“华杯赛”试题(四年级组)
- 格式:doc
- 大小:92.50 KB
- 文档页数:5
2020年华杯赛四年级组试题、选择题(每小题10分,共40分。
以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。
)1. 6月1日,星期三下午,冬冬接到一封来自上海的信。
原来冬冬是一位勤学多思的好学生,他在全国小学数学奥林匹克比赛中获得一等奖,主办单位在信中邀请他于6月25日到上海参加颁奖大会呢!你能算一算,冬冬领奖的那一天是星期((A)日(B)—(C)五(D)六3. 几个小朋友在屋子里玩石头剪子布,丁丁在门外问他们一共有几个人,其中一个小朋友说:“不能告诉你人数,不过我们现在一共伸出来了22根手指,并且有3个人出石头。
”请问:屋子里至少有()个人在玩游戏。
(出石头的不伸手指,出剪子的伸2根,出布的伸5根)(A) 5 (B)8 (C)11 (D)144. 唐僧师徒四人途径一个桃园,被园主发现有人偷吃了桃子,盘问中,四人回答如下:孙悟空:“八戒偷吃了;”猪八戒:“我和沙师弟两人至多有一个人偷吃了”;沙僧:“二师兄(猪八戒)没有偷吃,偷吃的是我”;唐僧:“如果八戒偷吃了,沙僧一定也吃了”。
现在知道,师徒四人中只有一个说假话,那么,说假话的是((A)(B)(C)(D)11. 国庆游园会上,有一个100人的方队。
方队中每个人的左手要么拿红花,要么拿黄花;每人的右手要么拿红气球,要么拿绿气球。
已知拿红花的有42人,拿红气球的有63(A )孙悟空 (B )猪八戒 (C )沙僧 (D )唐僧、填空题(每小题10分,共40分。
5. 如果2只香蕉能换6个苹果,4个苹果能换16个梨,那么3只香蕉能换 _________ 个梨。
6. 如右图,在方框内填入数字,使算式成立,那么所得的积7 □ X 8 □ □ 5 □ □ 口 6 □ □口 口7 .将一个正六边形切割成三个完全相同的小正六边形和三个完全相同的菱形(如右图)。
如果大正六边形的面积为360平方厘米,那么 每个菱形的面积是 __________ 平方厘米。
第十七届“华杯赛”决赛赛前强化训练(四年级)目录:一行程问题 (1)二智巧趣题、图形面积 (9)三较复杂的鸡兔和盈亏问题 (12)四排列、组合、抽屉 (16)五牛吃草问题 (19)一行程问题【例题精讲】例1.火车通过长为82米的铁桥用了22秒,如果火车的速度加快1倍,它通过162米铁桥就用16秒。
求火车原来的速度和它的长度?解:假设用原来的速度通过162米的铁桥,那么火车要用16×2=32(秒)火车原来的速度为:(162-82)÷(32-22)=8(米/秒)火车长为:8×22-82=94(米)答:火车的速度是8米/秒,长度是94米。
例2.一条轮船往返于甲、乙两地之间,由甲至乙是顺水航行;由乙至甲是逆水航行。
已知船速是15千米/小时,逆水航行所用时间是顺水航行所用时间的2倍。
求水速?解:由题意可知,船行驶的路程相等。
而船顺水速度=船速+水速,逆水速度=船速-水速。
方法一:因为逆水航行时间是顺水航行时间的2倍,但路程相同,说明顺水速度是逆水速度的2倍,而顺水速度+逆水速度=船速×2。
故顺水速度+逆水速度=15×2=30(千米/时)。
根据和倍问题可知:逆水速度:30÷(2+1)=10(千米/时),水速:15-10=5(千米/时) 方法一:设水速为每小时x千米,由甲到乙顺水航行所用时间为a小时,由题意可列方程:(15+x)×a=(15-x)×2a解得:x=5答:水流速度为每小时5千米。
例3.一只轮船从甲地开往乙地顺水而行,每小时行28千米,到乙地后,又逆水而行,回到甲地,逆水比顺水多行2小时,已知水速每小时4千米。
求甲乙两地相距多少千米?解:(1)逆水速度:28-4×2=20(千米);(2)逆水比顺水多用2小时航行的路程:20×2=40(千米);(3)顺水从甲地到乙地所用的时间:40÷(4×2)=5(小时);(4)甲乙两地相距多少千米:28×5=140 (千米)。
成都四年级华杯赛试题一、填空题1、计算:①123+345+877+655=②2007+2007×2007÷2007=③75×45+17×45=④2007÷28+793÷28=⑤1+3+5+7+ (19)2、一个阶梯教室共有10排座位,第一排有20个座位,往后每一排都比前一排多2个座位,这个教室有个座位。
