大林算法实验报告
- 格式:doc
- 大小:203.00 KB
- 文档页数:4
3.4大林(Dahlin )算法前面介绍的最少拍无纹波系统的数字控制器的设计方法只适合于某些随动系统,对系统输出的超调量有严格限制的控制系统它并不理想。
在一些实际工程中,经常遇到纯滞后调节系统,它们的滞后时间比较长。
对于这样的系统,往往允许系统存在适当的超调量,以尽可能地缩短调节时间。
人们更感兴趣的是要求系统没有超调量或只有很小超调量,而调节时间则允许在较多的采样周期内结束。
也就是说,超调是主要设计指标。
对于这样的系统,用一般的随动系统设计方法是不行的,用PID算法效果也欠佳。
针对这一要求,IBM公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯滞后对象的控制算法。
其目标就是使整个闭环系统的传递函数相当于一个带有纯滞后的一阶惯性环节。
该算法具有良好的控制效果。
3.4.1大林算法中D(z)的基本形式设被控对象为带有纯滞后的一阶惯性环节或二阶惯性环节,其传递函数分别为:(341)(少+1)(加+ 1)(3-4-2)其中「,为被控对象的时间常数,二二上三为被控对象的纯延迟时间,为了简化,设其为采样周期的整数倍,即N为正整数。
由于大林算法的设计目标是使整个闭环系统的传递函数相当于一个带有纯滞后的一阶惯性环节,即一"由于一般控制对象均与一个零阶保持器相串联,所以相应的整个闭环系统的脉冲传递函数是(343)于是数字控制器的脉冲传递函数为(3-4-4) D(z)可由计算机程序实现。
由上式可知,它与被控对象有关。
下面分别对一阶或二阶纯滞后环节进行讨论。
342 —阶惯性环节的大林算法的D(z)基本形式当被控对象是带有纯滞后的一阶惯性环节时,由式(3-4-1 )的传递函数可知,其脉冲传递函数为二廃-吃[111- s Fjs + 1W 八汕丄^ ;] 1 —z i — e z-I ■ y / 斗=灯g ]_p—2 -r>, -i1亠£ z将此式代入(3-4-4 ),可得= (i“ 尹)(—”)厂「…「:_「.「「「「]( 3-4-5)式中:T ——采样周期:「被控对象的时间常数;闭环系统的时间常数。
一、实验目的1. 理解达林算法的基本原理和设计过程。
2. 掌握如何利用达林算法解决具有纯滞后特性的控制系统问题。
3. 分析达林算法在不同纯滞后时间下的控制效果,并验证理论分析的正确性。
二、实验原理在工业生产中,许多过程对象含有纯滞后特性,这会对自动控制系统的稳定性、动态性能和适应性产生不利影响。
当纯滞后时间与对象的惯性时间常数之比超过0.5时,常规的PID控制往往难以获得良好的控制性能。
达林算法(大林算法)是一种针对具有纯滞后特性的控制系统提出的特殊控制方法,可以有效解决这一问题。
达林算法的基本思想是:在控制器的设计中,采用一个相当于连续一阶惯性环节的传递函数来代替最少拍多项式,如果对象有纯滞后,则传递函数应包含有同样的纯滞后环节。
通过调整达林算法中的参数,可以实现对具有纯滞后特性的控制系统的有效控制。
三、实验仪器1. MATLAB 6.5软件一套2. 个人PC机一台四、实验步骤1. 建模与仿真(1)根据实验要求,构建具有纯滞后特性的被控对象模型。
(2)在MATLAB中编写代码,实现达林算法的控制器设计。
(3)设置不同的纯滞后时间,进行仿真实验。
2. 参数调整与优化(1)根据仿真结果,分析达林算法在不同纯滞后时间下的控制效果。
(2)调整达林算法中的参数,优化控制效果。
(3)记录参数调整过程及结果。
3. 结果分析与讨论(1)对比分析不同纯滞后时间下,达林算法的控制效果。
(2)分析参数调整对控制效果的影响。
(3)总结达林算法在解决具有纯滞后特性的控制系统问题中的应用。
五、实验结果与分析1. 仿真结果通过仿真实验,得到了不同纯滞后时间下,达林算法的控制效果。
结果表明,随着纯滞后时间的增加,系统的稳定性逐渐降低,动态性能变差,超调和持续振荡现象加剧。
2. 参数调整在实验过程中,对达林算法中的参数进行了调整。
通过调整参数,可以改善控制效果,降低超调,缩短调节时间,提高系统的稳定性。
3. 结果讨论实验结果表明,达林算法在解决具有纯滞后特性的控制系统问题中具有较好的应用效果。
