(完整版)幂的乘方
- 格式:ppt
- 大小:660.19 KB
- 文档页数:12
幂的乘方专项练习50 题(有答案)知识点:1.若m、n 均为正整数,则( a m)n= _______ ,即幂的乘方,底数2.计算:(1) (75) 4= ________ ; (2) 75X 74= _________ ;(3) (x5) 2= ______ ; (4) x5• x2= ________ ;(5) ____________ [(-7) 4] 5= _________________ ; (6) [ (-7) 5] 4= 3.你能说明下面每一步计算的理由吗?将它们填在括号里.(1) y • (y2) 36=y • y (=y72) 2( a2) 6-( a3)=2a12- a1212=a12专项练习:(6)(—a2) 5• a —a11(7)(x6) 2+x10• X2+2[ (—x) 3] 4528)(—x5)2=______ ,( —x2)5= ____ ___,[ (—x) 2] 59)( a5) 3( 10)( a n—2)3(11)(43)3,指数______1) [ ( a+b) 2] 4= 2)-( y4) 5=3) y2a+1) 2 4) [(- 5) 3] 4- 54) 5) a- b) [ ( a- b) 2] 512)(-x3)513)[(-x)2] 314)[(x-y)3] 415) (a4)2( a2)3______________________16)( 16) ( a3)2( a)3______________________17) ( x4)5( x5)4 ____________________ ,18)( a m 1)3(a2)1 m_________________________(19)3(x2)2(x2)4(x5)2(x2)2________________________________(20)若x n3,则x3n(21) x •( x2) 3(22 ) (X。
什么叫乘方,乘方的结果叫什么?求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数,读作a 的n 次幂。
注意: ()()221221n n n n a a a a ++-=-=-,,,同底数幂的乘除法则同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.即m n m n a a a +⋅=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q +=⋅=⋅+=+幂的乘方法则:幂的乘方,底数不变,指数相乘。
即()nm mn a a =(m 、n 都是正整数)逆运用()()()q n m p mn m n a a a a mn pq ⎛⎫==== ⎪⎝⎭积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘即()nn n ab a b =(n 为正整数) 逆运用()nn n a b ab = ()2323mm m a b a b ⋅=同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即m n m n a a a -÷=(m 、n 都是正整数) 逆运用()m nm n p q aa a a a m n p q -=÷=÷-=-()m a b -,当m 奇数时,()()mm a b b a -=--;当m 偶数时,()()mm a b b a -=-.()m a b +,不论m 为奇数还是偶数,都有()()mm a b b a +=+.幂的运算知识讲解知识回顾【例1】 下列计算是否正确?错误的指出错误的原因,并加以改正.(1)339a a a ⋅=; (2)4482a a a ⋅=; (3)336x x x +=; (4)22y y y ⋅=; (5)34x x x ⋅=; (6)236x x x ⋅=【答案】(1)不正确,指数应是相加而不是相乘,应改为336a a a ⋅=(2)不正确,错在将系数也相加了,应改为448a a a ⋅= (3)不正确,336x x x +=是整式的加法,应改为3332x x x += (4)不正确,y 的指数是1而不是0,应改为23y y y ⋅= (5)正确(6)不正确,指数相加而不是相乘,应改为235x x x ⋅=【例2】 100010010⨯⨯的结果是 .