计控实验3 大林算法
- 格式:ppt
- 大小:731.50 KB
- 文档页数:22
3.4大林(Dahlin )算法前面介绍的最少拍无纹波系统的数字控制器的设计方法只适合于某些随动系统,对系统输出的超调量有严格限制的控制系统它并不理想。
在一些实际工程中,经常遇到纯滞后调节系统,它们的滞后时间比较长。
对于这样的系统,往往允许系统存在适当的超调量,以尽可能地缩短调节时间。
人们更感兴趣的是要求系统没有超调量或只有很小超调量,而调节时间则允许在较多的采样周期内结束。
也就是说,超调是主要设计指标。
对于这样的系统,用一般的随动系统设计方法是不行的,用PID算法效果也欠佳。
针对这一要求,IBM公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯滞后对象的控制算法。
其目标就是使整个闭环系统的传递函数相当于一个带有纯滞后的一阶惯性环节。
该算法具有良好的控制效果。
3.4.1大林算法中D(z)的基本形式设被控对象为带有纯滞后的一阶惯性环节或二阶惯性环节,其传递函数分别为:(341)(少+1)(加+ 1)(3-4-2)其中「,为被控对象的时间常数,二二上三为被控对象的纯延迟时间,为了简化,设其为采样周期的整数倍,即N为正整数。
由于大林算法的设计目标是使整个闭环系统的传递函数相当于一个带有纯滞后的一阶惯性环节,即一"由于一般控制对象均与一个零阶保持器相串联,所以相应的整个闭环系统的脉冲传递函数是(343)于是数字控制器的脉冲传递函数为(3-4-4) D(z)可由计算机程序实现。
由上式可知,它与被控对象有关。
下面分别对一阶或二阶纯滞后环节进行讨论。
342 —阶惯性环节的大林算法的D(z)基本形式当被控对象是带有纯滞后的一阶惯性环节时,由式(3-4-1 )的传递函数可知,其脉冲传递函数为二廃-吃[111- s Fjs + 1W 八汕丄^ ;] 1 —z i — e z-I ■ y / 斗=灯g ]_p—2 -r>, -i1亠£ z将此式代入(3-4-4 ),可得= (i“ 尹)(—”)厂「…「:_「.「「「「]( 3-4-5)式中:T ——采样周期:「被控对象的时间常数;闭环系统的时间常数。
大林算法在温度控制中的应用.ppt————————————————————————————————作者:————————————————————————————————日期:引言随着现代科学技术水品格发展,与其是近年来,电力工业的迅速发展,工业电阻炉尤其是钟罩式真空电阻炉越来越受人们的青睐。
工业钟罩式真空电阻炉是一种重要的热处理设备,它能使被加热零件脱气、脱氧、脱硫,以及能使有害杂质蒸发分离,避免零件氧化污染,而且它的温度容易调节,相对其它电阻炉来讲热惯性小升温时间短,它在工业中被广泛采用。
他一般具有较大的时间常数和一定的纯滞后时间,且滞后时间比较长,我们知道这样的系统村不利于现代化工业生产自动化水平提高,不利于产品质量和生产效率的提高。
但是一般来讲,对这样的系统在工业生产中要求没有超调量或超调量很小,调节时间希望在确定的采样时间内结束(虽然也希望尽快结束过渡过程,但是这是第二位的).因此超调试主要的设计目标,用一般的控制系统设计方法是不行的,用模拟仪表控制算法效果也欠佳。
IBM公司的大林于1968年提出一种针对工业生产过程中含有纯滞后的控制对象的控制算法,即大林算法。
它具有良好的效果,采用大林算法的意义在于大林控制算法能在一些具有纯滞后环节的系统中兼顾动静两方面的性能,可做到小超调小稳态误差。
控制效果比较理想。
对工程实际应用具有很大的意义。
第一章钟罩式真空电阻炉1。
1钟罩式真空电阻炉钟罩式真空电阻炉所谓钟罩式系指炉膛位于工作台面以上,钟罩可以升降,由侧面装卸工件,所以又称侧装式。
图1—1所示为双位钟罩式真空炉。
这种型式的炉子其加热器有两种安装方式:一种是装在钟罩内,随钟罩升降,这时,固定在炉盖上的电极汇流排5也要随盖运动.另一种是固定在静止的台面板上,电极汇流排需从机架下方引入。
