第十三章 达朗贝尔原理.
- 格式:ppt
- 大小:1018.00 KB
- 文档页数:17
aIN第十三章 达朗贝尔原理[习题13-1] 一卡车运载质量为1000kg 的货物以速度h km v /54=行驶。
设刹车时货车作匀减速运动,货物与板间的摩擦因数3.0=s f 。
试求使货物既不倾拿倒又不滑动的刹车时间。
解:以货物为研究对象,其受力如图所示。
图中, 虚加惯性力之后,重物在形式上“平衡”。
货物不滑动的条件是:即货物不滑动的条件是:)(1.5s t ≥…………(1) 货物不倾倒(不向前倾倒)的条件是:)(06.38.93030s g t ==≥…………(2) (1)(2)的通解是)(1.5s t ≥。
即,使货物既不倾拿倒又不滑动的刹车时间是)(1.5s t ≥。
[习题13-2] 放在光滑斜面上的物体A ,质量kg m A 40=,置于A 上的物体B ,质量kg m B 15=;力kN F 500=,其作用线平行于斜面。
为使A 、B 两物体不发生相对滑动,试求它们之间的静摩擦因素s f 的最小值。
解:以A 、B 构成的质点和系为研究对象,其受力如图所示。
在质心加上惯性力后,在形式上构成平面一般“平衡”力系。
以B 为研究对象,其受力如图所示。
由达朗伯原理得:305.05.0191.48.9866.0191.430sin 30cos 00=⨯+⨯=+≥a g a f s ,即: [习题13-3] 匀质杆AB 的质量kg m 4=,置于光滑的水平面上。
在杆的B 端作用一水平推力N F 60=,使杆AB 沿F 力方向作直线平动。
试求AB 杆的加速度a 和角θ的值。
解:以AB 杆为研究对象,其受力与运动分析如图所示。
由达朗伯原理得:[习题13-4] 重为1P 的重物A ,沿光滑斜面D 下降,同时借一绕过滑轮C 的绳子而使重为2P 的重物B 运动,斜面与水平成θ角。
试求斜面D 给凸出部分E 的水平压力。
解:以A 为研究对象,其受力与运动分析如图所示。
由达朗伯原理得:EN D0sin 11=--a gP T P B θ………(1) 以B 为研究对象,其受力与运动分析如图所示。
达朗贝尔原理名词解释引言达朗贝尔原理是热传递领域中的基础原理之一。
它描述了热量是如何通过辐射传递的过程,深化了我们对热辐射现象的理解。
本文将对达朗贝尔原理进行详细解释,包括其定义、物理背景、数学表达和应用。
定义达朗贝尔原理是指在热平衡状态下,两个物体的辐射热流密度与它们的辐射特性(如温度、表面特性等)有关。
根据该原理,两个物体之间的净辐射热流密度正比于它们的体温差的四次方,并与它们的表面性质有关。
物理背景达朗贝尔原理建立在基于物体的辐射行为的基础上。
物体发出的热辐射能够传递能量,并且辐射的强度与物体的温度有关。
辐射热量的传递主要通过光子的辐射和吸收来实现,而达朗贝尔原理描述了这一现象的规律。
数学表达达朗贝尔原理的数学表达式为:q=σ⋅A⋅(T14−T24)其中,q表示两个物体之间的净辐射热流密度,σ是斯特藩-玻尔兹曼常数,A是两个物体之间的表面积,T1和T2分别是两个物体的绝对温度。
辐射特性达朗贝尔原理中涉及到物体的表面性质,这些性质对辐射热流密度产生影响。
以下是一些影响辐射特性的因素: 1. 反射率:物体的反射率决定了其对外界辐射的反射程度,反射率越高,辐射热流密度越低。
2. 吸收率:物体的吸收率决定了其对外界辐射的吸收程度,吸收率越高,辐射热流密度越高。
3. 发射率:物体的发射率决定了其自身的辐射能力,发射率越高,辐射热流密度越大。
达朗贝尔原理的应用达朗贝尔原理在很多领域都有重要的应用,下面列举了一些应用案例: 1. 热辐射计算:在热传递计算中,达朗贝尔原理通常被用于计算不同温度物体之间的热辐射传递。
2. 太阳能利用:太阳能的收集和利用依赖于太阳辐射能量的捕获,达朗贝尔原理可用于描述太阳辐射的传递和捕获过程。
3. 红外热成像:红外热成像技术通过捕捉物体的红外辐射来显示物体的温度分布情况,达朗贝尔原理为该技术的基础原理。
4. 空间热传递:在航天器和卫星中,热传递对于电子设备和舱内环境的控制非常重要,达朗贝尔原理可用于优化热传递效果。
