函数与导数培优补差
- 格式:doc
- 大小:271.50 KB
- 文档页数:2
城东蜊市阳光实验学校江夏一中高三数学导数的应用培优辅导材料二一、教学内容导数的应用 二、学习指导本讲主要集中讲授判断证明函数的单调性,函数的极值和最值。
根据函数单调性的定义,函数在其定义域内某从a 到b(a <b)的区间内单调递增,即是对该区间内任意的x1<x2(不妨记△x=x2-x1>0).恒有y1<y2〔记△y=y2-y1>0〕.于是A 〔x1,y1〕,B 〔x2,y2〕两点间连线斜率k =2121x x y y -->0.从而x lim→∆2121x x )x (f )x (f --=0x lim →∆x)x (f )x x (f 11∆∆-+=)x (f 1'>0.由x1的任意性,知〔a ,b 〕内的导函数)x (f '值均正;反之,假设f(x)在该区间单调递减,即是对该区间内任意的x1<x2(不妨仍记△x=x2-x1>0).恒有y1>y2.(记△y=y2-y1<0).那么A 、B 连线斜率k=2121x x y y --<0,从而x lim→∆2121x x )x (f )x (f --=0x lim →∆x)x (f )x x (f 11∆∆-+=)x (f 1'<0.所以,导函数值为正的区间原函数必是单调递增的,导函数值为负的区间,原函数必是单调递减的。
而导函数值为O 的点xo 有可能〔但不一定就是〕是原函数增、减区间的接合点,也就是说,f(xo)有可能〔但不一定就是〕f(x)的一个极大〔小〕值.但到底是不是极值点,还须看导函数)x (f '在xo 的左、右是否异号,如在xo 左边)x (f '>0,而在xo 右边)x (f '<0,那么f(xo)为原函数的一个极大值;如在xo 左边)x (f '<0,而在xo 右边)x (f '>0,那么f(xo)是原函数的一个极小值;如在xo 左右)x (f '符号一样,那么f(xo)不是原函数的极值.我们原先用定义证明函数在某区间单调,过程相当繁杂〔对较复杂的函数更是如此〕.而判断单调区间的界限,那么无明章可循,如今我们可以使用导数这个利器,过程就显得简单明了多了,今后再遇到类似问题,尽可以使用它。
2009届文科培优------导数综合(一)1.设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点. (Ⅰ)求a 和b 的值;(Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.2.已知函数()()0≠++=x b xa x x f ,其中Rb a ∈,.(Ⅰ)若曲线()x f y =在点()()2,2f P 处的切线方程为13+=x y ,求函数()x f 的解析式; (Ⅱ)讨论函数()x f 的单调性;(Ⅲ)若对于任意的⎥⎦⎤⎢⎣⎡∈2,21a ,不等式()10≤x f 在⎥⎦⎤⎢⎣⎡1,41上恒成立,求b 的取值范围.3.设函数f (x )=ax 3+bx 2-3a 2x +1(a 、b ∈R )在x =x 1,x =x 2处取得极值,且|x 1-x 2|=2. (Ⅰ)若a =1,求b 的值,并求f (x )的单调区间; (Ⅱ)若a >0,求b 的取值范围.4.设函数f (x )=ln ln ln(1).1x x x x-+++(Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式f (x )≥a 的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.5.已知函数22()ln (1).1xf x x x=+-+(I)求函数()f x 的单调区间; (Ⅱ)若不等式1(1)n ae n ++≤对任意的N *n ∈都成立(其中e 是自然对数的底数).求a 的最大值.2009届文科培优------导数综合(二)1.已知函数43219()42f x x x x cx =+-+有三个极值点。
(I )证明:275c -<<;(II )若存在实数c ,使函数)(x f 在区间[],2a a +上单调递减,求a 的取值范围。
2.已知3x =是函数2()ln(1)10f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图像有3个交点,求b 的取值范围.3.已知函数32()2f x x mx nx =++-的图象过点(-1,-6),且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m 、n 的值及函数y =f (x )的单调区间;(Ⅱ)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.4.已知函数21()kx f x x c+=+(0c >且1c ≠,k ∈R )恰有一个极大值点和一个极小值点,其中一个是x c =-.(Ⅰ)求函数()f x 的另一个极值点;(Ⅱ)求函数()f x 的极大值M 和极小值m ,并求1M m -≥时k 的取值范围.5.设函数3222()1,()21,f x x ax a x g x ax x =+-+=-+其中实数0a ≠. (Ⅰ)若0a >,求函数()f x 的单调区间;(Ⅱ)当函数()y f x =与()y g x =的图象只有一个公共点且()g x 存在最小值时,记()g x 的最小值为()h a ,求()h a 的值域;(Ⅲ)若()f x 与()g x 在区间(,2)a a +内均为增函数,求a 的取值范围.解: (Ⅰ)函数()f x 的定义域是(1,)-+∞,22222ln(1)22(1)ln(1)2().1(1)(1)x x x x x x xf x xx x ++++--'=-=+++设2()2(1)ln(1)2,g x x x x x =++--则()2ln(1)2.g x x x '=+- 令()2ln(1)2,h x x x =+-则22()2.11x h x xx-'=-=++当10x -<<时, ()0,h x '> ()h x 在(-1,0)上为增函数,当x >0时,()0,h x '<()h x 在(0,)+∞上为减函数.所以h (x )在x =0处取得极大值,而h (0)=0,所以()0(0)g x x '<≠, 函数g (x )在(1,)-+∞上为减函数. 于是当10x -<<时,()(0)0,g x g >=当x >0时,()(0)0.g x g <=所以,当10x -<<时,()0,f x '>()f x 在(-1,0)上为增函数. 当x >0时,()0,f x '<()f x 在(0,)+∞上为减函数.故函数()f x 的单调递增区间为(-1,0),单调递减区间为(0,)+∞.(Ⅱ)不等式1(1)n ae n++≤等价于不等式1()ln(1) 1.n a n++≤由111n+>知,1.1ln(1)a n n ≤-+设(]11(),0,1,ln(1)G x x x x=-∈+则22222211(1)ln (1)().(1)ln (1)(1)ln (1)x x x G x x x xx x x ++-'=-+=++++由(Ⅰ)知,22ln (1)0,1xx x+-≤+即22(1)ln (1)0.x x x ++-≤所以()0,G x '<(]0,1,x ∈于是G (x )在(]0,1上为减函数. 故函数G (x )在(]0,1上的最小值为1(1) 1.ln 2G =-所以a 的最大值为1 1.ln 2- 解:(I )因为函数43219()42f x x x x cx =+-+有三个极值点,所以32()390f x x x x c '=+-+=有三个互异的实根.设32()39,g x x x x c =+-+则2()3693(3)(1),g x x x x x '=+-=+-当3x <-时,()0,g x '> ()g x 在(,3)-∞-上为增函数; 当31x -<<时,()0,g x '< ()g x 在(3,1)-上为减函数; 当1x >时,()0,g x '> ()g x 在(1,)+∞上为增函数; 所以函数()g x 在3x =-时取极大值,在1x =时取极小值. 当(3)0g -≤或(1)0g ≥时,()0g x =最多只有两个不同实根. 因为()0g x =有三个不同实根, 所以(3)0g ->且(1)0g <. 即2727270c -+++>,且1390c +-+<,解得27,c >-且5,c <故275c -<<.(II )由(I )的证明可知,当275c -<<时, ()f x 有三个极值点.不妨设为123x x x ,,(123x x x <<),则123()()()().f x x x x x x x '=--- 所以()f x 的单调递减区间是1(]x -∞,,23[,]x x 若)(x f 在区间[],2a a +上单调递减,则[],2a a +⊂1(]x -∞,, 或[],2a a +⊂23[,]x x ,若[],2a a +⊂1(]x -∞,,则12a x +≤.由(I )知,13x <-,于是 5.a <- 若[],2a a +⊂23[,]x x ,则2a x ≥且32a x +≤.由(I )知,23 1.x -<<又32()39,f x x x x c '=+-+当27c =-时,2()(3)(3)f x x x '=-+; 当5c =时,2()(5)(1)f x x x '=+-.因此, 当275c -<<时,31 3.x <<所以3,a >-且2 3.a +≤即3 1.a -<<故5,a <-或3 1.a -<<反之, 当5,a <-或31a -<<时, 总可找到(27,5),c ∈-使函数)(x f 在区间[],2a a +上单调递减.综上所述, a 的取值范围是(5)(3,1)-∞-- ,.解:(Ⅰ) 22()323()()3a f x x ax a x x a '=+-=-+,又0a >,∴ 当3a x a x <->或时,()0f x '>;当3a a x -<<时,()0f x '<,∴()f x 在(,)a -∞-和(,)3a +∞内是增函数,在(,)3a a -内是减函数.(Ⅱ)由题意知 3222121x ax a x ax x +-+=-+,即22[(2)]0x x a --=恰有一根(含重根).∴ 22a -≤0,即≤a, 又0a ≠,∴[0)a ∈ .当0a >时,()g x 才存在最小值,∴a ∈. 211()()g x a x a a a=-+-,∴1(),(0,h a a a a =-∈. ∴()h a的值域为(,12-∞-.(Ⅲ)当0a >时,()f x 在(,)a -∞-和(,)3a +∞内是增函数,()g x 在1(,)a+∞内是增函数.由题意得031a a a a a ⎧⎪>⎪⎪≥⎨⎪⎪≥⎪⎩,解得a ≥1;当0a <时,()f x 在(,)3a-∞和(,)a -+∞内是增函数,()g x 在1(,)a-∞内是增函数.由题意得02312a a a a a ⎧⎪<⎪⎪+≤⎨⎪⎪+≤⎪⎩,解得a ≤3-;综上可知,实数a 的取值范围为(,3][1,)-∞-+∞ .。
