气动技术知识总结
- 格式:doc
- 大小:44.50 KB
- 文档页数:3
液压与气动技术课程总结液压与气动技术是现代工程领域中非常重要的一门课程,涉及到流体力学、控制工程等多个学科的知识,广泛应用于工业、农业、航空航天等领域。
通过本门课程的学习,我对液压与气动技术有了更深入的了解,下面将对课程内容进行总结。
一、液压技术液压技术是利用液体传递能量的一种技术,主要应用于工程机械、船舶、飞机等领域。
在液压技术的学习中,我了解到液压系统的基本组成部分包括液压泵、液压阀、液压缸等。
液压泵是液压系统的动力来源,通过将机械能转化为液体压力能,为液压系统提供动力。
液压阀则是调节液体流量和压力的元件,起到控制液压系统的作用。
而液压缸则是液压系统的执行机构,通过液压力将液压能转化为机械能,实现对物体的运动。
在液压技术的学习中,我还了解到了液压系统的原理和工作过程。
液压系统的工作原理是利用液体在封闭的容器中的传递压力,实现机械元件的运动。
液压系统的工作过程一般包括液压泵吸油、液压系统的压力建立、液压阀的控制和液压缸的工作等几个阶段。
通过学习液压技术,我了解到了液压系统的优点是传递力矩大、传动效率高、运动平稳等。
二、气动技术气动技术是利用气体传递能量的一种技术,主要应用于自动控制系统、工业生产等领域。
在气动技术的学习中,我了解到气动系统的基本组成部分包括气源、气压调节器、执行元件等。
气源是气动系统的动力来源,通常使用压缩空气作为气源。
气压调节器用于调节气源的压力,为气动系统提供稳定的工作压力。
执行元件则是气动系统的执行机构,通过气动力将气动能转化为机械能,实现对物体的运动。
在气动技术的学习中,我还了解到了气动系统的原理和工作过程。
气动系统的工作原理是利用气体在封闭的容器中的传递压力,实现机械元件的运动。
气动系统的工作过程一般包括气源供气、气压调节、气动元件的控制和执行元件的工作等几个阶段。
通过学习气动技术,我了解到了气动系统的优点是传递速度快、结构简单、维护方便等。
三、液压与气动技术在实际应用中的重要性液压与气动技术在工业生产中有着广泛的应用,可以实现各种复杂的运动和控制。
1、气压传动标准件供应商:日本:SMC(中高端市场)、喜开理(CKD)、小金井(KOGANEI)等;中国:台湾亚德客(AirTAC)、华能、台湾新恭(SHAKO)、气立可(CHELIC)等;德国:费斯托(Festo)(高端市场)美国:博世力士乐(Bosch-Rexroth)、Park等。
英国:诺冠2、典型气动系统的组成:气动系统一般有方向控制阀、气动执行元件、各种气动辅助元件及气源净化元件组成。
3、压缩空气的压强一般为0.5~0.7MPa。
4、工厂内对于耗气量比较大或需要稳定气压的设备一般需要为设备单独添置储气罐。
5、常用的气动元件:1)气源处理组合单元:干燥机、干燥器、防湿气凝结管、空气过滤器、雾分离器、油雾分离器、除臭过滤器、自动排水器、电动式自动排水器、减压阀、过滤减压阀、缓慢启动电磁阀、电气比例阀、增压阀等2)气动控制元件:3通先到电磁阀、3通直动式电磁阀、3通气控阀、5通先导式电磁阀、5通气控阀、2通先导式电磁阀、2通直动式电磁阀、2通气控阀等3)气动执行元件:气动马达、喷枪、微型气缸CJ1、针形气缸CJP2/CJP、标准型气缸CJ2、自由安装型气缸CU、机械接合式无杆气缸MY1、磁偶式无杆气缸CY3B/CY3R、气动滑台MXH、导向轴承双缸气缸MXQ、带导杆气缸MGJ、双联/基本型气缸CXS、旋转夹紧气缸MK、止动气缸RSQ、行程可读出气缸CE1、叶片旋转气缸/齿轮齿条旋转气缸、摆动气缸CRQ2、伸摆气缸MRQ、气爪(平行式、支点式)/阔型气爪等4)电动执行元件5)真空元件:真空发生器、真空负压表、真空吸盘等;6)压力检测元件7)除静电元件8)辅助气动元件:空压机、储气罐、管接头6、熟悉气缸的型号1)(空间布局、动力特性、连接固定方式和配件信息等),熟悉标示和每个字母、数字的含义,并能快速查阅型录获得技术信息。