习 题13-1 如图13-16所示,一飞机以匀加速度a 沿与水平线成仰角b 的方向作直线运动。
已知装在飞机上的单摆的悬线与铅垂线所成的偏角为f ,摆锤的质量为m 。
试求此时飞机的加速度a 和悬线中的张力F T 。
图13-16ma F =I 0cos sin 0I T =-=∑βϕF F F xϕβsin cos IT F F =0sin cos 0I T =--=∑mg F F F y βϕ0sin cos sin cos I I =--mg F F βϕϕβ0sin )cos(I=-+mg F ϕβϕ mgma=+ϕβϕsin )cos()cos(sin βϕϕ+=g amg maF F )cos(cos sin cos sin cos I T βϕβϕβϕβ+===13-2 球磨机的简图如图13-17所示,滚筒作匀速转动,内装钢球及被粉碎的原料,当钢球随滚筒转到某一角度f 时,将脱离筒壁作抛射运动,由于钢球的撞击,从而破碎与研磨原料。
已知钢球脱离筒壁的最佳位置'4054︒=ϕ,滚筒半径R =0.6m 。
试求使钢球在'4054︒=ϕ处脱离滚筒的滚筒转速。
图13-172n I ωmR ma F == 0cos 0I N n =-+=∑F mg F F ϕ)cos (cos cos 22I N ϕωϕωϕg R m mg mR mg F F -=-=-=令0N =F0cos 2=-ϕωg RR g ϕωcos =min r/35.296.00454cos 8.9π30cos π30π30='︒⨯===R g n ϕω13-3 一质量为m 的物块A 放在匀速转动的水平转台上,如图13-18所示。
已知物块的重心距转轴的距离为r ,物块与台面之间的静摩擦因数为s μ。
试求物块不致因转台旋转而滑出时水平转台的最大转速。
图13-182n I ωmr ma F == 00N =-=∑mg F F ymg F =N00I =-=∑F F F x0N s 2=-F mr μω 0s 2=-mg mr μωrgs μω=rgn s max π30π30μω==13-4 离心调速器的主轴以匀角速度w 转动,如图13-19所示。
达朗贝尔原理—搜狗百科达朗贝尔原理d'Alembert principle研究有约束的质点系动力学问题的一个原理。
由J.le R.达朗贝尔于1743年提出而得名。
对于质点系内任一个质点,此原理的表达式为F +N-ma=0,式中F为作用于质量为m的某一质点上的主动力,N 为质点系作用于质点的约束力,a为该质点的加速度。
从形式上看,上式与从牛顿运动方程F+N=ma中把ma移项所得结果相同。
于是,后人把-ma 看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。
利用达朗贝尔原理,可将质点系动力学问题化为静力学问题来解决,这种动静法的观点对力学的发展产生了积极的影响。
d'Alembert principle作用于一个物体的外力与动力的反作用之和等于零。
即F+(-Ma)+N=0 (1)其中M,a为物体质量和加速度,F为物体受到的直接外力,N为物体受到的约束反作用力(也是外力)。
在没有约束时,相应的N=0,(1)式成为F-Ma=0 (2)与牛顿的运动第二定律一致,只是进行了移项。
但这是概念上的变化,有下列重要意义:①用(2)式表达的是平衡关系,可以把动力学问题转化为静力学问题来处理。
②在有约束情况下,用(1)式非常有利;它与虚功原理结合后,可列出动力学的普遍方程。
③用于刚体的平面运动时,可利用平面静力学方法,使问题简化。
实际上,达朗贝尔原理还为不久后创立的分析力学打下了基础。
研究有约束的质点系动力学问题的一个原理。
由J.le R.达朗贝尔于1743年提出而得名。
对于质点系内任一个质点,此原理的表达式为F+N-ma=0,式中F为作用于质量为m的某一质点上的主动力,N 为质点系作用于质点的约束力,a为该质点的加速度。
从形式上看,上式与从牛顿运动方程F+N=ma中把ma移项所得结果相同。
于是,后人把-ma 看作惯性力而把达朗贝尔原理表述为:在质点受力运动的任何时刻,作用于质点的主动力、约束力和惯性力互相平衡。