高考数学函数与导数的五点复习建议函数导数与各大模块的关系都专门紧密,是整个高中数学的基础。
而在历年的高考试题中,函数差不多上重点考核的部分。
在高考试卷,一样三种题型均有显现。
所占的比例也比较大。
我们建议在复习中,应该注意如下几个方面:1.对函数概念的复习要“恰到好处”,求函数的解析式,定义域,零点,值域,一样显现在客观题中,属于中、低档题,因此复习时不宜拓展。
2.对差不多函数与函数性质的复习要全面而突出重点。
并注重横向联系。
历年来高考中考查对函数知识的应用。
既着眼于知识点的新颖巧妙组合,又关注对数学思想方法的考查。
试题多数围绕函数的概念,性质,图象等方面命题。
围绕二次函数,分段函数,指。
对数函数等几个差不多函数来进行,故在复习中,应该全面夯实基础,突出对上面所讲重点内容的复习。
3.另外,对函数性质单调性,奇偶性,周期性和图象对称性等内容的考查,多以组合形式,一题多角度考查,专门是利用导数解决函数的单调性与极值,最值问题,不等式问题,函数与方程的联系等重点考点。
考查力度还有可能加大。
而函数题的综合趋势几乎涉及所有模块,但重点依旧在与不等式综合。
在解答题中,对函数性质的考查要求有所提高,专门涉及到分类讨论,数形结合等高等数学的观点。
思维层次要求较高。
因此在复习中例题的选择及训练题的配备一定要放在学科整体高度上把握函数及其他模块知识的横向关系。
我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
高中数学的培优补差式教学前言新课程改革下的高中数学,除了培养学生的逻辑思维能力和解决问题能力以外,更加注重以学生发展为中心,促进学生的全面发展。
当前班级中出现两极分化的态势,有一些学生彻底丧失了对数学的兴趣,而其中有些学生是语文或英语科目上的尖子生,严重的偏科现象让学生失去了信心。
针对以上的情况,我对班里的同学进行了培优补差教学,即分层教学,比较困难的工作是在补差上。
面对部分学生求知欲低,学习信心不足,学习态度不端正,没有兴趣,没能掌握好的学习方法的不同的状态,我认真分析了他们形成这种状态的原因,以便可以对症下药。
1.培优补差的含义培优补差,顾名思义,就是培养优秀的,弥补落后的学生。
在实际教学中,教师要平衡好两者的关系,对于优秀的学生,鼓励他们向更高层次的发展;对于基础薄弱的学生,引导他们掌握基本的知识,培养他们的自信心,共同进步。
2.培优补差式的教学方法2.1 讲究授人以渔中国有句古话叫“授人以鱼,不如授人以渔”,说的是传授给人既有知识,不如传授给人学习知识的方法[1]。
数学成绩的薄弱,主要是长期没有掌握好的学习方法,总是很被动地在追。
回首高中数学教学,高中是非常重要的阶段,学生面临从初中到高中生活的转换,课堂上容量的忽然增多,内容难度上的猛然加大应接不暇,所以就要求我们教师一定要把握好大纲要求的难度,让学生能够接受,可以多重复几次,让学生真正地理解,从而打下一个坚实的基础。
另外,数学学科本身是一门逻辑性很强的学科,它对学生最大的益处莫过于严谨思维的培养。
数学并不是以会做多少题来评估的,而是在你学会了某一种方法之后,让同一类型的许多题在你的眼里变成一道题,这便是我们常说的举一反三,要教会学生的是一种得体的学习方法。
2.2 把握基础知识是关键在教学中,我力争做到有计划、有步骤、分阶段、分层次、有针对性地指导学生掌握学习方法。
在高中数学人教A版必修一第二章《函数》一课上,因为这章是学生最怕触及的一个地方,因此我从对应映射函数,函数的表示方法,做函数的图像(选学),函数的性质(定义域,值域,单调性,奇偶性,对称性等),以及几种常见的函数(一次函数,二次函数,指数函数,对数函数,幂函数)等方面,作了一个系统的说明,让学生先从一个整体的角度规划出一条主线,然后对它的分支做局部的较为深入的了解,使学生可以脉络清楚地看待一个知识章节。
::导数培优讲义(方法篇)第一课导数中分类讨论核心思想的探讨类型一:“主导”函数为一次函数型类型二:“主导”函数为“准一次”函数型类型三:“主导”函数为二次函数型类型四:“主导”函数为“准二次”函数型类型五:“主导”函数为更高次的函数和超越函数型第二课恒成立问题之不参变分离法第三课恒成立问题之参变分离法类型一: 定义域跨 0类型二: 一阶导零点不易看出,需要求二阶求导第四课关于零点个数问题的探讨类型一: 分离变量类型二: 分类讨论类型三: 找异号函数值类型四: 特殊的零点第五课极值点偏移问题讨论第六课双变量问题的探讨第七课利用函数单调性证明数列型不等式第八课超越函数的探讨类型一: 三角放缩cos x,sin x≤1类型二: 换元处理(利用三角函数性质)第一课:导数问题中分类讨论核心思想的探讨 综述函数的单调性是函数最重要的性质(没有之一),对深入研究函数的图像、比较函数值的大小、解不等式、求极值、最值(取值范围)、判断函数零点个数、证明不等式起着至关重要的作用,是函数导数综合问题的基石,因此,函数单调性的考查是高考函数导数题的重点,文科题目有时候会不含参数,直接求导,解不等式即可得单调性,但是理科题目为了增加问题的复杂性、抽象性,往往会在函数的表达式中添加一个甚至多个参数,大家都知道要用导数这个“利器”来解决函数的单调性问题,但是很多时候求导后并不能得到一个“完美可解”的不等式来轻易判断极值点,这时候就需要我们对参数进行讨论了。
本质上是对含参方程与不等式解的讨论,以便确定导函数图像与x轴的位置关系。
解题步骤第一步:确定函数的定义域(特别注意定义域是否是一个连续的区间);第二步:求导函数;第三步:找出“主导”函数(通常我们把导函数中决定符号的部分构造为新函数,称作“主h x表示);导”函数,一般用()第四步:判断“主导”函数是否存在零点?若存在,有几个?零点与定义域或者指定区间的位置关系能判断吗?若定义域内有多个零点,零点之间的大小关系能判断吗?这几个问题就是引起讨论的主要因素;第五步:画出导函数草图,并利用导函数正负性与原函数增减性的关系确定原函数的单调性;第六步:在此基础上解决极值、最值、零点、恒成立、求参数范围、证不等式等其他问题。
函数与导数复习建议在进行函数与导数的复习时,可以参考以下几个建议:1.温故而知新:在开始复习前,先回顾一下函数与导数的基本概念和性质。
确保对函数、导数、导函数以及各种常见函数的性质有清晰的理解。
可以查看教材中的相关章节,并做一些简单的练习题来熟悉基本的计算方法。
2.多做题目:函数与导数是数学中的一个重要知识点,需要通过大量的练习来掌握。
可以从简单的题目开始,逐渐增加难度。
可以选择一些经典的习题集或者试卷进行练习,同时要注意重点题型的训练。
3.注意掌握基本的求导法则:在复习导数的过程中,要熟悉各种常见函数的导数公式,包括常数函数、幂函数、指数函数、对数函数、三角函数等。
要牢记导数的基本法则,如加减法法则、乘法法则、链式法则等。
并能熟练地运用这些法则解决相关的计算问题。
4.研究典型的题型:根据以往的考试经验,分析常见题型的解题思路与方法。
例如,求函数的极限、函数的最值、函数的单调性与凸凹性、函数的图像与一阶导数、高阶导数的意义等。
通过理解典型题目的解题思路,可以更好地掌握函数与导数的相关知识。
5.掌握函数与导数的应用:函数与导数的应用十分广泛,如求函数的极值、最大值与最小值、解函数的方程、曲线的切线与法线、曲线的凹凸性与拐点、极大极小值的判定等。
要通过大量的练习,熟悉这些应用题型的解题思路,提高解题的准确性与效率。
6.注重理论与实践的结合:函数与导数的学习需要理论与实践相结合。
在做题的过程中,要注重理解问题背后的理论原理,并能够将理论知识应用到解题过程中。
同时,对于一些具体的函数例题,可以尝试使用数学软件进行绘制图像,进一步加深对函数与导数的理解与认识。
9.合理安排时间:复习函数与导数需要时间和精力,要制定一个合理的学习计划,并按照计划有序地进行学习。
要保证每天都有一定的复习时间,并将难题留到有足够时间思考和解决。
10.解析错题,加强巩固:在做习题时,如果遇到了解答困难的题目,要仔细分析错题的原因,并及时解决疑惑。
