曲边梯形的面积
- 格式:docx
- 大小:24.07 KB
- 文档页数:5
曲边梯形的面积教学设计宁波滨海国际合作学校汪庆东一、教学内容解析本节课是人教A版选修2-2第一章第5节的内容。
该内容不在浙江省高考范围之列,本节课作为一节数学拓展课,主要让学生学会曲边梯形的面积的求法,了解定积分的实际背景,同时让学生了解微积分及割圆术等数学历史,旨在帮助学生了解以曲代直及无限逼近这两种重要的数学思想,进一步拓展学生视野,增强学生学习数学的兴趣。
基于以上分析,教学内容应在类比和转化的方法引领下,引导学生利用分割与无限逼近的思想解决生活当中的曲边梯形的面积的求法。
重点是探究求曲边梯形面积的方法难点是把“以直代曲”的思想方法转化为具体可操作的步骤,理解“无限逼近”的思想方法。
二、教学目标设置1、知识与技能目标:(1)通过问题情景,经历求曲边梯形面积的过程,初步了解、感受定积分概念的实际背景;(2)理解求曲边梯形面积的“四步曲”——分割、近似代替、求和、取极限;(3)了解割圆术、微积分创立的背景,了解相关数学史。
2、过程与方法目标:(1)通过问题的探究体会“以直代曲、无限逼近”的思想;(2)通过类比体会从具体到抽象、从特殊到一般的数学思想方法。
3、情感、态度与价值观目标:(1)在探究中进一步感受极限的思想,体会直与曲虽然是对立矛盾的;(2)通过相关数学史教学,让学生感受数学来源于生活并服务于生活的工具作用。
三、学情分析本节课的教学对象是高一年级学生,且本节课不作为高考考试内容,而高一学生对本节课的认知基础有限,根据分析学生在本节课之前已经具备的认知基础有:1. 学生学习过匀速直线运动的位移公式及其几何意义;2. 高一上学期学习了匀加速直线运动的位移公式,并初步了解其公式推导过程中的分割思想;3. 对割圆术求圆周率的方法有少部分的了解。
四、教学策略分析课堂教学以学生为中心,突出合作学习,探究学习和自主学习。
师生合作探究,通过匀速直线运动位移的几何意义匀加速直线运动的位移公式的推导变速运动位移公式的求解,通过师行合作,共同完成新知学习。
以抛物线弧段为曲边的曲边梯形面积
摘要:
1.抛物线弧段曲边梯形的定义
2.计算曲边梯形面积的方法
3.具体计算步骤和公式推导
4.实际应用场景和案例
正文:
抛物线弧段曲边梯形是指由两个平行的抛物线弧段和它们之间的直线段组成的梯形。
计算这种曲边梯形的面积是数学中的一个常见问题。
要计算曲边梯形的面积,需要先确定曲边梯形的参数。
这些参数包括两个抛物线弧段的顶点坐标和它们的半径,以及两个抛物线弧段之间的直线段的斜率和截距。
确定参数后,可以采用数值积分方法计算曲边梯形的面积。
数值积分方法的具体步骤如下:
1.将曲边梯形划分为若干个小区间,每个小区间选取一个代表点。
2.对每个代表点,计算它到曲边梯形底边的距离,得到一个数值。
3.对所有代表点的数值求和,得到曲边梯形的面积。
曲边梯形面积的具体计算公式为:
$A = int_{x_1}^{x_2} sqrt{1+(y"(x))^2} dx$
其中,$x_1$ 和$x_2$ 分别是两个抛物线弧段的顶点横坐标,$y"(x)$ 是第二个抛物线弧段的导数。
实际应用场景中,抛物线弧段曲边梯形常常出现在工程和物理问题中,例
如计算抛物线形轨道的面积,或者计算抛物线形物体在某一过程中的位移和速度等。
定积分与曲边梯形的面积求平面图形的面积是定积分在几何中的重要应用.把求平面图形的面积问题转化为求定积分问题,充分体现了数形结合的数学思想.当函数f(x)在区间〔a ,b]上恒为正时,定积分⎰badx x f )(的几何意义是以曲线f(x)为曲边的曲边梯形的面积.一般情况下,定积分⎰badx x f )(的几何意义是介于x 轴、函数f(x)的图象以及直线x=a,x=b 之间各部分面积的代数和,在x 轴上方的面积取正号,在x 轴下方的面积取负号.那么在一般情形下,定积分⎰badx x f )(的几何意义是曲线y=f(x),两条直线x =a,x =b 与x 轴所围成的各部分面积的代数和.本文主要探讨定积分与曲边梯形面积的关系.一. 利用定积分的定义求曲边梯形的面积例1.