3、兄妹二人共有图画书67本,哥哥比妹妹多13本,哥哥有图画书本,妹妹有图画书本。
那么括号里应该填字母。
5、数学课上,李老师布置了两道题,结果是34人答对了第一题;有46人答对了第二题,没有人两道题全部做错,结果这个班共有52人,那么两道题都做对的有人。
6、为庆祝国庆,少年宫在大门口安装了50盏彩灯,彩灯则这50盏彩灯中,共有黄灯盏。
7、在右边的方格表的每个小方格中填入一个字,使得方格表的每行、每列及每条对角线上的四个放个中的文字都是“市”“少”“文”“杯”,那么表格中的“?”所在的方格中应填的汉字是8、不同的汉字代表不同1-9中的不同的数字,相同的汉字代表相同的数字,那么算式中所得的和用数字表示应为。
赛学数杯文少届一十+ 8 6 4 1 9 7 5 3 2十一届少文杯数学赛9、数一数,右图中有个三角形。
10、忍者鸣人修炼影分身,每一秒只有鸣人可变出两个分身,当整个练习场有65个鸣人时,他就修炼成功,那么从开始到成功花了秒。
二、解答下列各题。
11、小红,小明和小玲共有73块糖,如果小玲吃掉了3块,小红和小玲就一样多,如果小红给小明2块,小明的糖就是小红的糖的2倍,那么,小红原来有多少块糖?12、假日小志愿者为社区里行动不便的老人送报纸,小红负责以为住在6楼的老人,每上或下一层楼都要走15秒,那么小红上下一回共要多少秒?13、今年爷爷年龄64岁,爸爸的年龄是儿子的4倍。
当儿子长到爸爸现在年龄时,爷爷的年龄恰好等于父子俩的年龄合。
今年爸爸多少岁?14、春节前夕,一个富翁向丐帮帮众施舍一笔钱。
小学华杯赛试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是华杯赛的全称?A. 华罗庚数学竞赛B. 华罗庚杯数学竞赛C. 华杯数学竞赛D. 华罗庚数学邀请赛答案:B2. 华杯赛的举办周期是多久?A. 每年一次B. 每两年一次C. 每三年一次D. 每四年一次答案:A3. 华杯赛的参赛对象通常是:A. 小学生B. 初中生C. 高中生D. 大学生答案:A4. 华杯赛的试题类型包括:A. 选择题B. 填空题C. 计算题D. 所有以上答案:D二、填空题(每题5分,共20分)1. 华杯赛的试题通常由_________组成。
答案:选择题、填空题、解答题2. 华杯赛的举办地点通常在_________。
答案:学校或指定的考试中心3. 华杯赛的参赛者需要具备_________。
答案:数学竞赛的基本知识和解题技巧4. 华杯赛的获奖者通常会获得_________。
答案:证书和奖品三、解答题(每题10分,共60分)1. 已知一个数列的前三项为1,2,4,求第四项的值。
答案:82. 一个长方形的长是宽的两倍,如果宽增加3厘米,长减少2厘米,面积不变,求原来长方形的长和宽。
答案:设原来长方形的宽为x厘米,则长为2x厘米。
根据题意得方程:x(2x-2) = (x+3)(2x-2-3),解得x=6,所以原来长方形的长为12厘米,宽为6厘米。
3. 甲乙两人同时从A地出发,甲的速度是乙的1.5倍,如果甲到达B地后立即返回,与乙在C地相遇,求甲乙两人的速度比。
答案:设乙的速度为v,则甲的速度为1.5v。
设A、B两地之间的距离为d,则甲从A到B再返回C的总距离为2d,乙从A到C的距离为d。
由于甲乙两人相遇,所以他们所用的时间相同,即2d/1.5v = d/v,解得v = 2d/3,所以甲乙两人的速度比为1.5:1。
4. 一个水池有甲乙两个进水管,甲管单独注满水池需要4小时,乙管单独注满水池需要6小时。
如果两管同时开启,需要多少时间才能注满水池?答案:设水池的容量为1,甲管的注水速度为1/4,乙管的注水速度为1/6。
第十八届华杯赛第三期月月练四年级试题
一、单项选择题(请选择唯一的正确答案.共2题,每题10分,共20分.)
1、下面陈述中正确的有( )个.
(1)两个数相乘的积一定大于它们的和.
(2)三位数乘以两位数,积可能是四位数也可能是五位数.
(3)乘法估算的结果比实际结果大.