【答案】610【变式练习】计算:(1)45371010101010⨯⨯+⨯ (2)32101010010⨯+⨯ 【答案】(1)10210⨯ (2)4210⨯【例3】 计算:(1)231122⎛⎫⎛⎫-⋅- ⎪⎪⎝⎭⎝⎭; (2)102a a a ⋅⋅;(3)()()2322x y y x -⋅- (4)()()()854x y y x x y -⋅-⋅-【答案】(1)511232⎛⎫-=- ⎪⎝⎭; (2)13a ; (3)()52-y x ; (4)()17x y --【例4】 已知:240x y +-=,求:1233x y -的值.【答案】1221333x y x y -+-=∵240x y +-= ∴24x y += ∴2133327x y +-==同步练习【变式练习】已知:2350x y +-=,求:927x y ⋅的值. 【答案】2323927333x y x y x y +⋅=⋅=∵2350x y +-= ∴原式53243==【例5】 在()222m m y y y -+⋅⋅=中,括号中应填的代数式是 .【答案】3m y +【变式练习】已知32131a a x x x x +⋅⋅=,求a 的值. 【答案】9a =【变式练习】若32125a a x x x x +⋅⋅=,则关于y 的方程=28ay a +的解是 . 【答案】7a =,7728355y y =+==,【例6】 已知22380x x y -+-+=,则22y x x y y x ⋅-⋅= .【答案】24x y ==,,原式422224421612192=⨯-⨯=⨯=【例7】 已知2m a =,3n a =,求下列各式的值.(1)1m a +; (2)3n a +; (3)2m n a ++【答案】(1)12m m a a a a +=⋅=(2)3333n n a a a a +=⋅=(3)2222236m n m n a a a a a a ++=⋅⋅=⨯⨯=【变式练习】已知,3n a =,3m b =,则33m n ++的结果是 . 【答案】33333327m n m n ab ++=⋅⋅=【例8】 计算:(1)()10110033+- (2)()()2008200922-+-(3)200520042003252622000-⨯+⨯+【答案】(1)()()10110010010110010010010033=3333331323+--=-⨯=-=-⨯(2)()()()()()()()200820092008200820082008222222122-+-=-+-⋅-=-⋅-=-(3)200520042003220032003200325262200022522622000-⨯+⨯+=⨯-⨯⨯+⨯+()20034106220002000=-+⨯+=【例9】 计算:(1)()54x ; (2)()32a b ⎡⎤+⎣⎦;(3)()435a a ⋅; (4)()()23211n n a a -+⋅【答案】(1)()5420x x =; (2)()()326a b a b ⎡⎤+=+⎣⎦; (3)()43517a a a ⋅=; (4)()()23211423371n n n n n a a a a a -+-++⋅=⋅=【变式练习】计算(1)()()()32233x x x -⋅-⋅- (2)()()21321n n x x ++-【答案】(1)()()()3223315x x x x -⋅-⋅-=(2)()()21321423375n n n n n x x x x x +++++-=-⋅=-【例10】 已知25n x =,求6155n x -的值.【答案】()362115555n n x x -=-,25n x =,∴原式3155205⨯-=【变式练习】已知3x a =,5x b =,你能用含有a 、b 的代数式表示14x 吗? 【答案】()31433535x x x x ⨯+==⋅;将3x a =,5x b =代入,原式3a b =【例11】 已知105a =,106b =,求2310a b +的值.【答案】()()2323231010101010a b a b a b +=⋅=⋅将105a =,106b =代入,原式23565400=⨯=【变式练习】若3m n 32m n +的值为多少?【答案】()()323232m n m n m n a a a a a +=⋅=⋅当3m a =,4n a =时, 原式3234432=⨯=【例12】 若35n x =,求代数式()()322324nn x x -+的值.【答案】原式=()()()22233322422550n n n x x x -+==⨯=【变式练习】已知3332m n a b ==,,求()()332242m n m n m n a b a b a b +-⋅⋅⋅的值. 