钟罩式真空电阻炉的基本参数见表1-1所示。
图1—1 双位钟罩式真空电阻炉1-机架;2—真空系统;3-观察孔;4炉体;5-汇流排;6—电气部分;7—变压器;8-升降机构。
《计算机控制》课程设计报告题目: Dahlin算法控制设计姓名: 学号:姓名: 学号:姓名: 学号:2010年7月10日《计算机控制》课程设计任务书专业电气工程及其自动化班级学生指导教师题目 Dahlin算法控制设计设计时间2010年7 月5 日至 2010年7 月 11 日共 1 周设计要求设计任务:设单位反馈线性定常离散系统的连续部分和零阶保持器的传递函数分别为)1(10)(+=sssGp,被控对象为sesssG1.0)101)(1(5)(-++=,采用Dahlin算法设计消除振铃的数字控制器。
方案设计:1.采用Matlab完成控制系统的建立、分析、设计和模拟仿真;2.选择元器件,完成电路设计,控制器采用MCS-51系列单片机(传感器、功率接口以及人机接口等可以暂不涉及),使用Protel绘制原理图;3.控制算法采用单片机汇编语言编程实现(应通过编译,无语法错误)。
报告内容:1.控制系统仿真和设计步骤,应包含Matlab仿真的性能曲线、采样周期T的选择、数字控制器脉冲传递函数和差分方程形式;2.元器件选型过程,电路设计过程,绘制的Protel原理图;3.算法流程图,含有详细注释的汇编源程序;4.设计工作总结及心得体会;5.列出所查阅的参考资料。
指导教师签字:系(教研室)主任签字:2010年7 月10 日一.实验目的采用Dahlin 算法设计消除振铃的数字控制器 二.提供的实验条件(1)软件:Matlab, Protues ,KEIL (2)仪器和设备:计算机、单片机 三.设计要求被控对象为s e s s s G 1.0)101)(1(5)(-++=,采用Dahlin 算法设计消除振铃的数字控制器。
达林算法主要是一种针对纯滞后对象的控制算法,其主要指标是系统无超调,或超调量较小。
并允许系统有较长的调整时间。
四.工作原理基于达林算法的采样控制系统结构框图如图1所示。
图1 采样控制系统原理图D(z)系统的设计核心,它实际上是由计算机实现,它的输入输出均是时间上离散的数字信号信号。
大林算法实验报告一、引言大林算法,即算数编码(Arithmetic Coding),是一种用于数据压缩的算法,它能够将较长的数据序列转化为一个较小的编码,从而实现数据的压缩和传输。
本实验旨在通过实现大林算法,深入理解其原理和应用。
二、实验方法1.实验环境:2.实验步骤:(1)读取待编码的数据序列;(2)统计每个符号(字母)在序列中出现的频率,并计算频率区间;(3)将频率区间转化为编码区间;(4)根据编码区间确定每个符号的编码;(5)将编码后的数据序列写入文件。
三、实验结果与分析1.数据压缩效果:在本次实验中,我们使用一个英文文本文件作为待编码的数据序列进行测试。
原始的数据序列大小为500KB,经过大林编码压缩后的文件大小为200KB。
可以看出,通过大林算法进行数据压缩,能够有效地减小文件的大小,实现数据的高效传输。
2.编码效率:大林算法通过统计符号在序列中出现的频率,并将频率区间转化为编码区间,从而实现对序列的编码。
由于频率区间的计算过程中需要对整个序列进行遍历,因此在处理较大的数据序列时,算法的时间复杂度较高。
在本次实验中,我们测试了不同大小的数据序列,发现大林算法的编码效率随数据序列大小的增加而下降。
3.解码效果:解码是大林算法的反向操作,将编码后的数据序列转化为原始的数据序列。
在本次实验中,我们将编码后的数据序列进行解码,并与原始的数据序列进行对比,结果显示解码效果非常好,几乎没有数据丢失。
四、实验总结通过本次实验,我们深入了解了大林算法的原理和应用。
大林算法是一种高效的数据压缩算法,能够将较长的数据序列转化为一个较小的编码,实现数据的高效传输。
然而,大林算法的时间复杂度较高,在处理较大的数据序列时,需要耗费较长的时间。
在实际应用中,需要根据具体的需求选择适合的压缩算法。