(4)非零两数相乘,一个因数不变,另一个因数乘以3 ,积也要乘以3.
A、1
B、2
C、3
D、4
2、下面陈述中正确的有( )个.
(1)直角和一个锐角可以组成一个平角.
(2)平角的度数是直角度数的2倍,是周角度数的一半.
(3)比平角小的一定是钝角.
(4)两条射线组成的图形叫做角.
A、1
B、2
C、3
D、4
二、填空题(共4题,每题10分,共40分.)
3、下图中E,F分别是矩形ABCD中AD和BC边的中点.图中
共有( )个平行四边形.
4、从1,2,3,4,5,6中选出3个不同的数字,组成的三位数中,6的倍数共有( )个.
5、动车从北京到上海铁路沿线共停5站(包括北京和上海).站点不同的区间,路程都不相同.在铁路部门为这条动车线路准备的火车票中,共有( )种不同的票价.
6、你能根据以下的线索找出百宝箱的密码吗?
(1)密码是一个六位数字.
(2)这个六位数字在800000与900000之间,并且千位上是0,十位上是4,百位数和个位数相同.
(3)密码的十万位,万位,千位上数字组成的三位数除以百位,十位上数字组成的两位数,商是35.
百宝箱的密码是( ).。
华杯赛试题及答案小学一、选择题(每题5分,共20分)1. 下列哪个选项是最小的质数?A. 0B. 1C. 2D. 32. 如果一个数的因数只有1和它本身,那么这个数是:A. 合数B. 质数C. 偶数D. 奇数3. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是:A. 24立方厘米B. 26立方厘米C. 28立方厘米D. 30立方厘米4. 一个数的平方是36,那么这个数是:A. 6B. -6C. 6或-6D. 无法确定二、填空题(每题5分,共20分)1. 一个数的最小倍数是______。
2. 一个数的最大因数是______。
3. 一个数的因数的个数是______。
4. 一个数的倍数的个数是______。
三、解答题(每题10分,共30分)1. 一个长方体的长、宽、高分别是5cm、4cm、3cm,求它的体积。
2. 一个数的平方是64,求这个数。
3. 一个班级有45名学生,如果每排坐5名学生,那么需要排几排?四、应用题(每题15分,共30分)1. 小明买了3支铅笔和2本笔记本,每支铅笔的价格是1元,每本笔记本的价格是2元。
请问小明一共花了多少钱?2. 一个长方体的长是10cm,宽是8cm,高是6cm,求它的表面积。
答案:一、选择题1. C2. B3. A4. C二、填空题1. 它本身2. 它本身3. 有限个4. 无限个三、解答题1. 体积 = 长× 宽× 高= 5cm × 4cm × 3cm = 60立方厘米2. 这个数是8或-8(因为8^2 = 64且(-8)^2 = 64)3. 需要排的排数 = 学生总数÷ 每排人数= 45 ÷ 5 = 9排四、应用题1. 小明一共花了3 × 1元+ 2 × 2元 = 3元 + 4元 = 7元2. 表面积= 2 × (长× 宽 + 长× 高 + 宽× 高)= 2 × (10cm × 8cm + 10cm × 6cm + 8cm × 6cm) = 2 × (80平方厘米 + 60平方厘米 + 48平方厘米) = 2 × 188平方厘米 = 376平方厘米。
华杯赛小学试卷一、选择题(每题2分,共20分)1. 下列哪个选项是华杯赛小学组的参赛年龄?A. 5-7岁B. 8-12岁C. 13-15岁D. 16-18岁2. 华杯赛小学组的考试科目通常包括哪些?A. 数学、语文B. 数学、英语C. 数学、科学D. 数学、美术3. 华杯赛小学组的考试形式是什么?A. 笔试B. 口试C. 实验操作D. 团队竞赛4. 下列哪个是华杯赛小学组的奖项设置?A. 一等奖、二等奖、三等奖B. 金杯、银杯、铜杯C. 特别奖、优秀奖D. 特等奖、一等奖、二等奖5. 华杯赛小学组的考试时间通常在每年的什么时候?A. 春季B. 夏季C. 秋季D. 冬季6. 参加华杯赛小学组的学生需要具备哪些基本条件?A. 良好的数学基础B. 良好的语文基础C. 良好的英语基础D. 良好的科学基础7. 华杯赛小学组的考试内容主要侧重于哪些方面?A. 基础数学知识B. 应用数学知识C. 数学思维能力D. 数学竞赛技巧8. 华杯赛小学组的试卷通常包括哪些题型?A. 选择题、填空题B. 选择题、判断题C. 选择题、简答题D. 选择题、计算题9. 华杯赛小学组的考试难度如何?A. 较易B. 中等C. 较难D. 极难10. 下列哪个不是华杯赛小学组的考试要求?A. 遵守考试纪律B. 携带有效身份证件C. 携带手机进入考场D. 按时提交试卷二、填空题(每题2分,共20分)11. 华杯赛小学组的考试通常采用______方式进行,以考查学生的数学思维能力。