【答案】原式()()2233332232327m n m n a b a b =+-⋅=+-⨯=-【例13】 比较5553,4444,3335的大小.【答案】()111555511133243==;()111444411144256==;()111333311155125==256243125>> 444555333435>>【变式练习】若504030345a b c ===,,,则a b c 、、的大小关系为( )..A .a b c << B .c a b << C .c b a << D .b c a <<【答案】B .【例14】 你能比较68与94的大小吗?【答案】()663188=22=;()99218422==;所以6984=【变式练习】若31416181279a b c ===,,,则a b c 、、的大小关系为( )..A .a b c >> B .a c b >> C .a b c << D .b c a >>【答案】A .【例15】 求满足2003005n<的最大整数值n .【答案】∵2003005n< ()()100100235n <∴2125n <∴最大整数值n 为11.【变式练习】求满足()507513x -<的x 的最大整数值. 【答案】∵()507513x -< ()()()25252313x -<∴()2127x -< ∴x 的最大整数值6【例16】 已知232122192m m ++-=,求m 的值.【答案】∵232122192m m ++-=∴2322222262192m m m ⨯-⨯=⨯= ∴2232m = 25m = 52m =【变式练习】若x y 、都是正整数,且()22232x y ⋅=,求满足条件的x y 、.【答案】∵()225222322x y x y +⋅===∴25x y += ∴13x y =⎧⎨=⎩或21x y =⎧⎨=⎩【例17】 计算:(1)()4xy - (2)()322ab -(3)()332a b a ⎡⎤--⋅⎢⎥⎣⎦(4)()()35232xy y ---【答案】(1)()()4444441xy x y x y -=-=;(2)()()33233236228ab a b a b -=-=-(3)()()339223219a b a a b a a b ⎡⎤--⋅=--⋅=⎢⎥⎣⎦(4)()()352332128xy y x y ---=-【变式练习】计算:(1)()42234122x yxy z ⎛⎫-⋅ ⎪⎝⎭(2)()()()3222223325a a a a -+⋅+(3)()()4234242a a a a a ⋅⋅+-+- (4)()()()3322337235x x x x x ⋅-+⋅【答案】(1)()42234822411224x yxy z x y z ⎛⎫-⋅= ⎪⎝⎭(2)()()()32222233250a a a a -+⋅+=(3)()()423424826a a a a a a ⋅⋅+-+-=(4)()()()33223372350x x x x x ⋅-+⋅=【例18】 下列各题中,计算正确的是( )..A .()()233266m n m n --= B .()()323321818m n m n ⎡⎤--=-⎢⎥⎣⎦C .()()2322298m n mn m n --=- D .()()332299m n mn m n --=-【答案】B .【例19】 计算:(1)()20042003188⎛⎫-⨯- ⎪⎝⎭(2)2001100021234⎛⎫⎛⎫-⋅ ⎪⎪⎝⎭⎝⎭(3)20012002200311311345⎛⎫⎛⎫⎛⎫⋅-⋅- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】(1)()()()20032004200320032003111111888888888⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-=-⨯-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦(2)原式20011000200120002923234323⎛⎫⎛⎫⎛⎫⎛⎫-⋅=-=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(3)原式2001200120012455339=3445520⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⋅-⋅-⋅-⋅-= ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭【例20】 已知155a b ==-,n 为正整数,你能求出2222n n a b b +的值吗?