利用定积分的定义求由直线x=1,x=2和y=0及曲线y=x 3围成的图形的面积. 分析:画出草图,形象直观,帮助解题.对定积分定义的理解程度决定了解题的成败. 解:(1)分割把求面积的曲边梯形ABCD 分割成n 个小曲边梯形,用分点把区间[1,2]等分成n个小区间每个小区间的长度为过各分点作x 轴的垂线,把曲线梯形ABCD 分割成n 个小曲边梯形,它们的面积分别记作△S 1 ,△S 2,…,△S n .(2)近似代替取各小区间的左端点ξi ,用以点ξi 的纵坐标(ξi )3为一边,以小区间长△x=n1为其邻边的小矩形面积近似代替第i 个小曲边梯形面积,可以近似地表示为:(3)求和 因为每一个小矩形的面积都可以作为相应的小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形ABCD 面积S 的近似值,即(4)求极限当分点数目愈多,即△x 愈小时,和式①的值就愈接近曲边梯形ABCD 的面积S.因此∞→n 即△x →0时,和式①的极限就是所求的曲边梯形ABCD 的面积点评: (1)据定义求定积分的步骤:①分割;②近似代替;③求和;④取极限. (2)独立研究一个这种例题,是学习定积分过程中必需的,重点在于体验其中的数学思想.二、利用微积分基本定理求曲边梯形的面积 1.以x 为积分变量例2.求由抛物线y=x 2-1,直线x=2,y=0所围成的图形的面积. 分析:首先要较准确地画出图形,尤其是公共点. 解:首先画出如图所示的阴影部分就是所求作的图形. 由x 2-1=0,得抛物线与x 轴的交点坐标是(-1,0)和(1,0)所求图形分成两块,分别用定积分表示面积为:因为1)3(,1)3(2323-='--='-x x x x x x ,所以 dx x dx x ⎰⎰---+-112112)1(|1|=dx x dx x ⎰⎰-+--212112)1(|1|=213113|)3(|)3(x x x x -+-- =1-31+1-31+38-2-(31-1)=38, 即所围成的三角形面积为38.点评:在[-1,1]上, 抛物线在x 轴下方,这时有两种办法表示,其面积表示其一是dx x ⎰--112|1|,其二是dx x ⎰---112)]1(0[.2. 以y 为积分变量例3求曲线y=2x 与直线y=x-4围成的图形面积.分析:首先正确画出抛物线和直线的大致图象(关键点要尽可能准确),如果选择积分变量为x ,则要将区域分成两块才行,而如果选择积分变量y,如图,问题便很简单.解:由⎩⎨⎧-==,4,22x y x y 解得⎩⎨⎧-==,2,2y x 和⎩⎨⎧==.4,8y x 即A,B 两点的纵坐标分别是-2和4. 因此所求的面积为因为,24)642(232y y y y y -+='-+所以 S=4232422|)642(]2)4[(---+=-+⎰y y y dy y y =18.点评:由本题可看出,如果采用x 作为积分变量,积分的运算量会增加,可见,认真审题,找出最佳的方法是很重要的.三、逆用曲边梯形的面积求定积分 例4.求定积分⎰---12))1(1(dx x x 的值.解析:⎰---12))1(1(dx x x 表示圆(x-1)2+y 2=1(y ≥0)的一部分与直线y=x 所围成的图形(如图所示)的面积,因此⎰---12))1(1(dx x x =2141121412-=⨯⨯-⨯ππ. 点评: 本题如果用定积分的定义或微积分基本定理求解都比较麻烦,由⎰---12))1(1(dx x x 联想到圆(x-1)2+y 2=1(y ≥0)的一部分与直线y=x ,再联想到定积分的几何意义,从而简化了运算.这也是数学结合思想的又一体现。
§ 1.5.1曲边梯形的面积(二)
一.学习目标:
1•掌握用“分割、以直代曲、作和、逼近”四步求“变速直线运动的位移”、“变力做功”的方法;
2•进一步体会“以直代曲”、“逼近”的思想。
二.重点、难点:
会求“变速直线运动的位移”、“变力做功”;进一步体会以“有限和”来推导“无限和”
三.知识链接
2 2 2 2 1
1.122232n2— n(n 1)(2 n 1)
6
2•如何求曲边梯形的面积?