实验4 大林算法工业设计和调试实验目的:1.认识和理解大林控制算法控制大时延系统的机理和效果。
2掌握实际控制系统的大林控制算法的设计、实现和调试方法及技术。
实验内容:1.测试系统开环阶跃响应求得被控对象的近似传递函数。
2.对被控对象近似传递函数进行等效离散化。
3.基于被控对象等效离散化模型设计大林控制算法,编写出实现程序,将其嵌入到实验软件中。
4.将设计的大林算法投入运行,并经过调试获得预期控制性能。
5.记下大林控制算法的控制效果。
实验原理及说明:大林算法是针对工业生产过程中含有纯滞后的被控对象所研究的控制算法,即在调节时间允许的情况下,要求系统没有超调量或只有在允许范围中的很小的超调量。
大林算法的设计目标是设计一个数字调节器,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节的串联,并期望整个闭环系统的纯滞后时间和被控对象的滞后时间相同,并且,纯滞后时间与采样周期是整数倍关系。
实验中采样周期为1秒,k=0.15,t=22秒,t1=55秒。
.大林算法中涉及的被调对象的参数:对象是一阶惯性滞后环节,<1>对象的放大倍数Kp:Kp=△PV/△OP 阶跃比,这是开环的静态参数,与PID的放大倍数K不是一回事;<2>对象的时间常数T:干扰阶跃引起PV变化,从变化起到稳定值约2/3处的时间值,不包括滞后时间;<3>滞后时间T2:干扰阶跃开始到PV开始变化这一段滞后时间,包括:纯滞后时间及容量过渡滞后时间;2. 整个系统的闭环传递函数相当于是一阶惯性环节, 这是大林算法的期望环节:<1> 输入R(t)是回路的设定值SP;输出Y(t)是回路的PV值;<2> 此一阶惯性环节的放大倍数为1,即稳定时PV=SP; 最终偏差接近零;<3>此期望环节的纯滞后时间应等于被调节对象的纯滞后时间;<4>此期望环节的闭环时间常数:这是待定的期望参数,为不引起回路的小幅振荡,这个时间值应选用大于等于被调对象的时间常数,3. 这些参数如果不精确,将引起大林算法的不稳定性,导致调节质量变坏;。
大林算法实验报告一、引言大林算法,即算数编码(Arithmetic Coding),是一种用于数据压缩的算法,它能够将较长的数据序列转化为一个较小的编码,从而实现数据的压缩和传输。
本实验旨在通过实现大林算法,深入理解其原理和应用。
二、实验方法1.实验环境:2.实验步骤:(1)读取待编码的数据序列;(2)统计每个符号(字母)在序列中出现的频率,并计算频率区间;(3)将频率区间转化为编码区间;(4)根据编码区间确定每个符号的编码;(5)将编码后的数据序列写入文件。
三、实验结果与分析1.数据压缩效果:在本次实验中,我们使用一个英文文本文件作为待编码的数据序列进行测试。
原始的数据序列大小为500KB,经过大林编码压缩后的文件大小为200KB。
可以看出,通过大林算法进行数据压缩,能够有效地减小文件的大小,实现数据的高效传输。
2.编码效率:大林算法通过统计符号在序列中出现的频率,并将频率区间转化为编码区间,从而实现对序列的编码。
由于频率区间的计算过程中需要对整个序列进行遍历,因此在处理较大的数据序列时,算法的时间复杂度较高。
在本次实验中,我们测试了不同大小的数据序列,发现大林算法的编码效率随数据序列大小的增加而下降。
3.解码效果:解码是大林算法的反向操作,将编码后的数据序列转化为原始的数据序列。
在本次实验中,我们将编码后的数据序列进行解码,并与原始的数据序列进行对比,结果显示解码效果非常好,几乎没有数据丢失。
四、实验总结通过本次实验,我们深入了解了大林算法的原理和应用。
大林算法是一种高效的数据压缩算法,能够将较长的数据序列转化为一个较小的编码,实现数据的高效传输。
然而,大林算法的时间复杂度较高,在处理较大的数据序列时,需要耗费较长的时间。
在实际应用中,需要根据具体的需求选择适合的压缩算法。
以上为大林算法实验报告。
大林算法实验报告 一、实验目的1、掌握大林控制算法的基本概念和实现方法;2、进一步熟悉MATLAB 的使用方法;3、掌握在MA TLAB 下大林算法控制器的调试方法;4、观察振铃现象,并且尝试消除振铃现象二、实验原理1.大林算法的原理及推导大林算法是IBM 公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯滞后对象的控制算法。