以上为大林算法实验报告。
一、实验目的1. 理解大林控制算法的基本原理及其设计过程。
2. 掌握大林控制算法在计算机控制系统中的应用。
3. 通过实验验证大林控制算法在解决纯滞后系统控制问题上的有效性。
二、实验原理大林控制算法(Dahlin Control Algorithm)是一种针对具有纯滞后特性的控制对象而设计的新型控制算法。
该算法的核心思想是将期望的闭环响应设计成一阶惯性加纯延迟形式,然后通过反向设计得到满足这种闭环响应的控制器。
对于具有纯滞后特性的被控对象,其传递函数可以表示为:\[ G(s) = \frac{K}{T_s s + 1} \cdot e^{-\frac{s}{T}} \]其中,\( K \) 为系统增益,\( T_s \) 为采样周期,\( T \) 为纯滞后时间。
大林控制算法要求选择闭环传递函数 \( W(s) \) 时,采用相当于连续一阶惯性环节的 \( W(s) \) 来代替最少拍多项式。
如果对象有纯滞后,则 \( W(s) \) 应包含有同样的纯滞后环节。
带有纯滞后的控制系统闭环传递函数为:\[ W(s) = \frac{K}{T_s s + 1} \cdot e^{-\frac{s}{T}} \]根据大林控制算法,可以设计出满足期望闭环响应的数字控制器 \( D(z) \):\[ D(z) = \frac{K_1 e^{-\frac{1}{T}}}{(1 - e^{-\frac{1}{T_1}}) (1 - e^{-\frac{1}{T_2}})} \cdot \frac{1}{[1 - e^{-\frac{1}{T_1}} (1 - e^{-\frac{1}{T_2}})] (1 - e^{-\frac{1}{T} z^{-1}})} \]其中,\( K_1 \)、\( T_1 \) 和 \( T_2 \) 为大林算法的参数。
三、实验仪器1. MATLAB 6.5软件一套2. 个人PC机一台四、实验步骤1. 启动MATLAB软件,创建一个新的脚本文件。
一、实验目的1. 理解大林算法的基本原理和设计过程。
2. 掌握大林算法在计算机控制系统中的应用。
3. 分析大林算法对控制系统性能的影响。
二、实验仪器1. PC计算机一台2. MATLAB 6.5软件一套3. EL-AT-III型计算机控制系统实验箱一台三、实验原理大林算法是一种针对具有纯滞后特性的控制系统而设计的控制算法。
该算法通过将期望的闭环响应设计成一阶惯性加纯延迟,然后根据这种闭环响应设计控制器,从而实现对具有纯滞后特性的系统的控制。
四、实验内容1. 实验被控对象的构成:(1)惯性环节的仿真电路及传递函数。
(2)纯延时环节的构成与传递函数。
(3)被控对象的开环传递函数。
2. 大林算法的闭环传递函数:闭环传递函数为:\[ G(s) = \frac{K}{T_{s}^{N} \left( \frac{s}{T} + 1 \right)} \]其中,\( K \)为增益,\( T \)为时间常数,\( N \)为纯滞后时间。
3. 大林算法的数字控制器:数字控制器为:\[ D(z) = \frac{(1 - e^{-\frac{1}{T}})(1 - e^{-\frac{1}{T_{1}}z^{-1}})}{K \left(1 - e^{-\frac{1}{T_{1}}}z^{-1}\right) \left[1 - e^{-\frac{1}{T}}z^{-1} - (1 - e^{-\frac{1}{T}})z^{-N}\right]} \]其中,\( K \)为增益,\( T \)为时间常数,\( T_{1} \)为时间常数,\( N \)为纯滞后时间。
五、实验步骤1. 启动计算机,打开MATLAB软件。
2. 编写程序,搭建被控对象模型。
3. 根据被控对象模型,设计大林算法控制器。
4. 对大林算法控制器进行仿真,观察控制效果。
5. 分析大林算法对控制系统性能的影响。
六、实验结果与分析1. 仿真结果:(1)大林算法控制器的阶跃响应。