第十章 位移法
- 格式:ppt
- 大小:2.33 MB
- 文档页数:51
第九章位移法学习目的和要求位移法是超静定结构计算的基本方法之一,许多工程中使用的实用计算方法都是由位移法演变出来的,是本课程的重点内容之一。
本章的基本要求:1 1.熟练掌握位移法基本未知量和基本结构的确定、位移法典型方程的建立及其物力意义、位移法方程中的系数和自由项的物理意义及其计算、最终弯矩图的绘制。
2.熟记一些常用的形常数和载常数。
3.熟练掌握由弯矩图绘制剪力图和轴力图的方法。
4.掌握利用对称性简化计算。
5.重点掌握荷载荷载作用下的计算,了解其它因素下的计算。
位移法方程有两种建立方法,写典型方程法和写平衡方程法。
要求熟练掌握一种,另一种了解即可。
学习内容位移法的基本概念;跨超静定梁的形常数、载常数和转角位移方程;位移法基本未知量和位移法基本结构的确定;用位移法计算刚架和排架;利用对称性简化位移法计算;直接用结点、截面平衡方程建立位移法方程。
内容提要1. 位移法的未知数位移法的未知数是独立的结点角位移与结点线位移。
结点角位移是结点的转角,一个刚结点就有一个结点角位移,结构结点角位移个数就是刚结点个数。
当考虑杆件的轴向变形时,每个结点有两个线位移:水平线位移u,竖向线位移v。
当不考虑杆件的轴向变形时,结点线位移的确定方法是:将结构所有的结点换成铰结点,增加最小数量的链杆约束结点位移使其成为几何不变体系,增加的链杆数就是结构的结点线位移。
在位移法中,未知数(结点角位移与结点线位移)一般统一用符号Z表示。
对于结点位移的正方向,一般规定:结点角位移规定以顺时针方向转为正,水平结点线位移以向右移动为正,竖向结点线位移以向下移动为正。
2.求解步骤:(1) 确定位移法基本未知量,加入附加约束,取位移法基本体系。
(2)令附加约束发生与原结构相同的结点位移,根据基本结构在荷载等外因和结点位移共同作用下产生的附加约束中的总反力(矩)=0,列位移法典型方程。
(3)绘出单位弯矩图、荷载弯矩图,利用平衡条件求系数和自由项。
工程力学位移法课件
工程力学位移法课件
位移法是解决超静定结构最基本的计算方法,计算时与结构超静定次数关系不大,相较于力法及力矩分配法,其计算过程更加简单,计算结果更加精确,应用的范围也更加广泛,以下是小编为您整理的工程力学位移法课件相关资料,欢迎阅读!
工程力学位移法课件
位移法是结构力学中计算超静定结构(当然它还可用来计算静定结构)的另一种非常典型的方法,它是力矩分配法、分层法、反弯点法、D值法等渐进方法(专业课中使用较多)的基础,也是矩阵位移法、有限单元法的基础,也是结构力学的精华和难点所在。
与力法的'序言中所述的相同,首先必须仔细琢磨、深刻理解位移法的基本思想。
本章基本要求:
熟练掌握:位移法基本未知量和基本结构的确定、位移法典型方程的建立及其物理意义、位移法方程中的系数和自由项的物理意义及其计算、最终弯矩图的绘制。
(重点难点)
掌握利用对称性简化结构;掌握荷载作用下超静定结构的计算;掌握用直接平衡法计算超静定刚架的内力。
熟记一些常用的形常数和载常数。
会用典型方程法计算超静定结构在支座移动和温度变化时的内力。
《结构力学》第十章矩阵位移法矩阵位移法是结构力学中的一种重要分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
本文将分为四个部分来介绍矩阵位移法的基本原理和应用。
第一部分将介绍矩阵位移法的基本原理。
矩阵位移法基于结构的受力平衡方程和变形条件,建立了适用于不同类型结构的一般形式的位移函数。
通过对这些位移函数进行适当组合,可以得到一个较为简化的位移矩阵方程。
这个方程可以通过矩阵运算求解,从而得到结构的位移和应力分布。
第二部分将介绍矩阵位移法的应用。
矩阵位移法可以用于求解各种类型的结构,包括梁、柱、框架等。
具体应用时,首先需要确定结构的边界条件和受力情况,然后根据结构的几何形状和材料性质,建立相应的位移函数。
之后,将位移函数按照一定的规则组合起来,建立一个位移矩阵方程。
通过解这个方程,可以得到结构的位移和应力分布。
第三部分将介绍矩阵位移法的优点。
相比于传统的力方法,矩阵位移法具有计算简单、准确性高、适用范围广等优点。
这是因为矩阵位移法可以通过矩阵运算将结构的受力分析转化为代数运算,减少了繁琐的计算过程,并且可以应用于各种不规则结构。
第四部分将介绍矩阵位移法的局限性。
矩阵位移法虽然具有很多优点,但也有一些限制。
首先,矩阵位移法对结构的刚度矩阵的求取较为复杂,需要通过精确和谐振数法等途径进行求解。