【答案】()222222n n nab b ab ++=, 原式221515n +⎡⎤⎛⎫=⨯-= ⎪⎢⎥⎝⎭⎣⎦【例21】 若5n a =,2n b =,则()32na b = .【答案】()()()3232nn n a b a b =⋅,当5n a =,2n b =时,原式3252500=⨯=.【变式练习】已知25n x =,求()()24323n n x x -的值.【答案】()()()()24323222343n n n n x x x x -=-,当25n x =时,原式32453550075425⨯-⨯=-=【变式练习】已知n 是正整数,216nx =,求()2232111616n n x x ⎛⎫- ⎪⎝⎭的值.【答案】原式()()322221101616n n x x =-=【例22】 若()2322350a b a b ++++,化简()()3322221aa ax y bxyx y z a ⎛⎫⋅-⋅ ⎪⎝⎭. 【答案】依题可知:3202350a b a b +=⎧⎨++=⎩,解得23a b =⎧⎨=-⎩原式63246661413618998x y x y x y z x y z =⋅⋅=【例23】 若87a =,78b =,则5656= .【答案】()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =【变式练习】已知227373996y x z ⋅⋅=,求2004(2)x y z -+的值. 【答案】∵2339962337=⨯⨯ ∴211x y z ===,,20042004(2)=1=1x y z -+【例24】 若1122222n n n n x y +--=+=+,,其中n 为正整数,则x 与y 的数量关系为 . 【答案】4x y =【变式练习】若21m x =+,34m y =+,用含x 代数式表示y . 【答案】()()22234=3+23124m m y x x x =+=+-=-+【变式练习】已知23x =,26y =,212z =,试求x y z 、、的关系. 【答案】∵12623222y x x +==⨯=⨯= ∴1y x =+∵2221234222z x x +==⨯=⨯= ∴2z x =+ +1z y =【例25】 化简:(1)()()4322222n n ++-=(2)2231424m m m ++--=【答案】(1)78(2)32【例26】 已知311n m +能被10整除,求证42311n m +++也能被10整除.【答案】4242311=33111181312111n m n m n m +++⨯+⨯=⨯+⨯()()31180312011n m n m =++⨯+⨯ ()()31110831211n m n m =++⨯⨯+⨯∴42311n m +++也能被10整除.【例27】 是否存在整数a b c 、、满足9101628915abc⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,若存在,求出a b c 、、的值;若不存在,请说明理由. 【答案】∵()()()()()()233232132322591016235289152353523acb abcb c a b a bc a b c ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴b c = 221a b =+ 331b c a +=+∴32a b c ===,【变式练习】若整数x y z 、、满足10981271615256xyz⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求()y x x y z -+-的值. 【答案】∵()()()()()()233243834322510982351127161523525623532yzxxyzx z y x xyzy x z z ++⨯⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅=== ⎪⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭⨯ ∴23348x z y x z x z y =⎧⎪=+⎨⎪+=-⎩ 解得242x y z =⎧⎪=⎨⎪=⎩()2416y xx y z -+-==【例28】 若3436x y ==,,求2927x y x y --+的值. 