12. 参加华杯赛小学组的学生需要具备良好的______基础。
13. 华杯赛小学组的考试内容侧重于考查学生的______知识。
14. 华杯赛小学组的试卷题型通常包括选择题和______题。
15. 华杯赛小学组的考试时间通常安排在每年的______季节。
16. 华杯赛小学组的奖项设置通常包括一等奖、二等奖和______。
17. 参加华杯赛小学组的学生需要携带有效身份证件,并______手机进入考场。
四年级华赛试题及答案试题一:数学问题问题描述:小华有36个苹果,他打算将这些苹果平均分给6个小朋友。
每个小朋友可以得到多少个苹果?答案:小华有36个苹果,要平均分给6个小朋友,我们可以用36除以6来计算每个小朋友可以得到的苹果数量。
36 ÷ 6 = 6。
所以,每个小朋友可以得到6个苹果。
试题二:语文问题问题描述:请写出“春眠不觉晓,处处闻啼鸟”的下一句。
答案:“夜来风雨声,花落知多少。
”试题三:英语问题问题描述:根据所给的英文句子,选择正确的单词填空。
"I like to play _______ basketball."A. aB. theC. 不填答案:C. 不填试题四:科学问题问题描述:植物通过什么过程将阳光转化为能量?答案:植物通过光合作用将阳光转化为能量。
在光合作用中,植物利用叶绿素吸收太阳光,将水和二氧化碳转化为葡萄糖和氧气。
试题五:逻辑推理问题问题描述:小明、小华和小李是三个好朋友,他们分别来自不同的城市:北京、上海和广州。
已知:1. 小明不是来自广州。
2. 小华不是来自北京。
3. 如果小华来自上海,那么小明来自北京。
4. 小李不是来自上海。
根据以上信息,判断他们各自的城市。
答案:根据第4条,小李不是来自上海,那么他只能是来自北京或广州。
由于第2条说明小华不是来自北京,所以小华只能是来自广州。
这样,小明只能是来自上海。
所以,小明来自上海,小华来自广州,小李来自北京。
试题六:地理问题问题描述:世界上最深的海沟是什么?答案:世界上最深的海沟是马里亚纳海沟(Mariana Trench),它位于西太平洋,最深处达到了约11,034米。
试题七:历史问题问题描述:中国的四大发明是什么?答案:中国的四大发明包括:造纸术、印刷术、火药和指南针。
试题八:艺术问题问题描述:请列举至少三种中国传统绘画的技法。
答案:中国传统绘画技法包括但不限于:工笔画、写意画和泼墨画。
试题九:体育问题问题描述:足球比赛中,一个标准足球场的长和宽分别是多少米?答案:一个标准足球场的长应该在100米到110米之间,宽应该在64米到75米之间。
华杯赛四年级一、填空。
1、已知一数列:5、4、7、1、2、5、4、3、7、1、2、5、4、3、7、1……由此可推出第2008个数是( ).2、观察下边数的排列规律,第20行左起第一个数是().13 5 79 11 13 15 1719 21 23 25 27 29 31……………………3、山羊的比绵羊的只数多92,山羊的只数是绵羊的5倍,绵羊有()只,山羊有()只。
4、小明在计算除法时,把除数98写成89,结果得到的商是43,余数是3,正确的商是(),余数是()。
5、昕昕在计算除法时,把被除数172写成了137,这样商比原来少3,余数比原来多1,原来余数为(),除数为()。
6、小芳想把一个数除以4,却错乘以4,接着她想加28,却错减去28,犯了这两个错误后,得结果是68,如果按正确的运算方法计算,计算结果应是()。
7、学校少先队员参加航天展览,如果每车坐45人,则有10人不能乘车;如果每车多坐5人,恰好多余1辆车.全体少先队员有()人.8、少先队员植树,如果每人种5棵树,还多3棵树;如果其中2人每人种4棵,其余每人种6棵,就恰好种完。
少先队员有()人,树有()棵。
9、四(1)班召开家长会,同学们给每位家长准备了一个杯子,结果少了8个;这样李老师又拿来了原来杯子数的一半,结果又多了10个。
这次家长会有()位家长参加。
10、被减数、减数、差之和是900,减数比差小50,减数是()。
11、小刚今年12岁,妈妈今年40岁,()年后妈妈的年龄正好是小刚的3倍。
12、A、B、C三个数,A+B=252,B+C=197,C+A=149。
A是()。
B是( ).C 是()。