2)熟悉气缸的动力特性和空间布局。
像定位、夹紧等对于气缸输出力、速度和行程要求不高,或者要求停电不会造成安全事故隐患的场合,可考虑用单作用气缸,其他的情况一般采用双作用气缸;需要大动力时可用串联增压气缸,运动有精度要求时刻用带导杆气缸或滑台气缸。
气动技术基本知识气动技术是通过空气流动来实现力或运动控制的一种技术。
它利用气体的压缩和膨胀特性,通过控制空气流动的方向、速度和压力,实现对机械设备的控制和驱动。
气动技术的基本原理是利用压缩空气作为介质传递能量。
通过压缩空气产生的压力和流量,可以驱动气缸、旋转马达等执行器,实现对机械设备的运动控制。
在气动系统中,一般会使用压缩空气作为动力源,通过压缩机将大气中的空气压缩至一定的压力水平,然后通过管道将压缩空气传输至需要的位置。
气动系统由压缩机、制气装置、管道、执行器和控制装置等组成。
其中,压缩机负责将大气中的空气压缩,并将压缩空气输送至制气装置。
制气装置的主要作用是除去压缩空气中的杂质和水分,确保其纯净度和干燥度,防止对系统和执行器的损坏。
管道用于将压缩空气从制气装置传输至执行器的位置,通常需要考虑管道的直径、长度和材质等参数。
执行器接受压缩空气的驱动,将其能量转化为机械运动,完成相应的任务。
控制装置用于对气动系统进行控制和调节,通常包括各种传感器、阀门、计时器、压力表等。
气动技术具有很多优点。
首先,气动系统的动作速度快,响应时间短,能够满足高速运动的需求。
其次,气动系统具有较高的功率密度,可以在较小的空间内提供较大的动力输出。
此外,气动元件结构简单、可靠性高,维修和更换方便,成本较低。
另外,气动系统还具有防腐、不易受污染等特点,适用于恶劣的工作环境。
然而,气动技术也存在一些缺点。
由于气体的可压缩性,气动系统在传递动力和运动过程中会有一定的能量损失。
此外,气动系统所使用的压缩空气需要经过制气装置处理,增加了系统的复杂性和成本。
此外,在一些对静音要求较高的环境下,气动系统可能产生噪音。
总的来说,气动技术是一种常用的力和运动控制技术,被广泛应用于机械制造、自动化生产线、工业机器人等领域。
了解气动技术的基本原理和构成,可以帮助人们更好地应用和维护气动系统,提高生产效率和产品质量。
气动技术在工业领域中得到了广泛应用,并成为实现力和运动控制的重要手段。
1、气动技术是以压缩空气为介质,以空气压缩机为动力源,实现能量传递或信号
传递与控制的工程技术。
2、气动是气动技术或气压传动与控制的简称。
它是流体传动与控制的重要组成技术之一,也是实现工业自动化和机电一体化的重要途径。
3、一个较完善的机电一体化系统包括动力部分、执行部分、机械部分、检测传感部分、控制部分、信息处理部分,各部分之间通过接口相联系。
通过控制系统发送控制信号,由执行部分产生力和运动的输出。
4、气动技术的优点:
简单、方便:气动装置结构简单、轻便、安装维护方便。
输出速度大:气缸动作速度一般为50∼500mm/s,比液压和电气方式的速度快。
有良好的缓冲性:对冲击负载和负载过载具有较强的适应能力。
可靠性高、使用寿命长:电器元件的有效动作次数约为数百万次,而电磁阀(如SMC公司生产的电磁阀)的寿命大于3000万次,小型阀超过1亿次。
无污染:工作介质是空气,无污染。
安全性:气动压力等级低,具有防火、防爆、耐潮的能力,与液压方式相比可在高温条件下使用,同时,对于振动、腐蚀具有较强的耐受力,因而,具有很高的安全性。
在很多特殊场合具有不可比拟的优越性。