【答案】∵()()()()()()24233223927333333x yx yx y x y x y x y ----+=+=÷+÷3436x y ==,,∴原式20027=【习题1】下列计算正确的是( ).A .235a a a +=B .236a a a ⋅=C .()326a a = D .236a a a ⨯=【答案】C【习题2】下列计算正确的是( ).A .5510x x x +=B .5510·x x x = C .5510()x x = D .20210x x x ÷= 【答案】B【习题3】直接写出结果(1)=-⋅-22)(m m (2)=-⋅-24)2()2(m n n m (3)=+43])[(b a (4)=⋅-6243)2(])2[( (5)=-2)2(x (6)=-232)4(b a【答案】(1)224()m m m -⋅-=-; (2)426(2)(2)(2)m n n m m n -⋅-=-(3)()1234[()]a b a b +=+; (4)342624[(2)](2)2-⋅= (5)22(2)4x x -=; (6)23246(4)16a b a b -=【习题4】计算()2323a a -÷的结果是( ).A .49a -B . 46aC .29aD .49a【答案】D【习题5】若0a >且2x a =,3y a =,则x ya -的值为( ).A .1-B .1C .2D .3 课后练习【答案】C【习题6】计算:(1)1716)8()125.0(-⨯ (2)32236])2[()2()2(a a a -----(3)675)21(6)31(-⨯⨯- (4)232332)(3m m m m m ⋅⋅++-)(【答案】(1)1617(0.125)(8)8⨯-=-(2) 632236(2)(2)[(2)]4a a a a -----=-(3)57611()6()1832-⨯⨯-=-(4)23323263()25m m m m m m -++⋅⋅=-()【习题7】 计算:(1)()()43x y x y +⋅+ (2)()()()43m n n m n m -⋅-⋅-(3)()()132()()n n y x x y x y y x +--+--【答案】(1)()()()437x y x y x y +⋅+=+(2)()()()()438m n n m n m n m -⋅-⋅-=-或()8m n -(3)()()()()13332()()0n n n n y x x y x y y x x y x y +++--+--=--+-=【习题8】 计算:(1)(.)0125820032004⨯ (2)1320036009n n +⎛⎫⋅ ⎪⎝⎭ 【答案】(1)20032003200420031(0.125)8=8888⎛⎫-⨯-⨯⨯=- ⎪⎝⎭ (2)1131120032003600920032003n n n n ++⎛⎫⎛⎫⋅=⋅= ⎪ ⎪⎝⎭⎝⎭【习题9】若4)31()9(832=⋅x ,求3x 的值. 【答案】()()32223883111(9)()3()4339x x x ⎡⎤⋅=⋅==⎣⎦,()2336x ∴=,36x ∴=±【习题10】如果12m x =,3n x =,求23m n x +的值. 【答案】()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=【习题11】若2530x y +-=,求432x y ⋅的值. 【答案】()()2525432222x yx y x y +⋅=⋅= 当2530x y +-=时,原式328==【习题12】(1)若31381x +=,则=x (2)若319()x a a a ⋅=,则=x .【答案】(1)∵4813= ∴3141x x +==(2)∵331()x x a a a +⋅= ∴31196x x +==【习题13】如果2111m n n x x x -+=且145m n y y y --=,求m ,n 的值.【答案】∵2111m n n x x x -+=,145m n y y y --=∴2111145m n n m n -++=⎧⎨-+-=⎩ 解之64m n =⎧⎨=⎩【习题14】若2211322323⋅=⋅-⋅++x x x x ,求x 的值.【答案】()()()11323233223232x x x x x x x ++⋅-⋅=⋅⨯-⋅⨯=⨯∵1122323223x x x x ++⋅-⋅=⋅∴2x =【习题15】 已知212448n n ++=,求n 的值.【答案】21222242222348n n n n n ++=⨯+=⨯= 242162n == 24n = 2n =【习题16】若21025x =,则110x +的值为_______.