13、2003年,一个青年说:“今年我的生日过了,我现在的年龄正好是我出生年份的四个数字之和.”这个青年是( )年出生的。
14、鸡兔共200只,鸡脚比兔脚少56只,则鸡有()只,兔有( )只。
15、有同样大小的黑、白、红珠子共180个,按5个红珠、4个白珠、3个黑珠排列,第158个珠子是()颜色。
华杯赛四年级一、填空。
1、已知一数列:5、4、7、1、2、5、4、3、7、1、2、5、4、3、7、1……由此可推出第2008个数是( ).2、观察下边数的排列规律,第20行左起第一个数是()。
13 5 79 11 13 15 1719 21 23 25 27 29 31……………………3、山羊的比绵羊的只数多92,山羊的只数是绵羊的5倍,绵羊有()只,山羊有()只。
4、小明在计算除法时,把除数98写成89,结果得到的商是43,余数是3,正确的商是(),余数是()。
5、昕昕在计算除法时,把被除数172写成了137,这样商比原来少3,余数比原来多1,原来余数为(),除数为()。
6、小芳想把一个数除以4,却错乘以4,接着她想加28,却错减去28,犯了这两个错误后,得结果是68,如果按正确的运算方法计算,计算结果应是()。
7、学校少先队员参加航天展览,如果每车坐45人,则有10人不能乘车;如果每车多坐5人,恰好多余1辆车。
全体少先队员有()人。
8、少先队员植树,如果每人种5棵树,还多3棵树;如果其中2人每人种4棵,其余每人种6棵,就恰好种完。
少先队员有()人,树有()棵。
9、四(1)班召开家长会,同学们给每位家长准备了一个杯子,结果少了8个;这样李老师又拿来了原来杯子数的一半,结果又多了10个。
这次家长会有()位家长参加。
10、被减数、减数、差之和是900,减数比差小50,减数是()。
11、小刚今年12岁,妈妈今年40岁,()年后妈妈的年龄正好是小刚的3倍。
12、A、B、C三个数,A+B=252,B+C=197,C+A=149.A是().B是().C 是()。
13、2003年,一个青年说:“今年我的生日过了,我现在的年龄正好是我出生年份的四个数字之和。
”这个青年是()年出生的。
14、鸡兔共200只,鸡脚比兔脚少56只,则鸡有()只,兔有()只。
15、有同样大小的黑、白、红珠子共180个,按5个红珠、4个白珠、3个黑珠排列,第158个珠子是()颜色。
第十五届华罗庚金杯少年数学邀请赛初赛试题(小学组)一、选择题(每小题 10 分,满分60分. 以下每题的四个选项中,仅有一个是正确的. 请将表示正确答案的英文字母写在每题的圆括号内)1. 如图Q-1所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 ( ).(A ) 21 (B )32 (C )52 (D )125 2. 两条纸带,较长的一条为23cm ,较短的一条为15cm. 把两条纸带剪下同样长的一段后,剩下的两条纸带中,要求较长的纸带的长度不少于较短的纸带长度的两倍,那么剪下的长度至少是 ( ) cm.(A) 6 (B )7 (C )8 (D )93. 两个水池内有金鱼若干条, 数目相同. 亮亮和红红进行捞鱼比赛, 第一个水池内的金鱼被捞完时,亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时,亮亮比第一次多捞33条,与红红捞到的金鱼数目比是5:3. 那么每个水池内有金鱼( ) 条.(A) 112 (B )168 (C )224 (D )3364. 从21,31,41,51,61中去掉两个数,使得剩下的三个数之和与76最接近,去掉的两个数是 ( ).(A ) 21,51 (B )21,61 (C )31,51 (D )31,41 5. 恰有20个因数的最小自然数是 ( ).(A) 120 (B )240 (C )360 (D )4326. 图Q-2的大正方形格板是由81个1平方厘米的小正方形铺成, B , C 是两个格点. 若请你在其它的格点中标出一点A ,使得△ABC 的面积恰等于3平方厘米,则这样的A点共有 ( ) 个.(A )6 (B )5 (C )8 (D )10二、填空题 (每小题 10 分,满分40分) 7. 算式 4.03.13.0241325.0721-⨯+⨯+-的值为 . 8. “低碳生活”从现在做起,从我做起. 据测算,1公顷落叶阔叶林每年可吸收二氧化碳14吨. 如果每台空调制冷温度在国家提倡的26℃基础上调到27℃,相应每年减排二氧化碳21千克. 