四.学习过程
(一)自主学习,合作探究
阅读课本第41至44页,完成以下问题
1•若已知物体的运动路程s与时间t的函数关系:s= f(t),如何求物体在某时刻t o的瞬时度?
2•汽车以速度v作匀速直线运动,经过时间t所行驶的路程为多少?如果汽车作变速直线动, 那么在相同时间内所行驶的路程相等吗?
3•若已知物体的运动速度v与时间t的函数关系:v= f(t),那么f (t0)的含义是什么?
如何求变速直线运动的物体在某时段内经过的路程呢?
例如:已知一物体做变速直线运动,其瞬时速度为v(t) 2t (单位:m/s ),则该物体在
出发后从t 1(s)到t 5(s)这4秒内所经过的位移是多少?(分解过程如下)。
分割
把时间段1,5分成n等分,则n个区间分别为____________________________________________ 每个时间段即区间长度为________;
◎在时间的小区间段内,以匀速代变速,在每一小时间段内,经过的位移
Si _______________________
◎作和
4.由直线t = 1 ,t = 5, v= 0和曲线v= 2t围成一个曲边梯形,那么这个曲边梯形面积有什么物理意义?每个小矩形的面积有什么物理意义?
5•分割越____ ,位移的近似值就越 _____ 。
当分割无限变细时,这个近似值就无限 _________ 所求变速直线运动的位移S。
(二)新知应用,技能培养
例1•已知汽车作变速直线运动,在时刻t(单位:h)的速度为v(t)= —t2+ 2 (单位:
km/h),那
么汽车在O w t< 1 (单位:h)时段内行驶的路程是多少?
例2•弹簧在拉伸的过程中,力与伸长量成正比,即F(x) kx(k为常数,x为伸长量),求
弹簧从平衡位置拉长b所做的功。
结合例1、例2即课本第45页例题,反思:求曲边梯形的面积、变速直线运动的位移、变力做功的方法有何区别?本质一样吗?
五.基础达标
1. (B级)设质点M受力F的作用沿X轴由点A ( a,0 )移动至点B ( b,0 ),并设F平行于X轴。
如
果力F是质点所在位置的函数F=F ( X), a X b,求F对质点M所做的功。
(提示:可参照课本第45页例2)
M ---- * F
X
2.(1)(B
级)设汽车的速度为60km/h,则该汽车在0.25h ,h及x h内走过的路程分别为15km, 60km,60x km。
试分别用图形的面积表示上述路程。
从t=0(h)到t=2(h)所走的路程。
小结
1•这节课我的收获是:
2.我想进一步探究的问题是:
60
O
12
60
t/h
60
2 x t/h (2)设汽车的速度v(t)的图像如下, 试分别用图形的面积表示汽车从t=0(h)到t=1(h),以及
3.( B级)若物体自由落体的运动速度为v gt,则在时间0,t内,求物体下落的距离。
v
t/h
3.这节课我最感兴趣的地方是:。