【答案】()2221010255x x === 105x = 110101050x x +=⨯=【习题17】 若()a n 29=,求()()1333222a a n n -的值.【答案】()()3232222211()3()=38138116239n n n n a a a a --=-⨯=-【习题18】比较大小 (1)1625与209 (2)1003与605(3)2100与375(4)101726与31724 【答案】(1)()252541001622== ∴1625>209(2)()()2020100533243==;()()202060355125== ∴ 1006035>(3)()251004252216==;()25753253327== ∴2100<375 (4)226421010171717=⨯;2224423317171717⨯=⨯ ∴101726<31724。
幂的乘方的公式好嘞,以下是为您生成的关于“幂的乘方的公式”的文章:在咱们数学的奇妙世界里,幂的乘方公式就像是一把神奇的钥匙,能打开很多复杂计算的大门。
先来说说这个幂的乘方公式到底是啥。
它呀,就是$(a^m)^n =a^{mn}$。
这看起来挺简单几个字母和符号,其实藏着大大的智慧呢!就拿咱们平时做数学题来说吧。
有一次,我在课堂上给学生们出了一道题:计算$(2^3)^4$。
好多同学一开始都有点懵,不知道从哪儿下手。
这时候,咱们的幂的乘方公式就派上用场啦!按照公式,那就是$2^{3×4}=2^{12}$,这一下子就变得清晰明了了。
再比如说,遇到像$(x^2)^5$这样的式子,用公式一算,那不就是$x^{2×5}=x^{10}$嘛。
那为啥要学这个幂的乘方公式呢?其实啊,在解决很多数学问题的时候,它能让咱们的计算变得又快又准。
想象一下,要是没有这个公式,每次遇到幂的乘方运算,咱们都得一个一个去乘,那得多麻烦,多容易出错呀!有了这个公式,就像是给咱们的数学计算安上了小翅膀,能飞得又高又快。
我还记得有一次,有个学生做作业的时候,总是忘记幂的乘方公式。
结果呢,一道本来很简单的题,他算了半天也没算对。
我就给他耐心地讲解,让他一步一步按照公式来,最后他恍然大悟,那种“哦,原来是这样”的表情,真的让我觉得特别有成就感。
在实际生活中,幂的乘方公式也有用武之地呢。
比如说,计算面积或者体积的时候,如果边长或者棱长是幂的形式,那这公式就能帮咱们轻松算出结果。
学习幂的乘方公式,就像是在攀登数学山峰的过程中找到了一条捷径。
虽然这条路上可能还会有一些小坎坷,但是只要咱们牢牢记住这个公式,多做练习,就能走得稳稳当当。
所以呀,同学们可别小瞧了这个幂的乘方公式,它可是咱们数学学习中的好帮手,能让咱们在数学的海洋里畅游得更加畅快!。
欢迎共阅第八章幂的运算知识点总结
知识点一:同底数幂相乘
同底数幂的乘法数
数,负数的偶次幂是正数;负数的奇次幂是负正数的任何次幂都是正逆运算:
是正整数相加。
即法则:底数不变,指数a a a a a a m n m n m m n n
n )
,m (知识点二:幂的乘方与积的乘方
1、幂的乘方)
()()
,(a a a a m n m m n
mn mn n 逆运算:是正整数即底数不变,指数相乘。
2、积的乘方(ab)
(ab)n n n n n n )
(,b a b a n 逆运算;是正整数再把所得的幂相乘。
即
把每一个因式分别乘方知识点三:同底数幂的除法
同底数幂的除法m
nm a n m n m a a a a a a n 10101095-5n -0n -m n m 1)
0010(02.50000502.0)
1-10(96.6696000)
,
0a (110)0a (1),,,0a (的个数数字前第一个非的负几次方原数字个数的几次方科学记数法是正整数定负整指数幂的意义:规的数的零次幂都等于。
即任何不等于零指数幂的意义:规定是正整数变,指数相减。
即同底数幂相除,底数不。
幂的乘方法则在数学中,我们经常会遇到幂的乘法运算,即将同一个数的幂相乘。
在进行幂的乘法运算时,我们可以利用一些简便的方法来简化计算,提高效率。
本文将介绍一些幂的乘法运算的简化方法,希望能够帮助大家更加轻松地进行幂的乘法运算。
首先,我们需要了解幂的乘法运算的基本规则。
当两个幂相乘时,底数不变,指数相加。
例如,a^m a^n = a^(m+n)。
这是幂的乘法运算的基本规则,我们可以根据这个规则来简化计算。
其次,当幂的底数相同,指数相加时,我们可以利用幂的乘法法则进行简化。
例如,2^3 2^4 = 2^(3+4) = 2^7。
这个规则可以帮助我们直接得出幂的乘法结果,而不需要逐步相乘。
另外,当幂的底数不同,但指数相同时,我们也可以利用乘法交换律进行简化。