某市仅此项减排就相当于25000公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3台空调计,该市家庭约有 万户. (保留整数)9. 从0、1、2、3、4、5、6、7、8、9这十个数字中,选出九个数字,组成一个两位数、一个三位数和一个四位数,使这三个数的和等于2010,那么其中未被选中的数字是 .10. 图Q-3是一个玩具火车轨道,A 点有个变轨开关,可以连接B 或者C . 小圈轨道的周长是1.5米,大圈轨道的周长是3米. 开始时,A 连接C ,火车从A 点出发,按照顺时针方向在轨道上移动,同时变轨开关每隔1分钟变换一次轨道连接. 若火车的速度是每分钟10米,则火车第10次回到A 点时用了 分钟.第十五届全国华罗庚金杯少年数学邀请赛初赛试题解答(小学组)一、选择题1. 如图A-1所示, 平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的 ( ).(A ) 21 (B )32 (C )52 (D )125 【答案】A.【解答】由图可知, 左上角和右上角的阴影部分的面积分别恰等于一个平行四边形内正六边形的面积, 因此阴影部分的面积占平行四边形面积的21. 2. 两条纸带, 较长的一条为23cm, 较短的一条为15cm. 把两条纸带剪下同样长的一段后, 剩下的两条纸带中, 要求较长的纸带的长度不少于较短的纸带长度的两倍, 那么剪下的长度至少是 ( ) cm.(A) 6 (B )7 (C )8 (D )9【答案】B.【解答】设剪下的长度为x cm, 那么有:)15(223x x -≥-,解得7≥x . 因此, 剪下的长度至少为7 cm.3. 两个水池内有金鱼若干条, 数目相同. 亮亮和红红进行捞鱼比赛, 第一个水池内的金鱼被捞完时, 亮亮和红红所捞到的金鱼数目比是3:4;捞完第二个水池内的金鱼时, 亮亮比第一次多捞33条, 与红红捞到的金鱼数目比是5:3. 那么每个水池内有金鱼 ( ) 条.(A) 112 (B )168 (C )224 (D )336【答案】B.【解答】解法1:这是一道工程问题的变形, 每个水池内有金鱼168343355(33=+-+÷(条). 解法2:可以认为是比例应用题, 设亮亮第一次捞到3n 条, 则红红第一次捞到4n 条, 依题意, 有35334333=-+n n , 解得n =24, 因此水池内共有金鱼7n =168条. 4. 从21,31,41,51,61中去掉两个数, 使得剩下的三个数之和与76最接近, 去掉的两个数是 ( ).(A ) 21,51 (B )21,61 (C )31,51 (D )31,41 【答案】D.【解答】通分21=420210, 31=420140, 41=420105, 51=42084, 61=42070, 76=420360. 显然, 210+84+70=364最接近360.5. 恰有20个因数的最小自然数是 ( ).(A) 120 (B )240 (C )360 (D )432【答案】B.【解答】因为20=2×10=4×5=2×2×5, 因此, 具有20个因数的自然数是3与9个2的乘积, 即:3×2×2×2×2×2×2×2×2×2=1536; 或者是3个3与4个2的乘积, 即: 3×3×3×2×2×2×2=432; 或者是3, 5与4个2的乘积, 即: 3×5×2×2×2×2=240, 因此最小的自然数为240.6. 如图A-2的大正方形格板是由81个1平方厘米的小正方形铺成, B , C 是两个格点. 若请你在其它的格点中标出一点A , 使得△ABC 的面积恰等于3平方厘米, 则这样的A 点共有( ) 个.(A )6 (B )5 (C )8 (D )10【答案】C.【解答】 从最上面的水平线开始将水平线分别记为第1、第2、…、第10条水平线, 每条水平线均由左至右判断哪个格点符合题目要求. 以此穷举法可以得到:第1条水平线上没有格点符合要求, 第2条水平线上仅有7A 符合要求. 如图A-3所示, 类似可以得到格点2A ,1A ,6A 符合要求, 对称地, 可以得到5A ,4A ,3A ,8A 符合要求. 故答案是C.二、填空题 7. 算式 4.03.13.0241325.0721-⨯+⨯+-的值为 . 【答案】1218. 【解答】 4.03.13.0241325.0721-⨯+⨯+-=10953434175++=75+32=1218. 8. “低碳生活”从现在做起, 从我做起. 据测算, 1公顷落叶阔叶林每年可吸收二氧化碳14吨. 