变化对其正常运行产生的影响,设计了以单片机为主控单元,以热电制冷器、加热器为基础单元的温度控制系统,通过论域可变的E)X控制方法实现其温度的精准控制,但该方法受PID控制参数影响较大,致使温度控制准确度存在一定偏差;程前等根据半导体激光器电流负反馈特性,通过恒流源电路、继电保护电路实现半导体激光器稳定电流控制,并利用温控系统控制完成其温度控制目标,该方法因未解决半导体激光器的一阶纯滞后环节,导致控制后的温度仍在较大范围内变化。
半导体制冷器TEC的驱动与控制 (一)半导体制冷器TEC(Thermo-Electric Cooler)是一种利用Peltier效应产生制冷的器件,其主要应用于微电子、激光器、传感器等领域的温度控制。
TEC驱动与控制一直是半导体电子学领域的研究热点之一。
一、TEC驱动方式TEC的驱动方式分为两种:恒定电流驱动和恒定电压驱动。
其中,恒定电流驱动是指在TEC两端加上一个恒定电流,使其产生的热量与冷量相等,达到匀速制冷的效果;恒定电压驱动则是在TEC两端加上一个恒定电压,使其产生的冷量和热量成一定比例,达到不同的温度控制效果。
二、TEC控制方法TEC的控制方法主要分为三类:PID控制、H∞控制和模型预测控制。
其中,PID控制是目前最常用的一种控制方法,其基本原理是通过比较目标温度值与实际温度值之间的偏差,计算出一个控制量,再通过PID 算法进行控制,使温度达到稳定状态。
三、TEC控制参数TEC控制参数包括:电流、电压、温度、功率和效率。
其中,电流和电压的控制可以实现恒定电流和恒定电压的控制方式;温度的控制需要采集温度传感器数据并进行反馈控制;功率和效率则需要根据TEC的工作状态和应用环境来进行动态调整。
四、TEC驱动与控制电路TEC驱动与控制电路主要包括三个部分:TEC驱动模块、温度采集模块以及控制模块。
其中,TEC驱动模块主要实现对TEC的驱动,而温度采集模块则用来采集温度传感器的数据,控制模块则实现了对TEC的PID 控制功能。
五、TEC控制软件TEC控制软件可以实现对TEC的控制参数设置、PID参数调整、温度采集和数据分析等一系列功能。
此外,软件还可以根据用户的需求,实现定时控制、手动控制和自动控制等功能,为用户操作提供更加便利的选择。
总之,TEC驱动与控制是半导体电子学领域的研究热点,通过对TEC控制参数的实时调整,可以使TEC达到最佳的制冷效果,为半导体行业和生产领域提供更好的温度控制解决方案。
半导体激光器TEC温控实验
温度对半导体激光器的特性有很大的影响.为了使半导体激光器输出功率稳定,必须对其温度进行高精度的控制.TEC-10A利用PID模糊控制网络设计了温控系统,控制精度达到0.0625℃,与无PID控制网络相比,极大的提高了系统的瞬态特性,并且试验发现TEC-10A采用带有温控系统的半导体激光器的输出功率稳定性比没有温控系统的输出功率得到显著改善。
TEC-10A使用上位机软件,获得数据如下:
图1 目标温度设定为60度的加热曲线图
TEC-10A模糊自适应PID 算法比传统PID 算法具有更小的温度过冲和更高的控温精度,精度为±0.0625℃,达到稳定的时间小于70s。
TEC-10A的“模糊控制理论”是由美国加利福尼亚大学教授L.A.Zadeh 于1965 年首先提出的,至今只有40 余年的时间,它属于智能控制的范畴。
那么到底什么是模糊控制?其实模糊控制是一种被精确定义的特殊的非线性控制,它利用类似人类的启发式知识对系统进行控制。
模糊控制的基本原理框图如下图所示。
图2 模糊算法
首先建立模糊规则
根据上面的输入量的模糊化,确定了误差及误差变化的模糊集合,下面将建立模糊规则。
模糊控制规则主要有两种形式:一种是经验归纳法,一种是采用数学的推理合成法。
经验归纳法是根据操作者对控制经验的整理、加工而形成的控制规则,虽然具有主观臆断,但其中
必须经过对客观事实的合理归纳而形成。
下面的表就是根据经验归纳法总结的模糊控制规则表。
下面是一些简单的一维和二维控制形式:
“如果A,那么B”(IfAThen B);例如,如果激光器的温度很高,那么快速降温。
“如果A,那么B,否则C”(If A Then B Else C);例如,如果激光器温度很低,那么快速加热,否则缓慢加热。
“如果A 且B,那么C”(If A And B Then C)。
例,如果激光器温度很高且温度下降很慢,那么快速加热。
在实际操作中第三种形式较常见,“A”为偏差e,“B”为偏差变化量Ec。
TEC-10A的尺寸也是比较小的,如下图所示:
图3 TEC-10A具有较小尺寸
TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载5A,峰值电流可达10A。
此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。
可以通过专用RS232调试线和电脑进行通讯,以进行参数设
置和温度监视,以及进行温度程控,是半导体激光器控温的好伴侣,。