2021导数尖子生培优五讲目录第一讲含参数导数问题的分类讨论 (2)模块1 整理方法提升能力 (2)模块2 练习巩固整合提升 (7)第二讲函数零点问题 (11)模块1 整理方法提升能力 (11)1.下凸函数定义 (11)2.上凸函数定义 (11)3.下凸函数相关定理 (11)4.上凸函数相关定理 (12)模块2 练习巩固整合提升 (18)第三讲含参数函数不等式恒成立问题 (22)模块1 整理方法提升能力 (22)模块2 练习巩固整合提升 (29)第四讲利用导数证明函数不等式(一) (36)模块1 整理方法提升能力 (36)模块2 练习巩固整合提升 (43)专题五利用导数证明函数不等式(二) (49)模块1 整理方法提升能力 (49)方法1:利用换元法,化归为一个未知数 (49)方法2:利用未知数之间的关系消元,化归为一个未知数 (49)方法3:分离未知数后构造函数,利用函数的单调性证明 (49)方法4:利用主元法,构造函数证明 (49)模块2 练习巩固整合提升 (57)第一讲 含参数导数问题的分类讨论导数是研究函数的图象和性质的重要工具,自从导数进入高中数学教材以来,有关导数问题几乎是每年高考的必考试题之一.随着高考对导数考查的不断深入,含参数的导数问题成为了历年高考命题的热点.由于含参数的导数问题在解答时往往需要对参数进行分类讨论,如何进行分类讨论成为绝大多数考生答题的难点.模块1 整理方法 提升能力在众多的含参数导数问题中,根据所给的参数的不同范围去讨论函数的单调性是最常见的题目之一,求函数的极值、最值等问题,最终也需要讨论函数单调性.对于含参数导数问题的单调性的分类讨论,常见的分类讨论点有以下三个:分类讨论点1:求导后,考虑()0f x '=是否有实根,从而引起分类讨论;分类讨论点2:求导后,()0f x '=有实根,但不清楚()0f x '=的实根是否落在定义域内,从而引起分类讨论;分类讨论点3:求导后,()0f x '=有实根,()0f x '=的实根也落在定义域内,但不清楚这些实根的大小关系,从而引起分类讨论.以上三点是讨论含参数导数问题的单调性的三个基本分类点,在求解有关含参数导数问题的单调性时,可按上述三点的顺序对参数进行讨论.因此,对含参数的导数问题的分类讨论,还是有一定的规律可循的.当然,在具体解题中,可能要讨论其中的两点或三点,这时的讨论就会复杂一些了,也有些题目可以根据其式子和题目的特点进行灵活处理,减少分类讨论,需要灵活把握.例1【解析】()f x 的定义域是()0,+∞.()()()12121f x a a x a x'=+--- ()()221211a a x a x x ---+=.令()()()221211g x a a x a x =---+,则()0f x '=的根的情况等价于()0g x =的根的情况.由于()g x 的函数类型不能确定,所以需要对a 进行分类讨论从而确定函数的类型.(1)当1a =时,()g x 是常数函数,此时()1g x =,()10f x x'=>,于是()f x 在()0,+∞上递增.(2)当1a ≠时,()g x 是二次函数,类型确定后,我们首先考虑讨论点1——()0f x '=是否有实根的问题.由于()g x 不能因式分解,所以我们考虑其判别式()()4131a a ∆=--,判别式的正负影响到()0g x =的根的情况,由此可初步分为以下三种情况:①当0∆<,即113a <<时,()0g x =没有实根;②当0∆=,即13a =时,()0g x =有两个相等的实根;③当0∆>,即103a <<或1a >时,()0g x =有两个不等的实根. 对于第①种情况,()0g x =没有实根且永远在x 轴上方,于是()0f x '>,所以()f x 在()0,+∞上递增.对于第②种情况,()0g x =有两个相等的实根32x =,于是()0f x '≥,所以()f x 在()0,+∞上递增.对于第③种情况,()0g x =有两个不等的实根,112x a =-和212x a =.由于不知道两根是否落在定义域()0,+∞内,因此要考虑讨论点2,而利用韦达定理进行判断是一个快捷的方法.因为121x x a +=,()12121x x a a =-,所以当103a <<时,有120x x +>且120x x >,此时两个根都在定义域内切120x x <<(因为1x 与2x 的大小关系已经确定,所以不需要考虑讨论点3).由()0f x '>可得10x x <<或2x x >,所以()f x 在()10,x 和()2,x +∞上递增;由()0f x '<可得12x x x <<,所以()f x 在()12,x x 上递减.当1a >时,有120x x +>且120x x <,此时210x x <<,由()0f x '>可得10x x <<,所以()f x 在()10,x 上递增;由()0f x '<可得1x x >,所以()f x 在()1,x +∞上递减.综上所述,当103a <<时,()f x 在()10,x 和()2,x +∞上递增,在()12,x x 上递减;当113a ≤≤时,()f x 在()0,+∞上递增;当1a >时,()f x 在()10,x 上递增,在()1,x +∞上递减.其中112x a =212x a =. 【点评】只要按照3个分类讨论点进行思考,就能很好地处理含参数导数问题的单调性.此外,涉及两根与0的大小比较的时候,利用韦达定理往往比较简单.例2【解析】(1)定义域为()0,+∞,()11kx f x k x x -+'=-=. 法1:①当0k =时,()10f x x'=>,函数()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦. ②当0k ≠时,令()0f x '=可得1x k=. (i )当10k<,即0k <时,()0f x '>在[]1,2上恒成立,函数()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦.(ii )当101k<≤,即1k ≥时,()0f x '≤在[]1,2上恒成立,所以()f x 在[]1,2为减函数,所以()()min 2ln 2f x f k ⎡⎤==-⎣⎦.(iii )当12k ≥,即102k <≤时,()0f x '≥在[]1,2上恒成立,所以()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦.(iv )当112k <<,即112k <<时,由()0f x '>可得11x k <<,由()0f x '<可得12x k<<,所以()f x 在11,k ⎛⎫ ⎪⎝⎭上递增,在1,2k ⎛⎫ ⎪⎝⎭上递减.于是()f x 在[]1,2上的最小值为()10f =或()2ln 2f k =-.当0ln2k <-,即1ln 22k <<时,()()min 10f x f ⎡⎤==⎣⎦;当0ln2k ≥-,即ln21k ≤≤时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.综上所述,当ln2k <时,()()min 10f x f ⎡⎤==⎣⎦;当ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.法2:①当0k ≤时,()0f x '>,函数()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦.②当0k >时,由()0f x '>可得10x k <<,由()0f x '<可得1x k >,所以()f x 在10,k ⎛⎫ ⎪⎝⎭上递增,在1,k ⎛⎫+∞ ⎪⎝⎭上递减.于是()f x 在[]1,2上的最小值为()10f =或()2ln 2f k =-. (i )当0ln2k <-,即0ln2k <<时,()()min 10f x f ⎡⎤==⎣⎦.(ii )当0ln2k ≥-,即ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.综上所述,当ln2k <时,()()min 10f x f ⎡⎤==⎣⎦;当ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.(2)解答详见专题三例1.所以最小值只能在()1f 或()2f 处取到,此时只需要比较两者的大小就可以了.由于法2是根据式子和题目的特点进行分类的,所以能减少分类的情况.例3【解析】(1)函数()()2ln 1f x x b x =++的定义域为()1,-+∞,()222211b x x b f x x x x ++'=+=++.令()222g x x x b =++,则48b ∆=-.当12b >时,0∆<,所以()g x 在()1,-+∞上恒大于0,所以()0f x '>,于是当12b >时,函数()f x 在定义域()1,-+∞上递增.(2)首先考虑()0g x =是否有实根.①当0∆<,即12b >时,由(1)知函数()f x 无极值点.②当0∆=,即12b =时,()0g x =有唯一的实根,()0g x ≥,于是()0f x '≥在()1,-+∞上恒成立,所以函数()f x 在()1,-+∞上递增,从而函数()f x 在()1,-+∞上无极值点.③当0∆>,即12b <时,()0g x =有两个不同的根1x,2x =,其中12x x <.这两个根是否都在定义域()1,-+∞内呢?这需要对参数b 的取值进一步分类讨论.当0b <时,11x <-,21x =>-,由()0f x '>可得2x x >,由()0f x '<可得21x x -<<,所以()f x 在()21,x -上递减,在()2,x +∞上递增,所以当0b <时,()f x 在()1,-+∞上有唯一极小值点212x -+=. 当102b <<时,11x =>-,21x =>-,由()0f x '>可得11x x -<<或2x x >,由()0f x '<可得12x x x <<,所以()f x 在()11,x -上递增,在()12,x x 上递减,在()2,x +∞上递增,所以当102b <<时,()f x 在()1,-+∞上有一个极大值点1x和一个极小值点2x =. 