成本低:在自动化系统中,与单纯分别采用机械、电气、液压的传动与控制方式相比,气动方式成本低,经济性好。
5、气动技术的缺点:
能量利用率低:电气传动的效率在90%以上,液压传动的的效率为70~80%,气压传动的的效率为30~40%。
实施精确控制的难度较大:气体的压缩性大。
6、气动元件的制造过程:精密压铸、挤压成型、精密加工、表面处理、装配、性能测试
7、气源设备
气源设备:空气压缩机:产生压缩空气的动力源
气源处理设备:过滤器:清除压缩空气中的水分、油污和灰尘;干燥器:进一步清除压缩空气中的水分;自动排水器:自动排除冷凝水
8、气动元件的类型及其功能
气动执行元件:气缸:推动工件作直线运动。
摆动气缸:推动工件在一定角度范围内作摆动气马达:驱动工件作连续旋转运动。
气爪:抓取工件。
复合气缸:实现各种复合运动。
气动控制元件:压力阀:控制气体压力,增压、或降压。
流量阀:控制执行元件的运动速度。
方向阀:改变气流的流动方向或实现通断控制
气动辅助元件:润滑元件:a油雾器:将润滑油雾化,随压缩空气流入需要润滑的部位;
b集中润滑元件:可供多点润滑的油雾器
消声器:降低排气噪声;排气洁净器:降低排气噪声,并能分离掉排出空气中所含的油雾和冷凝水;压力开关:当空气压力达到预设值,便能接通或断开电触点;管道及管接头:连接各种气动元件用;气液转换器:将气体压力转换成相同压力的液体压力,以便实现气压控制液压驱动;液压缓冲器:用于吸收冲击能量、并能降低噪声;气动显示器:有气压信号时予以显示的元件;气动传感器:将待测物理量转换为气压信号,供后续系统进行判断和控制。
可用于检测尺寸精度、定位精度、计数、尺寸分选、纠偏、液位控制、判断有无等。
真空元件:真空发生器:利用压缩空气的流动产生真空;真空吸盘:利用真空直接吸吊工件;真空压力开关:检测真空压力的电触点开关;真空过滤器:把空气中的灰尘过滤掉以保证真空器件洁净、不受污染。
9、气动系统的典型应用场合
–易燃、易爆、高温、高湿环境下的自动化生产设备及生产线;汽车、摩托车的自动装配和自动焊接设备及生产线;电子器件、IC电路和CD生产线;洁净条件下的药品、食品打包设备;自动喷气纺机;工业装备、交通车辆中的辅助操作装置。
10、气动系统可以实现的功能
直线、往复、摆动、旋转等运动,真空吸取、夹持等动作;速度控制、位置(角度)控制、输出;力控制(压力控制)、同步运动、差速及高速控制等单项或组合控制;能与PLC结合实现复杂的逻辑控制;在工业自动化系统中,气动系统可以完成物料或工件的吸取、搬运、转位、定位、夹紧、进给(一般或高速)、装卸、装配、清洗、检测;
11、流体的基本力学性质:质点、连续、流动;只承受压力,不能承受拉力、不能抵抗剪切变形;
12、流体体积上作用的力可分为质量力和表面力。
质量力:作用于所研究的流体的所有质点上,它可以是由于其它物体对作用于所研究的流体的所有质点上,它可以是由于其它物体对所研究的流体的作用而施加于流体上的,例如重力。
这类质量所研究的流体的作用而施加于流体上的,例如重力。
这类质量力一般又称为力一般又称为外质量力。
质量力还可以是由于所研究的流体具有加速度,根据达朗贝尔
原理而虚拟地加于流体上的,例如,离心力等,这类力一般称为惯性力。
表面力:作用于所研究的流体体积的外表面上,表面力为向量,它与所作用的面积大小成正比。
表面力分解为压应力、切应力。
13、表征气体的几个状态参数:压力、温度(T=t+273.15)、密度、质量体积、
热力学能:物质微观分子运动所具有的能量。
包括分子运动的动能和分子间由于相互作用力的存在而具有的位势能。
焓(H ):气体在流动时所具有的微观运动的能量。
在热工计算中,将热力学能 I 与推动功pV 的和称为焓H ,即 H=I+ p ⋅V。