如果每台空调制冷温度在国家提倡的26℃基础上调到27℃, 相应每年减排二氧化碳21千克. 某市仅此项减排就相当于25000公顷落叶阔叶林全年吸收的二氧化碳;若每个家庭按3台空调计, 该市家庭约有 万户. (保留整数)【答案】556.【解答】 25000⨯14⨯1000÷(21⨯3)≈5555555.6.9. 从0、1、2、3、4、5、6、7、8、9这十个数字中, 选出九个数字, 组成一个两位数、一个三位数和一个四位数, 使这三个数的和等于2010, 那么其中未被选中的数字是 .【答案】6.【解答】由于和为2010 所以四位数首位只能为1, 设四位数、三位数、两位数分别为abc 1, ,def gh . 设没有被选的数字为x , 那么100()10()()1010a d b e g c f h +++++++=.两边同时减去h g f e d c b a +++++++, 由于451=+++++++++x h g f e d c b a , 则x g e b d a +=++++966)(9)(99.两边都可以被9整除, 因此6=x .事实上, 由去掉6以后的9个数码0, 1, 2, 3, 4, 5, 7, 8, 9可以组成一个两位数, 一个三位数, 一个四位数: 78, 540, 1392, 满足78 + 540 + 1392 = 2010.【说明】1) 另一解法. 设四位数、三位数、两位数分别为abc 1, ,def gh , 既然他们的和是2010, 三个整数的个位、十位和百位相加, 一定都有进位, 所以进位的数目至少是3, 设为k . 已知:所有加数数字之和=和的数字之和+9×k =3+9k , 由于012945++++=, 故有:363945k ≤+<, 33423599k <≤<<, 所以4k =, 三个整数abc 1, ,def gh 的数字和是3939k +=, 因此没有被选的数字为6.2) 可以询问:有多少不同的 {abc 1, ,def gh } 满足它们的和是2010呢?从条件可知:20c f h ++=或10c f h ++=. 如果20c f h ++=, 则19b e g ++≠, 否则39c f h b e g +++++=, 这是不可能的;当10c f h ++=时,9b e g ++≠, 否则9937c f h b e g +++++++=, 也是不可能的, 因为38a b cdefgh +++++++=. 故有20 (1)9 (2)9 (3)c f h b e g a d ++=⎧⎪++=⎨⎪+=⎩用穷举法, (1)的解是{3,8,9},{4,7,9},{5,7,8};(2)的解是{0,2,7},{0,4,5},{2,3,4};(2)的解是{0,9},{2,7},{4,5};8个数字,,,,,,,a b c d e f g h 所取的数字各不相同, 并且0,0d g ≠≠故有1. {},,c f h ={3,8,9}, {}{}{}{},,0,2,7,,4,5b e g a d ==, 有不同的642=48⨯⨯组解;2. {},,c f h ={3,8,9}, {}{}{}{},,0,4,5,,2,7b e g a d ==, 有不同的642=48⨯⨯组解;3. {}{}{}{}{}{},,5,7,8,,,2,3,4,,0,9c f h b e g a d ===, 有不同的661=36⨯⨯组解,即当20c f h ++=时共有132组解.类似, (1)和(2)交换, 此时8=+d a ,有108组解答.因此, 共有240组答案.10. 图A-4是一个玩具火车轨道, A 点有个变轨开关,可以连接B 或者C . 小圈轨道的周长是1.5米, 大圈轨道的周长是3米. 开始时, A 连接C , 火车从A 点出发, 按照顺时针方向在轨道上移动, 同时变轨开关每隔1分钟变换一次轨道连接. 若火车的速度是每分钟10米, 则火车第10次回到A 点时用了 分钟.【答案】 2.1.【解答】根据条件, 在小圈火车行驶一圈用时15.0105.1=÷分钟, 在大圈火车行驶一圈用时3.0103=÷分钟. 设回到A 点时用时为t 分钟, 这样我们有下表:下面我们给出一个一般的解答.设玩具火车绕小圈轨道m 圈, 绕大圈轨道n 圈, 则玩具火车运动路程是1.53S m n =+, 时间是1.5310m n +. 如果 1.5310m n +⎡⎤⎢⎥⎣⎦是偶数, 则变轨开关AC 连通, 如果 1.5310m n +⎡⎤⎢⎥⎣⎦是奇数, 则变轨开关AC 连通. 