例如,2^3 3^3 = 2^3 3^3 = 6^3。
在这种情况下,我们可以将幂的乘法顺序进行交换,使得计算更加简便。
除此之外,我们还可以利用分解质因数的方法进行幂的乘法运算。
例如,2^33^4 = (222) (3333) = 2^3 3^4。
通过将幂的底数分解为质因数的乘积,我们可以更加清晰地进行幂的乘法计算。
另外,当幂的指数为偶数时,我们还可以利用幂的乘法法则进行简化。
例如,(2^3)^2 = 2^(32) = 2^6。
在这种情况下,我们可以直接将指数相乘,而无需逐步相乘。
最后,我们还可以利用对数的性质进行幂的乘法运算。
例如,a^m a^n =a^(m+n) = 10^(log(a^m) + log(a^n)) = 10^(mlog(a) + nlog(a))。
通过将幂转化为对数的形式,我们可以更加灵活地进行幂的乘法计算。
总之,幂的乘法运算在数学中是非常常见的,我们可以利用一些简便的方法来简化计算,提高效率。
通过掌握幂的乘法法则、乘法交换律、分解质因数、对数的性质等方法,我们可以更加轻松地进行幂的乘法运算,为我们的数学学习和工作提供便利。
希望本文介绍的幂的乘法方法能够帮助大家更好地掌握这一部分的数学知识。
《幂的乘方与积的乘方》典型例题例1 计算:(1)199********.08⨯;(2)3014225.01⨯-例2 计算题:(1)43)(b -; (2)n m 24)(; (3)5])[(m y x -; (4)3542)()(x x ⋅; (5)32)4(n m ⋅; (6)43)32(ab -.例3 计算题(1)33326)3()5(a a a ⋅-+-;(2)5335654)()2(a a a a a -+--⋅⋅;(3)1232332312)()(3)()(4--⋅+⋅-n n n n a b b a ;(4)))(2()3(24232xy y x xy --+-。
例4 计算题。
(1)20012001125.08⨯; (2)199910003)91(⨯-; (3)2010225.0⨯。
例5 比较5553,4444,3335的大小。
参考答案例1 解:(1)原式199********.088⨯⨯=8181997=⨯=;(2)原式15214)2(25.01⨯-= 1514425.01⨯-= 4425.011414⨯⨯-=4)425.0(114⨯⨯-=41114⨯-=41-= 说明:(1)逆用了积的乘方性质;n n n ab b a )(=;(2)先后逆用幂的乘方n m mn a a )(=和同底数幂的乘法n m n m a a a ⋅=+的运算性质。
例2 分析:运算中同底数幂相乘和幂的乘方要注意加以区分,同底数幂相乘指数相加 ,而幂的乘方是指数相乘。
在积的乘方运算中要注意以下的错误,如333)2()2(y a y a -=-。
解:(1)43)(b -;)()1(12434b b =⋅-=(2)n n n m m m 84242)(=⨯=;(3)m m y x y x 55)(])[(-=-;(4)231583542)()(x x x x x =⋅=⋅;(5)363264)4(n m n m =⋅;(6)1244344438116)()32()32(b a b a ab =⋅⋅-=-。
初中数学幂的运算公式
幂数(指数)的运算是中学数学中的重要内容,它涉及到了幂的基本性质和运算法则。
在初中数学教学中,通常会涉及到幂数的四则运算、幂的乘方和幂的开方运算。
下面将详细介绍这些运算公式。
一、四则运算
1.幂数相乘:a^m*a^n=a^(m+n)
幂数相乘,底数相同,指数相加。
2.幂数相除:a^m/a^n=a^(m-n)
幂数相除,底数相同,指数相减。
3.幂的乘方:(a^m)^n=a^(m*n)
幂的乘方,先计算底数,再计算指数。
4.幂的除法:(a/b)^n=a^n/b^n
幂的除法,拆分成分子和分母的幂分别求值。
二、乘方运算
1.幂的乘方:(a^m)^n=a^(m*n)
幂的乘方,先计算底数,再计算指数。
2.幂的分配率:(a*b)^n=a^n*b^n
幂的分配率,底数相乘,指数不变。
3.幂的乘方积:(a^n)*(b^n)=(a*b)^n
幂的乘方积,底数相乘,指数不变。
三、开方运算
1.a^m*a^(1/m)=a^((m+1)/m)
底数的m次方与底数的1除以m次方的乘积等于底数的(m+1)除以m次方。
2.a^m/a^(1/m)=a^((m-1)/m)
底数的m次方与底数的1除以m次方的商等于底数的(m-1)除以m 次方。
这些是初中数学中幂的运算公式,它们在解决幂数的运算过程中起到了重要的作用。
通过掌握这些运算公式,可以更好地理解和解决幂的运算问题。