质量焓(i):单位质量气体的焓称为质量焓 h = i +p ⋅v
熵(S ):一个标志着热交换是否进行的气体状态参数对微元平衡过程有dS=δQ/ T
13`1气体的状态方程
完全气体状态方程:描述p ,ρ,T的关系;状态方程的几种表达形式pV/ T=const或
RT = pv或RT= p/ρ其中R=287N·m/(kg·K),v是单位质量体积
13`2热力学第一定律
系统吸收的热量等于系统内能(热力学能)的增量与对外作功之和。
即传输给气体的热量,部分用来增加气体的内能(热力学能),其余则对外作功。
吸收的热量:pdV+dE=dW+dE=dQ 13`3气体的质量热容(略) 等熵过程(略)
14解决问题的技术路线
根据任务要求分析末端执行机构的动作;确定执行元件;确定对执行元件进行控制的控制元件;设计气动回路;进行自动化机器/生产线的机械结构设计;顺序动作控制的实现;调试、检测
15、气缸的分类及特点
按安装方式分:固定式安装:气缸在动作时,气缸缸体与安装体之间不存在相对运动;
摆动式安装:气缸在动作时,气缸缸体与安装体之间可以存在相对摆动
按润滑方式:给油气缸:作时,由压缩空气带入油雾,在推动活塞运动的同时,实现了对气
缸内相对运动件的润滑。
不给油气缸:工作时,压缩空气中不含油雾,相对运动件之间的润滑是靠预先
在密封圈内添加的润滑脂来保证的。
另外,气缸内的零件要使用各
种不易生锈的材料。
按位置检测方式分:限位开关;磁性开关
按驱动方式分:单、双作用气缸
16、气缸的性能与选用—常见的性能参数
理论输出力:指气缸的使用压力作用在活塞有效面积上产生的推力或拉力。
负载率:指气缸活塞杆受到的轴向负载力F与气缸的理论输出力F0之比。
使用压力范围:指气缸的最低使用压力至最高使用压力的范围。
耗气量:大耗气量是气缸以最大速度运行时需要的空气流量17、已知:用气缸水平推动台车,负载质量M=150kg,台车与床面间的摩擦系数μ=0.3,气缸行程L=300mm,要求气缸动作时间t=0.8s,供给压力p=0.5MPa,配管l=3m。
请选择缸径。
已知:M=150kg,μ=0.3,L=300mm,t=0.8s,p=0.5MPa,l=3m。
步骤:
〕负载力F= μ mg=0.3×150×9.8=450N
〕负载系数取η=25%=0.25
〕需要的气缸输出力F0 =F/η=450/0.25=1800N
〕由F0=πD2p/4 算出D=67.7mm,预选缸径80mm
〕由L=300mm,t=0.8s,η=0.25查相关的表格得
理论基准速度u0=500mm/s,缸的最大速度 um=525mm/s,察气缸的缓冲能力得知,MB系列缸径为80mm的气缸不能满足缓冲要求,因此,缸径选100mm。
18、气缸使用时的重要注意事项
1)活塞杆上只能承受轴向负载2〕安装耳环式或耳轴式气缸时,气缸与负载应在同一平面内摆动3〕气缸的冲击能量不能完全被吸收时,应设计缓冲回路或外部增设缓冲机构。
4〕高速气缸要保证充足供气并加大气缸通径。
5〕低速运动时要避免爬行现象的出现。
19、控制元件
压力控制阀:减压阀、溢流阀、顺序阀、比例压力阀、增压阀、组合阀;
流量控制阀;方向控制阀:单向型控制阀、换向型控制阀;
减压阀:将较高的入口压力调节并降低到符合使用要求的出口压力,同时保证调节后出口压力的稳定。
分为:直导式减压阀:利用手轮直接调节调压弹簧的压缩量并利用弹簧力直接控制阀的出口压力;先导式减压阀:利用压缩空气的作用力代替调压弹簧力来改变阀的出口压力,其中先导阀一般由小型直动减压阀充当。
20、
换向控制回路
压力或力控制回路
位置或角度控制回路
速度控制回路
同步控制回路
21气动元件的发展方向:精确化、高速化、小型化、低功耗与微电子化、复合化和集成化、低速低摩擦化、新型真空技术、其他。