综上所述,当0b <时,()f x 在()1,-+∞上有唯一的极小值点212x -=;当102b <<时,()f x有一个极大值点1x =和一个极小值点2x =;当1b ≥时,函数()f x 在()1,-+∞上无极值点. 12x x <,所以只需要考虑讨论点2,判断这两个根是否都在定义域()1,-+∞内就可以了,显然之间的大小符号待定为,则有11122112b b b -⇔----⇔-⇔ 1120b b -⇔,所以当0理,判断1x 、2x 与1-的大小关系等价于判断121x x +=-⎧⎪(1x ⎧+⎪模块2 练习巩固 整合提升练习1:设函数()1ln 1x f x a x x -=++,其中a 为常数. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性.【解析】(1)当0a =时,()11x f x x -=+,()0,x ∈+∞.此时()()221f x x '=+,于是()112f '=,()10f =,所以曲线()y f x =在点()()1,1f 处的切线方程为210x y --=.(2)函数()f x 的定义域为()0,+∞,()()()()22221211ax a x a a f x x x x x +++'=+=++. ①当0a ≥时,()0f x '>,所以函数()f x 在()0,+∞上递增.②当0a <时,令()()221g x ax a x a =+++,则()()22414421a a a ∆=+-=+. (i )当12a ≤-时,0∆≤,所以()0g x ≤,于是()0f x '≤,所以函数()f x 在()0,+∞上递减.(ii )当102a -<<时,0∆>,此时()0g x =有两个不同的根,()11a x a -++=,()21a x a-+=,12x x <.下判断1x 、2x 是否在定义域()0,+∞内. 法1:(待定符号法)()()101210121a a a a a a -+⇔+-+⇔++⇔()221210a a a ++⇔,由于0a >,所以10x >.法2:(韦达定理)由()121221010a x x a x x ⎧++=->⎪⎨⎪=>⎩可得120x x <<. 法3:(图象法)()g x 是开口方向向下的抛物线,对称轴为10a a+->,()00g a =<,由图象可知1x 、2x 都在定义域()0,+∞内.当10x x <<或2x x >时,有()0g x <,()0f x '<,所以函数()f x 递减;当12x x x <<时,有()0g x >,()0f x '>,所以函数()f x 递增.综上所述,当0a ≥时,函数()f x 在()0,+∞上递增;当12a ≤-时,函数()f x 在()0,+∞上递减;当102a -<<时,函数()f x 在()10,a a ⎛-++ ⎪⎝⎭,()1a a ⎛⎫-+-+∞ ⎪ ⎪⎝⎭上递减,在()()11a a a a ⎛-++-+ ⎪⎝⎭上递增. 练习2:设函数()()2ln f x x a x =++.(1)若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性;(2)若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2. 【解析】(1)由()10f '-=解得32a =,此时()2123123322x x f x x x x ++'=+=++,由()0f x '>解得312x -<<-或12x >-,由()0f x '<解得112x -<<-,所以()f x 在区间3,12⎛⎫-- ⎪⎝⎭,1,2⎛⎫-+∞ ⎪⎝⎭上递增,在区间11,2⎛⎫-- ⎪⎝⎭上递减. (2)()f x 的定义域为(),a -+∞,()2221x ax f x x a++'=+,记()2221g x x ax =++,其判别式为248a ∆=-.①若0∆≤,即a ≤时,()0f x '≥在(),a -+∞上恒成立,所以()f x 无极值.②若0∆>,即a >a <()0g x =有两个不同的实根1x =2x =12x x <,由韦达定理可得121212x x a x x +=-⎧⎪⎨⋅=⎪⎩,即()()()()121212x a x a a x a x a ⎧+++=⎪⎨+⋅+=⎪⎩. (i)当a <10x a +<,20x a +<,即1x a <-,2x a <-,从而()0f x '=在(),a -+∞上没有实根,所以()f x 无极值.(ii)当a 10x a +>,20x a +>,即1x a >-,2x a >-,从而()0f x '=在(),a -+∞上有两个不同的根,且()f x 在1x x =,2x x =处取得极值.综上所述,()f x 存在极值时,a的取值范围为)+∞.()f x 的极值之和为()()()()()()()222121122121212ln ln ln 2f x f x x a x x a x x a x a x x x x +=+++++=⎡++⎤++-⎣⎦,而()()121ln ln 2x a x a ⎡++⎤=⎣⎦,()()222121212212x x x x a a +-=--⨯=-,所以()()21211e ln 1ln 1ln 222f x f x a +=+->+=. 练习3:已知函数()2e 1x f x ax bx =---,其中a 、b ∈R ,e 2.71828=为自然对数的底数.(1)设()g x 是函数()f x 的导函数,求函数()g x 在区间[]0,1上的最小值;(2)若()10f =,函数()f x 在区间()0,1内有零点,求a 的取值范围.【解析】(1)()()e 2x g x f x ax b '==--,()e 2x g x a '=-.因为[]0,1x ∈,所以()12e 2a g x a '-≤≤-.①若21a ≤,即12a ≤时,有()e 20x g x a '=-≥,所以函数()g x 在区间[]0,1上递增,于是()()min 01g x gb ⎡⎤==-⎣⎦.②若12e a <<,即1e 22a <<时,当()0ln 2x a <<时,()e 20x g x a '=-<,当()ln 21a x <<时()e 20x g x a '=->,所以函数()g x 在区间()()0,ln 2a 上递减,在区间()ln 2,1a ⎡⎤⎣⎦上递增,于是()()()min ln 222ln 2g x g a a a ab ⎡⎤=⎡⎤=--⎣⎦⎣⎦.③若2e a ≥,即e 2a ≥时,有()e 20x g x a '=-≤,所以函数()g x 在区间[]0,1上递减,于是()()min 1e 2g x g ab ⎡⎤==--⎣⎦.综上所述,()g x 在区间[]0,1上的最小值为()()min 11,21e 22ln 2,22e e 2,2b a g x a a a b a a b a ⎧-≤⎪⎪⎪⎡⎤=--<<⎨⎣⎦⎪⎪--≥⎪⎩. (2)法1:由()10f =可得e 10a b ---=,于是e 1b a =--,又()00f =,所以函数()f x 在区间()0,1内有零点,则函数()f x 在区间()0,1内至少有三个单调区间.由(1)知当12a ≤或e 2a ≥时,函数()g x 即()f x '在区间[]0,1上递增或递减,所以不可能满足“函数()f x 在区间()0,1内至少有三个单调区间”这一要求. 若1e 22a <<,则()()()min 22ln 232ln 2e 1g x a a ab a a a ⎡⎤=--=---⎣⎦.令()()32ln 2e 1h x x x x =---(1e 22x <<),则()()12ln 2h x x '=-.由()0h x '>可得1e 2x <<,由()0h x '<e e 2x <<,所以()h x 在区间1e 2⎛ ⎝上递增,在区间e e 2⎫⎪⎪⎭上递减,所以()max e e e e 32ln 2e 1e e 10h x h ⎡⎤⎡⎤==---=--<⎢⎥⎣⎦⎢⎥⎣⎦,即()min 0g x ⎡⎤<⎣⎦,于是函数()f x 在区间()0,1内至少有三个单调区间⇔()()02e 0110g a g a ⎧=-+>⎪⎨=-+>⎪⎩,由此解得e 21a -<<,又因为1e 22a <<,所以e 21a -<<. 综上所述,a 的取值范围为()e 2,1-.法2:由()10f =可得e 10a b ---=,于是e 1b a =--,又()00f =,所以函数()g x 在区间()0,1上至少有两个零点.()e e 10e 2e 1021x xg x ax a a x -+=⇔--++=⇔=-,所以()g x 在区间()0,1上至少有两个零点y a ⇔=与()e e 121x k x x -+=-,110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭的图象至少有两个交点.()()()22e 3e 2e 121x x x k x x -+-'=-,令()()2e 3e 2e 1x x p x x =-+-,则()()e 21x p x x '=-,由()0p x '>可得12x >,由()0p x '<可得12x <,所以()p x 在10,2⎛⎫ ⎪⎝⎭上递减,在1,12⎛⎫ ⎪⎝⎭上递增,()min 12e 2e 202p x p ⎛⎫⎡⎤==-> ⎪⎣⎦⎝⎭,所以()0k x '>,于是 ()k x 在10,2⎛⎫ ⎪⎝⎭上递增,在1,12⎛⎫ ⎪⎝⎭上也递增.因为()0e 2k =-, ()11k =,当12x -→时,()k x →+∞,当12x +→时,()k x →-∞, 于是y a =与()e e 121x k x x -+=-,110,,122x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭的图象有两个交点时,a 的取值范围是()e 2,1-.