第八章位移法
- 格式:pdf
- 大小:2.19 MB
- 文档页数:17
第八章位移法本章的问题:A.什么是位移法的基本未知量?B.为什么求内力时可采用刚度的相对值,而求位移时则需采用刚度的真值?C.在力法和位移法中,各以什么方式来满足平衡条件和变形连续条件?D.位移法的基本体系和基本结构有什么不同?它们各自在位移法的计算过程中起什么作用?E.直接平衡法和典型方程法有何异同?F.力法和位移法的优缺点?G.在位移法中如何运用结构的对称性?§8-1位移法概述对图8-1所示单跨梁,象力法[例题7-4]-[例题 7-6]那样进行求解,从而可建立表8-1所示杆端内力。
需要指出的是,对于斜杆除表中所示弯矩、剪力外,还有轴力。
由位移引起的杆端内力称为“形常数”(shape constant)。
由“广义荷载”产生的杆端内力称为“载常数”(load constant),其中外荷载产生的杆端内力称为固端内力(internal force of fixed-end)。
杆端内力的符号及正、负规定见第3章。
两端固定一固一铰一固一定向图8-1 位移法基本单跨梁示意图*P。
P 。
P 有了表8-1,则图8-2 所示的两端固定单跨梁,利用形、载常数和叠加原理可得杆端内力。
例如A 端杆端弯矩为F4322122646ABAB M l EI lEI l EI l EI M ++-+=∆∆∆∆ (a ) A 端杆端剪力为图8-2单跨梁杆段位移和荷载作用AB3∆4∆2∆1∆FQ 42332213Q 612612AB AB F l EI l EI l EI l EI F ++-+=∆∆∆∆ (b )式(a )和式(b )中FAB M 和F Q AB F 为荷载引起的固端弯矩和固端剪力。
同理,也可叠加得到B 端的杆端内力BA M 和BA F Q 。
这些将杆端位移和杆端内力联系起来的式子,称为两端固定单跨梁的转角位移方程(slope-deflection equation )或刚度方程(stiffness equation )。
结构力学第8章位移法位移法是结构力学中一种常用的分析方法。
它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。
位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。
位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。
位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。
2.应用边界条件。
根据边界条件,确定结构的支座的位移和转角值。
支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。
3.构建位移方程组。
将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。
位移方程组是未知反力系数的线性方程组。
4.解位移方程组。
通过解位移方程组,求解未知反力系数。
可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。
5.求解反力和应力分布。
通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。
这些反力和应力分布可以进一步用于结构的设计和评估。
位移法的优点是适用范围广泛,适合复杂结构的分析。
它可以处理线性和非线性的结构,包括静力学和动力学的分析。
同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。
然而,位移法也存在一些限制。
首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。
其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。
此外,位移法在处理大变形和非线性结构时可能会遭遇困难。
综上所述,位移法是结构力学中一种重要的分析方法。
它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。
然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。
第8章 位移法§8-1 概述§8-2 等截面直杆的转角位移方程§8-3 位移法的基本未知量和基本结构§8-4 位移法的典型方程及计算步骤§8-5 直接由平衡条件建立位移法基本方程§8-6 对称性的应用2021-5-1212021-5-12 1§8-1 位移法的基本概念内力对于线弹性结构位移位移内力两种方法的基本区别之一,在于基本未知量的选取不同:力法是以多余未知力(支反力或内力)为基本未知量,而位移法则是以结点的独立位移(角位移或线位移)为基本未知量。
用位移法分析结构时,先将结构拆分成单个的杆件,进行杆件受力分析(建立杆件的转角位移方程);再将杆件组装成原结构,利用结点和截面平衡条件建立位移法方程,解出结点位移,再由转角位移方程求出内力。
2021-5-121一、引例1. 确定基本位移未知量图a所示两跨常刚度连续梁,抗弯刚度为EI。
忽略二杆的轴向变形,B结点不会发生线位移,而仅会产生角位移,设此角位移为Z1。
因B结点刚结两梁段于B端,从而保证两梁段在B端有相同的角位移,均为Z1。
2021-5-1212. 分列各组成杆的转角位移方程AB和BC二杆在B端具有相同的角位移和零线位移后,因此可将二杆在B端处分开,单独分析。
2021-5-1211)AB杆2)BC杆2021-5-1213. 通过B结点的平衡条件求出Z1由B结点的平衡可得2021-5-1214. 将Z1代回转角位移方程,求出各杆端弯矩2021-5-1212021-5-121二、其他示例(a) 若略去受弯直杆的轴向变形,并不计由于弯曲而引起杆段两端的接近,则可认为三杆长度不变,因而结点A没有线位移,而只有角位移。
对整个结构来说,求解的关键就是如何确定基本未知量q A的值。
2021-5-1212021-5-121三、位移法计算原理思路小结1. 把结构在非支座结点处拆开,将各杆视为相应的单跨超静定梁。