其目标就是使整个闭环系统的传递函数 相当于一个带有纯滞后的一阶惯性环节。
该算法具有良好的控制效果。
大林控制算法的设计目标是使整个闭环系统所期望的传递函数φ(s ) 相当于一个延迟环节和一个惯性环节相串联,即:整个闭环系统的纯滞后时间和被控对象G 0(s )的纯滞后时间τ相同。
闭环系统的时间常数为T τ ,纯滞后时间τ与采样周期T 有整数倍关系, τ=NT 。
其控制器形式的推导的思路是用近似方法得到系统的闭环脉冲传递函数,然后再由被控系统的脉冲传递函数,反推系统控制器的脉冲传递函数。
由大林控制算法的设计目标,可知整个闭环系统的脉冲传递函数应 当是零阶保持器与理想的φ(s )串联之后的Z 变换,即φ(z )如下:对于被控对象为带有纯滞后的一阶惯性环节即:其与零阶保持器相串联的的脉冲传递函数为:1()1ss eT s ττφ-=+1/1()1(1)()=()11T s ττT/T s NT T -Y z e ee z z Z z R z s T s ezττφ------⎡⎤--==⋅=⋅⎢⎥+-⎣⎦011()11s NTs Ke KeG s T s T sτ--==++11/1/1111()11T T Ts sN T T eKe eG z Z Kz s T s ezτ-------⎡⎤--=⋅=⎢⎥+-⎣⎦于是相应的控制器形式为:11111(1)(1)()(1)1(1)T T T T T T T T N e e z D z K e e z e z τττ-----------=⎡⎤----⎣⎦2.振铃现象及其消除按大林算法设计的控制器可能会出现一种振铃现象,即数字控制器的输出以二分之一的采样频率大幅度衰减振荡,会造成执行机构的磨损. 在有交互作用的多参数控制系统中,振铃现象还有可能影响到系统的稳 定性。
一、实验目的1. 理解大林控制算法的基本原理及其设计过程。
2. 掌握大林控制算法在计算机控制系统中的应用。
3. 通过实验验证大林控制算法在解决纯滞后系统控制问题上的有效性。
二、实验原理大林控制算法(Dahlin Control Algorithm)是一种针对具有纯滞后特性的控制对象而设计的新型控制算法。
该算法的核心思想是将期望的闭环响应设计成一阶惯性加纯延迟形式,然后通过反向设计得到满足这种闭环响应的控制器。
对于具有纯滞后特性的被控对象,其传递函数可以表示为:\[ G(s) = \frac{K}{T_s s + 1} \cdot e^{-\frac{s}{T}} \]其中,\( K \) 为系统增益,\( T_s \) 为采样周期,\( T \) 为纯滞后时间。
大林控制算法要求选择闭环传递函数 \( W(s) \) 时,采用相当于连续一阶惯性环节的 \( W(s) \) 来代替最少拍多项式。
如果对象有纯滞后,则 \( W(s) \) 应包含有同样的纯滞后环节。
带有纯滞后的控制系统闭环传递函数为:\[ W(s) = \frac{K}{T_s s + 1} \cdot e^{-\frac{s}{T}} \]根据大林控制算法,可以设计出满足期望闭环响应的数字控制器 \( D(z) \):\[ D(z) = \frac{K_1 e^{-\frac{1}{T}}}{(1 - e^{-\frac{1}{T_1}}) (1 - e^{-\frac{1}{T_2}})} \cdot \frac{1}{[1 - e^{-\frac{1}{T_1}} (1 - e^{-\frac{1}{T_2}})] (1 - e^{-\frac{1}{T} z^{-1}})} \]其中,\( K_1 \)、\( T_1 \) 和 \( T_2 \) 为大林算法的参数。
三、实验仪器1. MATLAB 6.5软件一套2. 个人PC机一台四、实验步骤1. 启动MATLAB软件,创建一个新的脚本文件。
一、实验目的1. 理解大林算法的基本原理和设计过程。
2. 掌握大林算法在计算机控制系统中的应用。
3. 分析大林算法对控制系统性能的影响。
二、实验仪器1. PC计算机一台2. MATLAB 6.5软件一套3. EL-AT-III型计算机控制系统实验箱一台三、实验原理大林算法是一种针对具有纯滞后特性的控制系统而设计的控制算法。
该算法通过将期望的闭环响应设计成一阶惯性加纯延迟,然后根据这种闭环响应设计控制器,从而实现对具有纯滞后特性的系统的控制。
四、实验内容1. 实验被控对象的构成:(1)惯性环节的仿真电路及传递函数。
(2)纯延时环节的构成与传递函数。
(3)被控对象的开环传递函数。
2. 大林算法的闭环传递函数:闭环传递函数为:\[ G(s) = \frac{K}{T_{s}^{N} \left( \frac{s}{T} + 1 \right)} \]其中,\( K \)为增益,\( T \)为时间常数,\( N \)为纯滞后时间。
3. 大林算法的数字控制器:数字控制器为:\[ D(z) = \frac{(1 - e^{-\frac{1}{T}})(1 - e^{-\frac{1}{T_{1}}z^{-1}})}{K \left(1 - e^{-\frac{1}{T_{1}}}z^{-1}\right) \left[1 - e^{-\frac{1}{T}}z^{-1} - (1 - e^{-\frac{1}{T}})z^{-N}\right]} \]其中,\( K \)为增益,\( T \)为时间常数,\( T_{1} \)为时间常数,\( N \)为纯滞后时间。
五、实验步骤1. 启动计算机,打开MATLAB软件。
2. 编写程序,搭建被控对象模型。
3. 根据被控对象模型,设计大林算法控制器。
4. 对大林算法控制器进行仿真,观察控制效果。
5. 分析大林算法对控制系统性能的影响。
六、实验结果与分析1. 仿真结果:(1)大林算法控制器的阶跃响应。
实验二 大林算法实验1. 实验目的(1)理解大林算法的基本原理。
(2)掌握大林算法的设计过程。
2. 实验仪器(1) MATLAB 6.5软件 一套(2) 个人PC 机 一台3. 实验原理在许多控制系统中,特别是过程控制系统中,由于物料能量的传递或能量物质的转换,使系统小的被控制量往往具有纯滞后特性,由自动控制理论可知,滞后特性的存在对自动控制系统是极其不利的,它使系统中控制决策的适应性降低甚至失效,造成控制系统的稳定性下降或者根本不能稳定。
在工业生产中,大多数过程对象含有较大的纯滞后特性。
被控对象的纯滞后时间τ使系统的稳定性降低,动态性能变坏,易引起超调和持续振荡。
对象的纯滞后特性给控制器的设计带来困难。
一般地,当对象的纯滞后时间τ与对象的惯性时间常数m T 之比超过0.5时,采用常规的PID 控制很难获得良好的控制性能。
因此,具有纯滞后特性的对象属于比较难以控制的一类对象,对其控制需采用特殊处理方法,即用大林算法可解决此问题。
大林算法要求在选择闭环Z 传递函数W(Z)时,采用相当于连续一阶惯性环节的W(Z)来代替最少拍多项式,如果对象有纯滞后,则W(Z)应包含有同样的纯滞后环节(闭环控制系统的纯滞后时间等于被控对象的纯滞后时间)。
带有纯滞后的控制系统如图1所示: ZOH D(Z)r (t)e (t)u (k)y (t)G 0(S)G(Z)e (k)E(Z)U(Z)Y(Z)图1 带有纯滞后的控制系统被控对象传递函数为:s e S S G 76.0014.01)(-+= 目标传递函数为:s T s e s W s5.0,115.0)(76.0=+=- 大林算法所设计的控制器为:)(1)(1)()(z G z W z W z D -=, 其中)]([)()],([)(s W Z z W s G Z z G ==对于大林算法控制器D(Z),计算机输入为E (Z ),输出为U (Z ),有:33221133221101)()()(------++++++==Z P Z P ZP Z K Z K Z K K Z E Z U Z D将D (Z )式写成差分方程,则有:3322113221103---------+++=K K K K K K K K U P U P U P E K E K E K E K U 。
大林算法实验报告 一、实验目的
1、掌握大林控制算法的基本概念和实现方法;
2、进一步熟悉MATLAB 的使用方法;
3、掌握在MATLAB 下大林算法控制器的调试方法;
4、观察振铃现象,并且尝试消除振铃现象
二、实验原理
1.大林算法的原理及推导
大林算法是IBM 公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯滞后对象的控制算法。
其目标就是使整个闭环系统的传递函数 相当于一个带有纯滞后的一阶惯性环节。
该算法具有良好的控制效果。
大林控制算法的设计目标是使整个闭环系统所期望的传递函数φ(s ) 相当于一个延迟环节和一个惯性环节相串联,即:
整个闭环系统的纯滞后时间和被控对象G 0(s )的纯滞后时间τ相同。
闭环系统的时间常数为T τ ,纯滞后时间τ与采样周期T 有整数倍关系, τ=NT 。
其控制器形式的推导的思路是用近似方法得到系统的闭环脉冲传递函数,然后再由被控系统的脉冲传递函数,反推系统控制器的脉冲传递函数。
由大林控制算法的设计目标,可知整个闭环系统的脉冲传递函数应 当是零阶保持器与理想的φ(s )串联之后的Z 变换,即φ(z )如下:
对于被控对象为带有纯滞后的一阶惯性环节即:
其与零阶保持器相串联的的脉冲传递函数为:
于是相应的控制器形式为:
1
()1
s
s e
T s ττ
φ-=+1
/1
()
1(1)()=()11T s ττ
T/T s N
T T -Y z e e
e z z Z z R z s T s e z ττ
φ------⎡⎤--==⋅=⋅
⎢
⎥+-⎣⎦
011()11s NTs Ke Ke
G s T s T s
τ--==
++11/1/1111()11T T Ts s
N T T e
Ke e
G z Z Kz s T s e
z
τ-------⎡⎤--=⋅=⎢
⎥+-⎣⎦
1
11
11
(1)(1)
()(1)1(1)T T T T T T T T N e e z D z K e e z e z τττ-----------=⎡⎤----⎣⎦
2.振铃现象及其消除
按大林算法设计的控制器可能会出现一种振铃现象,即数字控制器
的输出以二分之一的采样频率大幅度衰减振荡,会造成执行机构的磨损。
在有交互作用的多参数控制系统中,振铃现象还有可能影响到系统的稳 定性。
衡量振铃现象的强烈程度的量是振铃幅度RA (Ringing Amplitude)。
它的定义是:控制器在单位阶跃输入作用下,第零次输出幅度与第一次 输出幅度之差值。
当被控对象为纯滞后的一阶惯性环节时,数字控制器D (z )为:
11111
(1)(1)
()(1)1(1)T T T T T T T T N e e z D z K e e z e z τττ-----------=⎡⎤----⎣⎦
由此可以得到振铃幅度为:
于是,如果选择T τ≥T 1,则RA ≤0,无振铃现象;如果选择T τ≤T 1, 则有振铃现象。
由此可见,当系统的时间常数T τ大于或者等于被控对象的 时间常数T 1时,即可消除振铃现象。
三、实验内容
已知某过程对象的传递函数为:
期望的闭环系统时间常数 ,采样周期 。
要求:
(1)适用大林算法设计数字控制器;
(2)判断有无振铃现象,若有则修改控制器消除之,仿真并分析系统在单位阶跃响应下的输出结果;
(3)利用PID 控制器控制该对象,使得系统在单位阶跃信号下的响应满足超调量不超过20%,衰减比为4:1,调节时间不超过4s ;
(4)分析以上两种方法的优缺点。
四、实验过程
(1)大林算法设计数字控制器
11////()()T T T T T T T T RA e e e e ττ
----=---=-16.03)(5.0+=
-s e s G s
s T 25.00=s T 5.0=
已知:
K=3 T1= N=1 将其带入:
111
11
(1)(1)()(1)1(1)T T T T T T T T T T N e e z D z K e e z e z τ
ττ-----------=⎡⎤----⎣⎦
可以得到D (z )的相关表达式。
并用MATLAB 模拟如下:
得到图像如下
s T 25.00=s T 5.0=
(2)无振铃现象
(3)PID算法设计如下:
得取PID值分别为:
P= I= D=
得图像:
(4)第一种方法在设计过程中需要进行一定量的计算,设计的过程较复杂,但是能更快的达到控制所需的条件。
第二种方法设计简单,但是实验过程较复杂,需多次尝试。