第二讲 函数零点问题函数的零点作为函数、方程、图象的交汇点,充分体现了函数与方程的联系,蕴含了丰富的数形结合思想.诸如方程的根的问题、存在性问题、交点问题等最终都可以转化为函数零点问题进行处理,因此函数的零点问题成为了近年来高考新的生长点和热点,且形式逐渐多样化,备受青睐.模块1 整理方法 提升能力对于函数零点问题,其解题策略一般是转化为两个函数图象的交点.对于两个函数的选择,有3种情况:一平一曲,一斜一曲,两曲(凸性一般要相反).其中以一平一曲的情况最为常见.分离参数法是处理零点问题的常见方法,其本质是选择一平一曲两个函数;部分题目直接考虑函数()f x 的图象与x 轴的交点情况,其本质是选择一平一曲两个函数;部分题目利用零点存在性定理并结合函数的单调性处理零点,其本质是选择一平一曲两个函数.函数的凸性1.下凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≤ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的下凸函数. 2.上凸函数定义设函数()f x 为定义在区间(),a b 上的函数,若对(),a b 上任意两点1x ,2x ,总有()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,当且仅当12x x =时取等号,则称()f x 为(),a b 上的上凸函数.3.下凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的下凸函数⇔()f x '为(),a b 上的递增函数⇔()0f x ''≥且不在(),a b 的任一子区间上恒为零. 4.上凸函数相关定理定理:设函数()f x 为区间(),a b 上的可导函数,则()f x 为(),a b 上的上凸函数⇔()f x '为(),a b 上的递减函数⇔()0f x ''≤且不在(),a b 的任一子区间上恒为零.例1【解析】(1)()()()()22e 2e 12e 1e 1x x x x f x a a a '=+--=+-,2e 10x +>. ①当0a ≤时,e 10x a -<,所以()0f x '<,所以()f x 在R 上递减. ②当0a >时,由()0f x '>可得1lnx a >,由()0f x '<可得1ln x a<,所以()f x 在1,ln a ⎛⎫-∞ ⎪⎝⎭上递减,在1ln ,a ⎛⎫+∞ ⎪⎝⎭上递增.(2)法1:①当0a ≤时,由(1)可知,()f x 在R 上递减,不可能有两个零点.②当0a >时,()min 11ln 1ln f x f a a a ⎛⎫⎡⎤==-+ ⎪⎣⎦⎝⎭,令()()min g a f x =⎡⎤⎣⎦,则()2110g a a a'=+>,所以()g a 在()0,+∞上递增,而()10g =,所以当1a ≥时,()()min 0g a f x =⎡⎤≥⎣⎦,从而()f x 没有两个零点.当01a <<时,1ln 0f a ⎛⎫< ⎪⎝⎭,()22110e e e a a f -=++->,于是()f x 在11,ln a ⎛⎫- ⎪⎝⎭上有1个零点;因为()2333333ln 1121ln 11ln 10f a a a a a a a a ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=-+----=---> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且31ln 1ln a a ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以()f x 在1ln ,a ⎛⎫+∞ ⎪⎝⎭上有1个零点. 综上所述,a 的取值范围为()0,1.法2:()2222e e 2e 0e e 2e e e x xxxxxx x x a a x a a x a ++--=⇔+=+⇔=+.令()22e e e x x xxg x +=+,则()()()()()()()()()2222222e 1e e 2e 2e e e 2e 1e 1eeeexx x x x x x x x xx xx x x g x ++-++++-'==-++,令()e 1x h x x =+-,则()e 10x h x '=+>,所以()h x 在R 上递增,而()00h =,所以当0x <时,()0h x <,当0x >时,()0h x >, 于是当0x <时,()0g x '>,当0x >时,()0g x '<,所以()g x 在(),0-∞上递增,在()0,+∞上递减.()01g =,当x →-∞时,()g x →-∞,当x →+∞时,()0g x +→.若()f x 有两个零点,则y a =与()g x 有两个交点,所以a 的取值范围是()0,1.法3:设e 0x t =>,则ln x t =,于是()22e 2e 02ln x x a a x at at t t +--=⇔+=+⇔22ln t t a t t +=+,令()22ln t t G t t t +=+,则()()()()()222122ln 21t t t t t t G t t t ⎛⎫++-++ ⎪⎝⎭'==+ ()()()22211ln t t t tt +-+-+,令()1ln H t t t =-+,则()110H t t'=+>,所以()H t 在()0,+∞上递增,而()10H =,所以当01t <<时,()0H t <,()0G t '>,当1t >时,()0H t >,()0G t '<,所以()G t 在()0,1上递增,在()1,+∞上递减.()11G =,当0t +→时,()G t →-∞,当t →+∞时,()0G t +→.若()f x 有两个零点,则y a =与()G t 有两个交点,所以a 的取值范围是()0,1.法4:设e 0x t =>,则ln x t =,于是()22e 2e 02ln 0x x a a x at at t t +--=⇔+--=⇔()ln 12t a t t +-=.令()()12k t a t =+-,()ln tt tϕ=,则()f x 有两个零点等价于()y k t =与()y t ϕ=有两个交点.因为()21ln tt tϕ-'=,由()0t ϕ'>可得0e t <<,由()0t ϕ'<可得e t >,所以()t ϕ在()0,e 上递增,在()e,+∞上递减,()1e e ϕ=,当x →+∞时,()0t ϕ+→.()y k t =是斜率为a ,过定点()1,2A --的直线.当()y k t =与()y t ϕ=相切的时候,设切点()00,P t y ,则有()0000002ln 121ln t y t y a t ta t ⎧=⎪⎪⎪=+-⎨⎪-⎪=⎪⎩,消去a 和0y ,可得()000200ln 1ln 12t t t t t -=+-, 即()()00021ln 10t t t ++-=,即00ln 10t t +-=.令()ln 1p t t t =+-,显然()p t 是增函数,且()10p =,于是01t =,此时切点()1,0P ,斜率1a =.所以当()y k t =与()y t ϕ=有两个交点时,01a <<,所以a 的取值范围是()0,1.法5:()()20e e 2e x x x f x a x =⇔+=+,令()()2e e x x M x a =+,()2e e x x m x =+,()2e x n x x =+,则()f x 有两个零点⇔()M x 与()n x 的图象有两个不同交点.()()002m n ==,所以两个函数图象有一个交点()0,2.令()()()2e e x x T x m x n x x =-=--,则()()()22e e 12e 1e 1x x x x T x '=--=+-,由()0T x '>可得0x >,由()0T x '<可得0x <,于是()T x 在(),0-∞上递减,在()0,+∞上递增,而()00T =,所以()()m x n x ≥,因此()m x 与()n x相切于点()0,2,除切点外,()m x 的图象总在()n x 图象的上方.由(1)可知,0a >.当1a >时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象没有交点.当1a =时,()m x 的图象就是()M x 的图象,此时()M x 与()n x 的图象只有1个交点.当01a <<时,将()m x 图象上每一点的横坐标固定不动,纵坐标变为原来的a 倍,就得到了()M x 的图象,此时()M x 与()n x 的图象有两个不同交点.综上所述,a 的取值范围是()0,1.法6:()()()20e e 2e e 12e x x x x xx f x a x a =⇔+=+⇔+-=,令()()e 12xp x a =+-,()e xxq x =,则()f x 有两个零点⇔()p x 与()q x 的图象有两个不同交点. ()1ex xq x -'=,由()0q x '>可得1x <,由()0q x '<可得1x >,所以()q x 在(),1-∞上递增,在()1,+∞上递减,当x →+∞时,()0q x +→.由(1)可知,0a >,所以()p x 是下凸函数,而()q x 是 上凸函数.当()p x 与()q x 相切时,设切点为()00,P x y ,则有()00000000e 12e 1e e xx x x y a x y x a ⎧=+-⎪⎪⎪=⎨⎪-⎪=⎪⎩,消去a ,0y 可得()0000021e 12e e x x x x x -+-=,即()()0002e 1e 10x x x ++-=,即00e 10x x +-=.令()e 1x W x x =+-,显然()W x 是增函数,而()00W =,于是00x =,此时切点()0,0P ,1a =.所以当()p x 与()q x 的图象有两个交点时,01a <<,所以a 的取值范围是()0,1.【点评】函数零点问题,其解题策略是转化为两个函数图象的交点,三种方式中(一平一曲、一斜一曲、两曲)最为常见的是一平一曲.法1是直接考虑函数()f x 的图象与x 轴的交点情况,法2是分离参数法,法3用了换元,3种方法的本质都是一平一曲,其中法3将指数换成了对数,虽然没有比法2简单,但是也提示我们某些函数或许可以通过换元,降低函数的解决难度.法4是一斜一曲情况,直线与曲线相切时的a 值是一个重要的分界值.法5和法6都是两曲的情况,但法6比法5要简单,其原因在于法5的两曲凸性相同而法6的两曲凸性相反.函数零点问题对函数图象说明的要求很高,如解法2当中的()g x 是先增后减且极大值()01g =,但x →-∞和x →+∞的状态会影响a 的取值范围,所以必须要说清楚两个趋势的情况,才能得到最终的答案.例2设函数设()21n n f x x x x =+++-,n ∈*N ,2n ≥.(1)求()2n f ';(2)证明:()n f x 在20,3⎛⎫⎪⎝⎭内有且仅有一个零点(记为n a ),且1120233nn a ⎛⎫<-< ⎪⎝⎭.【解析】(1)因为()112n n f x x nx -'=+++,所以()121222n n f n -'=+⨯++⋅…①.由()2222222n n f n '=+⨯++⋅…②,①-②,得()21212222n n n f n -'-=++++-⋅=()12212112nn n n n --⋅=---,所以()()2121n n f n '=-+. 【证明】(2)因为()010f =-<,22213322211121202333913nn n f ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=-=-≥-=> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-,由零点存在性定理可知()n f x 在20,3⎛⎫⎪⎝⎭内至少存在一个零点.又因为()1120n n f x x nx -'=+++>,所以()n f x 在20,3⎛⎫ ⎪⎝⎭内递增,因此()n f x 在20,3⎛⎫⎪⎝⎭内有且只有一个零点n a .由于()()111n n x x f x x-=--,所以()()1101n n n n n na a f a a -=-=-,由此可得11122n n n a a +=+,即11122n n na a +-=.因为203n a <<,所以111120223n n n a ++⎛⎫<< ⎪⎝⎭,所以1111212022333n nn na ++⎛⎫⎛⎫<<= ⎪ ⎪⎝⎭⎝⎭,所以1120233nn a ⎛⎫<-< ⎪⎝⎭.【点评】当函数()f x 满足两个条件:连续不断,()()0f a f b <,则可由零点存在性定理得到函数()f x 在(),a b 上至少有1个零点.零点存在性定理是高中阶段一个比较弱的定理,首先,该定理的两个条件缺一不可,其次,就算满足两个条件,也只能得到有零点的结论,究竟有多少个零点,也不确定.零点存在性定理常与单调性综合使用,这是处理函数零点问题的一种方法.例3【解析】(1)()1e xf x x m'=-+,由0x =是()f x 的极值点,可得()00f '=,解得1m =.于是()()e ln 1x f x x =-+,定义域为()1,-+∞,()1e 1xf x x '=-+,则()()21e 01x f x x ''=+>+,所以()f x '在()1,-+∞上递增,又因为()00f '=,所以当10x -<<时()0f x '<,当0x >时()0f x '>,所以()f x 在()1,0-上递减,在()0,+∞上递增.【证明】(2)法1:()f x 定义域为(),m -+∞,()1e xf x x m '=-+,()()21e 0x f x x m ''=+>+,于是()f x '在(),m -+∞上递增.又因为当x m +→-时,()f x '→-∞,当x →+∞时,()f x '→+∞,所以()0f x '=在(),m -+∞上有唯一的实根0x ,当0m x x -<<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()0,m x -上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值.由()00f x '=可得001e 0x x m-=+,即()00ln x m x +=-,于是()()000000011e ln 2xf x x m x x m m m x m x m=-+=+=++-≥-++.当2m <时,()00f x >;当2m =时,等号成立的条件是01x =-,但显然()11e 012--≠-+,所以等号不成立,即()00f x >.综上所述,当2m ≤时,()()00f x f x ≥>.法2:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()()e ln 20x x x ϕ=-+>,()2,x ∈-+∞,就能证明当2m ≤时,()0f x >.()1e 2x x x ϕ'=-+,()()21e 02x x x ϕ''=+>+,于是()x ϕ'在()2,-+∞上递增.又因为()1110eϕ'-=-<,()10102ϕ'=->,所以()0x ϕ'=在()2,-+∞上有唯一的实根0x ,且()01,0x ∈-.当02x x -<<时,()0x ϕ'<,当0x x >时,()0x ϕ'>,所以()x ϕ在()02,x -上递减,在()0,x +∞上递增,所以当0x x =时,()x ϕ取得最小值.由()00x ϕ'=可得001e 02x x -=+,即()00ln 2x x +=-.于是()()()0200000011e ln 2022x x x x x x x ϕ+=-+=+=>++,于是()()00x x ϕϕ≥>. 综上所述,当2m ≤时,()0f x >.法3:当2m ≤,(),x m ∈-+∞时,()()ln ln 2x m x +≤+,于是()()e ln 2x f x x ≥-+,所以只要证明()e ln 20x x -+>(2x >-),就能证明当2m ≤时,()0f x >.由ln 1x x ≤-(0x >)可得()ln 21x x +≤+(2x >-),又因为e 1x x ≥+(x ∈R ),且两个不等号不能同时成立,所以()e ln 2x x >+,即()e ln 20x x -+>(2x >-),所以当2m ≤时,()0f x >.【点评】法1与法2中出现的0x 的具体数值是无法求解的,只能求出其范围,我们把这种零点称为“隐性零点”.法2比法1简单,这是因为利用了函数单调性将命题()e ln 0x x m -+>模块2 练习巩固 整合提升练习1:设函数()2e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时,()22lnf x a a a≥+. 【解析】(1)()f x 的定义域为()0,+∞,()22e x af x x'=-. ()f x '的零点的个数⇔22e x x a =的根的个数⇔()22e x g x x =与y a =在()0,+∞上的交点的个数.因为()()2221e 0x g x x '=+>,所以()g x 在()0,+∞上递增,又因为()00g =,x →+∞时,()g x →+∞,所以当0a ≤时,()g x 与y a =没有交点,当0a >时,()g x 与y a =有一个交点.综上所述,当0a ≤时,()f x '的零点个数为0,当0a >时,()f x '的零点个数为1. 【证明】(2)由(1)可知,()f x '在()0,+∞上有唯一的零点0x ,当00x x <<时,()0f x '<,当0x x >时,()0f x '>,所以()f x 在()00,x 上递减,在()0,x +∞上递增,所以当0x x =时,()f x 取得最小值,且最小值为()0f x .因为0202e 0x a x -=,所以020e 2x a x =,00ln ln 22ax x =-,所以()020000002e ln ln 22ln 2ln 2222x a a aa f x a x a x ax a a a x x a ⎛⎫=-=--=+-≥+ ⎪⎝⎭. 练习2:设函数()2e 2ln x f x k x x x ⎛⎫=-+ ⎪⎝⎭(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数).(1)当0k ≤时,求函数()f x 的单调区间;(2)若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.【解析】(1)函数()f x 的定义域为()0,+∞,()32e 2e 21x x x f x k x xx -⎛⎫'=--+= ⎪⎝⎭ ()()32e x x kx x --.当0k ≤时,e 0x kx ->,所以当02x <<时,()0f x '<,当2x >时,()0f x '>.所以()f x 的递减区间为()0,2,递增区间为()2,+∞.(2)函数()f x 在()0,2内存在两个极值点()0f x '⇔=在()0,2内有两个不同的根. 法1:问题e 0x kx ⇔-=在()0,2内有两个不同的根.设()e x h x kx =-,则()e x h x k '=-.当1k ≤时,()0h x '>,所以()h x 在()0,2上递增,所以()h x 在()0,2内不存在两个不同的根.当1k >时,由()0h x '>可得ln x k >,由()0h x '<可得ln x k <,所以()h x 的最小值为()()ln 1ln h k k k =-.e 0xkx -=在()0,2内有两个不同的根()()()()20102e 20ln 1ln 00ln 2g g k g k k k k ⎧=>⎪=->⎪⇔⎨=-<⎪⎪<<⎩,解得2e e 2k <<.综上所述,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.法2:问题e x k x ⇔=在()0,2内有两个不同的根y k ⇔=与()e xg x x=在()0,2内有两个不同的交点.()()221ee e xx x x x g x x x--'==,当01x <<时,()0g x '<,当1x >时,()0g x '>.()1e g =,()2e 22g =,当0x +→时,()g x →+∞.画出()g x 在()0,2内的图象,可知要使y k =与()g x 在()0,2内有两个不同的交点,k 的取值范围为2e e,2⎛⎫⎪⎝⎭.练习3:已知函数()e x f x =和()()ln g x x m =+,直线l :y kx b =+过点()1,0P -且与曲线()y f x =相切.(1)求切线l 的方程;(2)若不等式()ln kx b x m +≥+恒成立,求m 的最大值;(3)设()()()F x f x g x =-,若函数()F x 有唯一零点0x ,求证:0112x -<<-. 【解析】(1)设直线l 与函数()f x 相切于点()11,e x A x ,则切线方程为()111e e x x y x x -=-,即1111e e e x x x y x x =-+,因为切线过点()1,0P -,所以11110e e e x x x x =--+,解得10x =,所以切线l 的方程为1y x =+.(2)设()()1ln h x x x m =+-+,()1x m h x x m+-'=+.当(),1x m m ∈--时,()0h x '<,当()1,x m ∈-+∞时,()0h x '>,所以()h x 在1x m =-时取极小值,也是最小值.因此,要原不等式成立,则()120h m m -=-≥,所以m 的最大值是2.【证明】(3)由题设条件知,函数()1e x F x x m'=-+(x m >-),令()()H x F x '=,则()()21e 0x H x x m '=+>+,于是()H x 在(),m -+∞上单调递增.因为当x m +→-时,()F x '→-∞,当x →+∞时,()F x '→+∞,所以()0F x '=有唯一的实根,设为1x ,则当()1,x m x ∈-时,()0F x '<,当()1,x x ∈+∞时,()0F x '>,于是()F x 有唯一的极小值1x ,也是最小值.当x m +→-时,()F x →+∞,当x →+∞时,()F x →+∞.因此函数()F x 有唯一零点的充要条件是其最小值为0,即()00F x =(01x x =),所以()00e ln 0x x m -+=,又因为001e x x m=+,所以00e 0x x +=.设()e x x x ϕ=+,则()e 10x x ϕ'=+>,所以()x ϕ在(),m -+∞上单调递增,又因为1211e 022ϕ-⎛⎫-=-> ⎪⎝⎭,()1110e ϕ-=-<,由零点存在性定理可知0112x -<<-.第三讲 含参数函数不等式恒成立问题不等式问题是数学中的重要内容之一,而含参数函数不等式恒成立问题又是重点中的难点.这类问题既含参数又含变量,与多个知识有效交汇,有利于考查学生的综合解题能力,检验学生思维的灵活性与创造性,这正符合高考强调能力立意,强调数学思想与方法的命题思想,因此恒成立问题成为近年来全国各地高考数学试题的一个热点.模块1 整理方法 提升能力处理含参数函数不等式(一个未知数)恒成立问题,从方法上,可考虑分离参数法或猜想+最值法(必要条件法).如果使用分离参数法,则猜想是没有作用的,对于难一点的分离参数法,可能要使用多次求导或洛必达法则.如果使用猜想法,则后续有3种可能:一是猜想没有任何作用;二是利用猜想减少分类讨论;三是在猜想的基础上强化,从而得到答案.从改造的形式上,解答题优先选择一平一曲,可利用分离参数法转化为一平一曲两个函数,也可以把函数化归为一边,考虑函数的图象与x 轴的交点情况(本质上也是一平一曲).洛必达法则如果当0x x →(0x 也可以是±∞)时,两个函数()f x 和()g x 都趋向于零或都趋向于无穷大,那么极限()()limx x f x g x →可能存在,也可能不存在.如果存在,其极限值也不尽相同.我们称这类极限为00型或∞∞型不定式极限.对于这类极限,一般要用洛必达法则来求. 定理1:若函数()f x 和()g x 满足条件: (1)()()0lim lim 0x x x x f x g x →→==.(2)()f x 和()g x 在0x 的某个去心邻域内可导,且()0g x '≠. (3)()()limx x f x g x →存在或为无穷大.则有()()()()00lim lim x x x x f x f x g x g x →→'='.定理2:若函数()f x 和()g x 满足条件: (1)()()0lim lim x x x x f x g x →→==∞.(2)()f x 和()g x 在0x 的某个去心邻域内可导,且()0g x '≠. (3)()()limx x f x g x →存在或为无穷大.则有()()()()00lim lim x x x x f x f x g x g x →→'='.在定理1和定理2中,将分子、分母分别求导再求极限的方法称为洛必达法则. 使用洛必达法则时需要注意: (1)()()limx x f x g x →必须是00型或∞∞型不定式极限. (2)若()()0limx x f x g x →''还是00型或∞∞型不定式极限,且函数()f x '和()g x '仍满足定理中()f x 和()g x 所满足的条件,则可继续使用洛必达法则,即()()()()()()000limlimlim x x x x x x f x f x f x g x g x g x →→→'''=='''. (3)若无法判定()()f xg x ''的极限状态,或能判定它的极限振荡而不存在,则洛必达法则失效,此时,需要用其它方法计算()()limx x f x g x →.(4)可以把定理中的0x x →换为0x x +→,0x x -→,x →+∞,x →-∞,此时只要把定理中的条件作相应的修改,定理仍然成立.例1【解析】(1)定义域为()0,+∞,()11kx f x k x x-+'=-=. ①当0k ≤时,()0f x '>,函数()f x 在[]1,2为增函数,所以()()min 10f x f ⎡⎤==⎣⎦. ②当0k >时,由()0f x '>可得10x k <<,由()0f x '<可得1x k >,所以()f x 在10,k ⎛⎫ ⎪⎝⎭上递增,在1,k ⎛⎫+∞ ⎪⎝⎭上递减.于是()f x 在[]1,2上的最小值为()10f =或()2ln 2f k =-.(i )当0ln2k <-,即0ln2k <<时,()()min 10f x f ⎡⎤==⎣⎦. (ii )当0ln2k ≥-,即ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.综上所述,当ln2k <时,()()min 10f x f ⎡⎤==⎣⎦;当ln2k ≥时,()()min 2ln 2f x f k ⎡⎤==-⎣⎦.(2)令[)0,1t x =∈,则1ln 1x a x x ⎛⎫+≥ ⎪ ⎪-⎝⎭对()1,1x ∈-恒成立1ln 1t at t +⎛⎫⇔≥ ⎪-⎝⎭对[)0,1t ∈恒成立.法1:(分离参数法)当0t =,不等式恒成立,于是1ln 1t at t +⎛⎫≥ ⎪-⎝⎭对[)0,1t ∈恒成立1ln 1t t a t+⎛⎫ ⎪-⎝⎭⇔≤对()0,1t ∈恒成立. 令()1ln 1t t G t t +⎛⎫ ⎪-⎝⎭=,则()2221ln 11t t t t G t t +⎛⎫- ⎪--⎝⎭'=,令()221ln 11t t H t t t +⎛⎫=- ⎪--⎝⎭,则()()()222222222240111t t H t t t t +'=-=>---,所以()H t 在()0,1上递增,于是()()00H t H >=,即()0G t '>,所以()G t 在()0,1上递增.由洛必达法则,可得()20021lim lim 21t t t G t ++→→-==,于是02a <≤,所以正数a 的最大值为2. 法2:(不猜想直接用最值法)构造函数()1ln 1t F t at t +⎛⎫=- ⎪-⎝⎭,则()2222211at aF t a t t +-'=-=--. ①当20a -≥,即2a ≤时,()0F t '>,所以函数()F t 在[)0,1上递增,所以()()00F t F ≥=.②当20a -<,即2a >时,由()0F t '<可得0x ≤<所以函数()F t在⎡⎢⎣上递减,于是在⎡⎢⎣上,()()00F t F ≤=,不合题意. 综上所述,正数a 的最大值为2.法3:(先猜想并将猜想强化)由常用不等式ln 1x x ≤-(0x >)可得112ln 1111t tt t tt ++⎛⎫≤-= ⎪---⎝⎭,即21t at t ≤-.当0t =时,式子恒成立,当()0,1t ∈,有21a t ≤-恒成立,而221t>-,所以2a ≤. 下面证明a 可以取到2,即证明不等式1ln 21t t t +⎛⎫≥ ⎪-⎝⎭对[)0,1t ∈恒成立.构造函数()1ln 21t K t t t +⎛⎫=- ⎪-⎝⎭(01t ≤<),则()222222011t K t t t '=-=≥--,所以函数()K t 在[)0,1上递增,所以()()00K t K ≥=,所以不等式1ln 21t t t +⎛⎫≥ ⎪-⎝⎭对[)0,1t ∈恒成立,所以正数a 的最大值为2.法4:(先猜想并将猜想强化)()1ln 01t F t at t +⎛⎫=-≥ ⎪-⎝⎭对[)0,1t ∈恒成立,因为()00F =所以()020F a '=-≥,即2a ≤.下同法3.法5:(先猜想并将猜想强化)当0t =,不等式恒成立,于是1ln 1t at t +⎛⎫≥ ⎪-⎝⎭对[)0,1t ∈恒成立()1ln 1t t a G t t+⎛⎫ ⎪-⎝⎭⇔≤=对()0,1t ∈恒成立.由洛必达法则,可得()20021lim lim 21t t t G t ++→→-==,于是2a ≤.下同法3.【点评】法1(分离参数法)把恒成立问题转化为求()G t 的最小值,法2(最值法)把恒成立问题转化为求()F t 的最小值.由此可见最值法与分离参数法本质上是相通的,其本质都是把不等式恒成立问题转化为求函数的最值问题,其区别在于所求的函数中是否含有参数.法3、法4和法5都是先求出必要条件2a ≤,然后将必要条件进行强化,需要解题的敏感度和判断力.如果我们将这个必要条件与法2的最值法进行结合,可减少法2的分类讨论.例2【解析】(1)()e x f x a '=-.①当0a ≤时,()0f x '>在R 上恒成立,所以()f x 在R 上递增.②当0a >时,由()0f x '>可得ln x a >,由()0f x '<可得ln x a <.所以()f x 在(),ln a -∞上递减,在()ln ,a +∞上递增.(2)当1a =时,()e 2x f x x =--,所以()e 1x f x '=-,即()()e 110x x k x --++>在()0,+∞上恒成立.法1:(分离参数法)()()e 110xx k x --++>在()0,+∞上恒成立e 1e 1x x x k +⇔<-在()0,+∞上恒成立.令()e 1e 1x x x x ϕ+=-,则()()()()()()()22e e e 1e 1e e e 2e 1e 1x x x x x x x x x x x x x ϕ+--+--'==--,令()e 2x t x x =--,有()e 10x t x '=->在()0,+∞上恒成立,所以()t x 在()0,+∞上递增(也可由(1)可知,函数()e 2x t x x =--在()0,+∞上递增).而()1e 30t =-<,()22e 40t =->,所以()0t x =在()0,+∞上有唯一根()01,2x ∈,所以当()00,x x ∈时()0x ϕ'<,当()0,x x ∈+∞时()0x ϕ'>,于是()x ϕ在()00,x 上递减,在()0,x +∞上递增,所以()x ϕ在()0,+∞上的最小值为()0000e 1e 1x x x x ϕ+=-,因为00e 20x x --=,所以00e 2x x =+,于是()()()()000002112,321x x x x x ϕ++==+∈+-,所以()()02,3k x ϕ<∈,所以k 的最大值为2.法2:(不猜想直接用最值法)令()()()e 11x g x x k x =--++,则()()()()e 1e 1e 1x x x g x x k x k '=-+-+=+-,令()0g x '=可得1x k =-.①当10k -≤,即1k ≤时,有()0g x '>在()0,+∞上恒成立,于是()g x 在()0,+∞上递增,从而()g x 在()0,+∞上有()()01g x g >=,于是()0g x >在()0,+∞上恒成立.②当10k ->,即1k >时(因为k 是整数,所以2k ≥),可知当()0,1x k ∈-时,()0g x '<,当()1,x k ∈-+∞时,()0g x '>,于是()g x 在()0,+∞上的最小值是()11e 1k g k k --=-++.令。
初中数学“分层导学,培优补差”教学探究分层导学,培优补差是初中数学教学中的一种教学模式,旨在满足学生的个性差异,全面提高学生的数学素养。
在传统的数学教学中,教师通常按照固定的授课进度、学科大纲进行教学。
这种教学模式忽略了学生个体之间的差异,容易导致学生在学习过程中出现“跟不上”的情况。
而分层导学,培优补差的教学模式则通过将学生按照不同程度和能力划分成不同层次,针对不同层次的学生进行有针对性的教学,使每个学生都能够在适应自己的学习节奏的同时不落下其他同学。
分层导学首先需要对学生进行评估,了解每个学生的数学水平和学习能力。
通过课堂测试、作业情况等方式,将学生划分为掌握程度较好的学生、掌握程度一般的学生和掌握程度较差的学生三个层次。
然后,针对不同层次的学生,制定不同的教学计划和教学目标。
对于掌握程度较好的学生,可以提供更多的拓展练习,培养他们的数学思维能力和解决问题的能力。
对于掌握程度一般的学生,可以提供更多的巩固训练,帮助他们对数学知识有更深入的理解。
对于掌握程度较差的学生,可以进行个别辅导,重点关注基础知识的掌握和基本计算能力的提升。
在分层导学中,教师的角色发生了一定的转变。
教师不再是传递知识的单一角色,而是变成了学生的指导者和引导者。
教师需要根据学生的学习情况,灵活调整教学内容和教学方法,为学生提供个性化的学习支持。
教师还需要及时进行反馈和评价,关注学生的学习进展和困难,及时进行适当的调整。
通过这样的教学方式,学生的主动性和积极性得到了激发,他们更加乐于学习和探索,提高了学习效果。
分层导学还可以有效地提高学生的学习积极性和主动性。
通过将学生进行分层,让每个学生都能够在自己的层次上获得一定的成就感,并且通过不断的努力和进步向更高一层的学习挑战。
这种逐步提高的学习过程可以激发学生的学习兴趣和内在动机,使他们愿意主动去学习和思考,提高数学学习能力。
分层导学,培优补差的教学模式可以有效地提高学生的学习效果和学习积极性。
1.若集合{}
2,1m A =,{}4,2=B ,则“2=m ”是“{}4=B A ”的 ( )
A .充分不必要条件.
B .必要不充分条件.
C .充要条件.
D .既不充分也不必要条件. ]
2.若函数x e x f x sin )(=,则此函数图象在点(4,f (4))处的切线的倾斜角为( )
A .
2
π
B .0
C .钝角
D .锐角
3.在平面直角坐标系中,已知曲线C :2cos ,sin ,x y θθ=-+⎧⎨=⎩
(θ是参数,且3,22ππθ⎡⎤
∈⎢⎥⎣⎦),那么曲线C 关于直线y =x 对称的曲线是 ( )
4.在数列1,2,2,3,3,3,4,4,4,4,……中,第25项为 ( ). A .25 B .6 C .7 D .8
5.设两个非零向量12,e e 不共线,若12ke e + 与12e ke +
也不共线,则实数k 的取值范围为 ( ).
A .(,)-∞+∞
B .(,1)(1,)-∞-⋃-+∞
C .(,1)(1,)-∞⋃+∞
D .(,1)(1,1)(1,)-∞-⋃-⋃+∞ 6.曲线)4
cos()4sin(2π
π
-+
=x x y 和直线21=y 在y 轴右侧的交点按横坐标从小到大依次
记为P 1,P 2,P 3,…,则|P 2P 4|等于( ).
A .π
B .2π
C .3π
D .4π 7.右图为函数log n y m x =+ 的图象,其中m ,n 为常数,
则下列结论正确的是( ).
A .m < 0 , n >1
B .m > 0 , n > 1
C .m > 0 , 0 < n <1
D . m < 0 , 0 < n < 1
8已知函数()f x ,对任意实数,m n 满足()()(),f m n f m f n +=⋅且
(1)(
0f a a =≠则()f n = ()n N +∈.
9.在平面直角坐标系中,已知曲线c :2cos sin x y θθ
=-+⎧⎨
=⎩,(3,[,]22ππ
θθ∈
为参数) 则曲线c 关于y=x 对称的曲线方程是 10.已知函数32)1()1(3)1(31)(---+--=x x x x f ,则)8(1
-f = .
11.已知2().1(1)2;2(1) 4.f x x ax b f f =++≤-≤≤≤且则点(,)a b 所在区域面积
是
. 12.(本小题满分12分)
已知函数.)sin 2
cos 2()(2
b x x
a x f ++= (1)当1=a 时,求)(x f 的单调递增区间;
(2)当0>a ,且],0[π∈x 时,)(x f 的值域是]4,3[,求a 、b 的值. 13.(本小题满分12分)
已知双曲线C 的中心在原点,抛物线x 52y 2=的焦点是双曲线C 的一个焦点,
且双曲线过点(1,
3). (1)求双曲线的方程;
(2)设直线l :1kx y +=与双曲线C 交于A 、B 两点, 试问:
① k 为何值时⊥
② 是否存在实数k , 使A 、B 两点关于直线mx y =对称(m 为常数), 若存在,
求出k 的值; 若不存在, 请说明理由. 14.(本题满分12分) 已知02
cos 22sin
=-x
x , (Ⅰ)求x tan 的值;(Ⅱ)求x
x x sin )4
cos(22cos ⋅+π
的值.
15.(本题满分13分)
如图,已知正三棱柱ABC —111C B A 的底面边长是2,D 是侧棱1CC 的中点,直线AD 与侧面11BB C C 所成的角为45
.
(Ⅰ)求此正三棱柱的侧棱长;
(Ⅱ) 求二面角C BD A --的大小; (Ⅲ)求点C 到平面ABD 的距离.
A
B
D
1
A 1
B 1
C。