其次,矩阵位移法不能用于解决非线性和动力问题。
总结起来,矩阵位移法是一种重要的结构力学分析方法,通过将结构的受力分析转化为矩阵运算,可以有效地求解复杂结构的位移和应力分布。
它具有计算简单、准确性高、适用范围广等优点,但也有一些局限性。
因此,在实际应用中需要根据具体情况选择合适的方法。
同时,矩阵位移法的进一步研究和发展也是一个非常重要的方向。
位移法的知识点总结一、基本原理1. 位移法的基本原理位移法是以位移为基本变量进行分析的一种结构分析方法。
它的基本原理是根据结构受力状态和边界条件,通过对结构各部分的变形进行分析,推导出结构的位移场。
根据结构力学的基本原理,结构的受力和变形是密切相关的,因此通过分析结构的位移场,可以获得结构的受力分布和变形情况,为结构的设计和分析提供重要参考。
2. 位移的重要性在结构力学中,位移是描述结构变形的基本形式之一,它直接反映了结构受力的情况。
在进行结构分析时,通常可以通过计算结构的位移场来获得结构的受力分布和变形情况。
因此,位移是结构分析的重要变量,在位移法中被广泛应用。
3. 位移法的实质位移法的实质是通过假设结构各部分的变形是线性的,即受到外力作用后,结构的变形与受力成线性关系。
这一假设是位移法能够简化结构分析的基础,使得结构分析更加方便和实用。
二、应用范围1. 适用范围位移法适用于各种类型的结构,包括梁、柱、板、桁架、壳体等。
它可以用于解决结构在受力作用下的位移和变形问题,对于复杂结构的受力分析和设计具有广泛的适用性。
2. 适用条件位移法的应用条件包括结构受力状态和边界条件的明确,结构各部分的变形可线性假设,结构受力和变形之间存在较强的相关性等。
在满足这些条件的情况下,位移法可以有效地用于解决各种结构受力和变形问题。
三、操作步骤1. 结构建模首先需要对结构进行建模,确定结构的几何形状、受力条件和边界条件等。
通过建模可以获得结构的刚度矩阵和载荷向量,为后续的分析提供基础数据。
2. 变形分析根据结构的刚度矩阵和载荷向量,可以建立结构的位移方程。
通过对位移方程进行分析,可以获得结构的位移场,揭示结构受力和变形的关系。
3. 反演求解根据结构的位移场,可以反演求解结构的受力分布和变形情况。
通过求解可以获得结构各部分的受力情况,评估结构的受力状况和安全性。
4. 结果分析最后需要对求解结果进行分析,评估结构的受力和变形情况。
第十章、矩阵位移法授课题目:第一节概述第二节单元坐标系中的单元刚度方程和单元刚度矩阵教学目的与要求:1.掌握整体刚度矩阵中的位移矩阵和结点力矩阵 2.掌握局部坐标系中刚度矩阵教学重点与难点:重点:结构的离散化,自由式杆件的单元刚度矩阵难点:无教学方法:讲授法教学手段:多媒体、板书教学措施:理论分析与实际工程相结合讲解讲授内容:第十章、矩阵位移法第一节概述结构矩阵分析方法是电子计算机进入结构力学领域而产生的一种方法。
它是以传统结构力学作为理论基础,以矩阵作为数学表述形式,以电子计算机作为计算手段,三位一体的方法。
1.结构的离散化由若干根杆件组成的结构称为杆件结构.使用矩阵位移法分析结构的第一步,是将结构“拆散”为一根根独立的杆件,这一步骤称为离散化。
为方便起见,常将杆件结构中的等截面直杆作为矩阵位移法的独立单元,这就必然导致结构中杆件的转折点、汇交点、支承点、截面突变点、自由端、材料改变点等成为连接各个单元的结点。
只要确定了杆件结构中的全部结点,结构中各结点间的所有单元也就随之确定了。
(a)(b)2。
结点位移和结点力由于矩阵位移法不再为了简化计算而忽略杆件的轴向变形,因此,对于平面刚架中的每个刚结点而言,有三个相互独立的位移分量:水平方向的线位移分量u,竖直方向的线位移分量v,和结点的转角位移分量q。
对于这三个分量,本章约定线位移与整体坐标系方向一致为正,转角以顺时针转向为正,反之为负.结点荷载是指作用于结点上的荷载.本章约定结点集中力和支反力均以与整体坐标系方向相同时为正,反之为负。
结点集中力偶和支座反力偶以顺时针转向为正,反之为负.()()N 1Q 23N 4Q 56e e i i e i i ee j j j j Ff F f M f F f F f M f ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦F F F()()123456e e i i e i i ee j j j j u v u v δδθδδδθδ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦δδδ3。