无机材料的热学性能-第1讲
- 格式:ppt
- 大小:4.41 MB
- 文档页数:62
《材料的理俊能》第一章材料的力学性能1- 1 一圆杆的直径为2 • 5 mmx 长度为2 5 cm 并受到450 0 N 的轴向拉力,若直 径拉细至2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、 名义应力和名义应变,并比较讨论这些计算结果。
解:F 4500真应力帀=—= ---------- ---- -7- = 995 (MPa)A 4.524 xlO -6I A 9 52真应变= In 丄=In ―- = In ' = 0.0816l 0 A 2.4' F 4500名义应力b =——=——: --------- =917(MPa)A) 4.909 xlO"6名义应变 £ = — = ^-\ = 0.0851/o A由计算结果可知:真应力大于名义应力,真应变小于名义应变。
1・5—陶瓷含体积百分比为95%的AMA (E 二38 0 GPa)和5 %的玻璃相(E 二 34 GP0试计算其上限和下限弾性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弾性模量。
解:令 Ei=3 8 0GPa, E :=8 4GPa, Vx^O.95, V 2=0. 0 5。
则有上限弹性模量 E H =EM+ E 2V 2 =380X 0.95 +84x 0.05 = 365.2{GPa) = 323・l(GPa) 当该陶瓷含有5%的气孔时,将P 二0・05代入经验计算公式E=E 0 (1-1. 9P +0.9P 2)可得,其上.下限弹性模量分别变为331.3 GP&和293. 1 GPa o下限弹性模量£厶=世+哎]38084此拉力下的法向应力为 b J" 7小)」竺6(尸=]12% 1 o'(內)=112(MPo)0.00152^/COS 60°1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t =0, t =oo fU t = r 时的纵坐标表达式。
材料物理性能典型教案吴其胜蔡安兰杨亚群材料工程学院2007年7月2 材料的热学性能(计划学时:6学时)要求:了解、掌握点阵振动和各项热性能的机理,影响各热性能的主要因素,熟练掌握陶瓷材料的热性质,加强理论与实际相联系。
重点:热振动理论,热膨胀,热传导,抗热震性。
难点:热传导、抗热震性。
本章思考题:1、何为“声频支振动”、“光频支振动”?2、关于晶态固体热容的经验定律(杜隆-珀替定律、柯普定律、德拜T3定律)?3、固体材料的热膨胀机理?4、解释部分多晶体或复合材料的热膨胀系数滞后现象。
5、固体热导率的普遍形式?声子平均自由程受哪些因素影响从而影响热导率?6、影响材料热导率的因素?7、晶体和非晶体的导热系数随温度变化规律有何差异?产生该差异的原因(画出λ-T 图)?8、写出R 、R/、R//的表达式及它们的含义。
9、写出两个抗热冲击损伤因子的表达式及它们的作用。
材料和制品往往应用于不同的温度环境中,在很多使用场合还对它们的热性能有着特定的要求。
热学性能也是材料重要的基本性质之一。
2.1 热学性能的物理基础材料的各种热性能均与晶格热振动有关。
晶格热振动:是指晶体点阵中的质点(原子或离子)总是围绕着平衡位置作微小振动。
晶格热振动是三维的,可以根据空间力系将其分解成三个方向的线性振动。
以x n 、x n +1、x n -1表示某个质点及其相邻质点在x 方向的位移,如果只考虑第n -1、第n +1个质点对它的作用,而略去更远的质点的影响,则根据牛顿第二定律,该质点的运动方程为()n n n n x x x dtx d m 21122-+=-+β (2-1) 式中:m —质点的质量;β—微观弹性模量,是和质点间作用力性质有关的常数。
质点间作用力愈大,β值愈大,相应的振动频率愈高。
对于每一个质点,β不同,即每个质点在热振动时都有一定的频率。
材料内有N 个质点,就有N 个频率的振动组合在一起。
式(2-1)称为简谐振动方程。
解:&) 4.909x10 《材料物理馅能》第一章材料的力学性能1.1 一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。
F 4500 、—= ---------------- =995( MPa)A 4.524x1()2真应变勺=In上=In色=In 7 = 0.0816 1° A 2.42名义应力a = — = —- =917 (MP。
) —o名义应变 ^ = - = —-1=0.0851/。
A山计算结果町知:真应力大于名义应力,真应变小于名义应变。
1- 5 —陶瓷含体积百分比为95%的A12O3(E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。
若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。
解:令Ei=380GPa,E2=84GPa,Vi=0.95,V2=0.05。
则有上限弹性模量=E}V{ +E2V2 = 380 X 0.95 +84 X 0.05 =365.2(GF Q)下限弹性模量曲=(4 +生尸=(性 + 些广=323.1(。
「。
)E] E2 380 84当该陶瓷含有5%的气孔时,将P=0. 05代入经验计算公式E=E o(l-1.9P+O. 9P2)可得,其上、下限弹性模量分别变为331.3 GPa和293. 1 GPa。
1-11 一圆柱形MO]晶体受轴向拉力F,若其临界抗剪强度弓为135 MPa,求沿图中所示之方向的滑移系统产生滑移时需要的最小拉力值,并求滑移面的法向应力。
解:由题意得图示方向滑移系统的剪切强度可表示为:Feos 53。
T = -------- ;— x cos 600.00152〃r f xO.00152^- 2nFmin = ---------------- = 3.17 x 103 (N)m,n cos 53° X cos 60°此拉力下的法向应力为:(7 =317xI0_xcos60° = L12xl08(P€/) = 112(A/P6Z) 0.00152^/cos 60°0.0 应变蠕变曲线 =25.62 〜28.64GF“ 1-6试分别画出应力松弛利应变蠕变与时间的关系示意图,并算出t 二0, t=g 和L 二T 时的纵 坐标表达式。