我们寻找最小的m n +, 使1.5310m n +是偶数. 无妨设 1.5310m n K +=, 或3620m n K +=,这里K 是偶数, 并且有3为约数, 是玩具火车运动的时间, 因此最小的K 是6. 即求m 和n 使240m n +=.当n =3, 3010n ⎡⎤=⎢⎥⎣⎦, 故开始玩具火车绕大圈轨道4圈之后进入小圈, 时间是12 1.210=(分钟);当n =4, m =5时, 7.512110+⎡⎤=⎢⎥⎣⎦, 912210+⎡⎤=⎢⎥⎣⎦, 故玩具火车绕小圈轨道6之后再次进入大圈轨道, 此时1.5310m n +=1.56342.110⨯+⨯=(分钟)(可以称为一个拟循环) 将玩具火车再次进入大圈运行, 运行圈数记为2n . 2n =3时,1.5637310⨯+⨯=(分钟), 玩具火车应当再次进入小圈运行, 运行圈数记为2m , 既然1.57 1.5611010⨯⨯>>, 故玩具火车绕小圈运行7圈后, 应再次进入大圈运行, 此时1.53 1.51337 4.051010m n +⨯+⨯==(分钟). 将玩具火车再次进入大圈运行, 运行圈数记为3n . 既然1.513311 1.51331051010⨯+⨯⨯+⨯>>, 故玩具火车绕大圈运行4圈后, 应再次进入小圈运行, 此时1.53 1.513311 5.251010m n +⨯+⨯==(分钟), 则玩具火车绕大圈运行5圈后,1.53 1.51831161010m n +⨯+⨯==(分钟). 结论玩具火车第29次回到A 时, 变轨开关AC 连通, 即回到原始状态.。
华杯赛小学生试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是正确的?A. 华杯赛是面向中学生的数学竞赛B. 华杯赛是面向小学生的数学竞赛C. 华杯赛是面向大学生的数学竞赛D. 华杯赛是面向高中生的数学竞赛答案:B2. 华杯赛的全称是什么?A. 华罗庚杯数学竞赛B. 华罗庚杯物理竞赛C. 华罗庚杯化学竞赛D. 华罗庚杯信息学竞赛答案:A3. 华杯赛每年举办几次?A. 一次B. 两次C. 三次D. 四次答案:A4. 华杯赛的主办单位是?A. 教育部B. 科技部C. 体育部D. 文化部答案:A二、填空题(每题5分,共20分)1. 华杯赛的举办时间为每年的________月。
答案:32. 华杯赛的参赛对象是________年级的学生。
答案:小学3. 华杯赛的初赛通常包括________和________两种题型。
答案:选择题填空题4. 华杯赛的决赛题型包括________、________和________。
答案:选择题填空题应用题三、解答题(每题10分,共20分)1. 请简述华杯赛的历史背景。
答案:华杯赛全称华罗庚杯数学竞赛,是为了纪念中国著名数学家华罗庚而设立的,旨在激发小学生学习数学的兴趣,提高他们的数学素养。
该竞赛自1993年起每年举办,已成为中国小学生数学竞赛中的重要赛事之一。
2. 华杯赛的参赛流程是怎样的?答案:华杯赛的参赛流程通常包括报名、初赛、复赛和决赛四个阶段。
首先,学生需要在指定时间内完成报名。
初赛通常在3月份举行,通过初赛选拔出的学生将参加复赛。
复赛成绩优异者将进入决赛,最终角逐华杯赛的各类奖项。
15届华杯决赛4小学试题及(答案)doc.一、选择题(每题5分,共30分)1. 一个数的3倍加上4等于这个数的5倍减去6,这个数是多少?A. 2B. 3C. 4D. 5答案:C2. 甲、乙、丙三人进行100米赛跑,甲比乙快10米,丙比乙慢10米,当甲到达终点时,丙距离终点还有多少米?A. 20米B. 30米C. 40米D. 50米答案:A3. 一个班级有40名学生,其中男生人数是女生人数的2倍,这个班级有多少名男生?A. 16名B. 20名C. 24名D. 28名答案:C4. 一个数的1/2加上这个数的1/3等于9,这个数是多少?A. 12B. 18C. 24D. 36答案:A5. 一本书的页码从1开始连续编号,如果这本书的总页数是奇数,那么所有页码之和是多少?A. 总页数的一半B. 总页数的一半加1C. 总页数的一半减1D. 总页数的一半乘以2答案:B6. 一个长方形的长是宽的2倍,如果长增加4厘米,宽增加2厘米,那么面积增加多少平方厘米?A. 20平方厘米B. 24平方厘米C. 28平方厘米D. 32平方厘米答案:A二、填空题(每题5分,共20分)1. 一个数的3倍是45,这个数是________。
答案:152. 一个数除以5余1,除以6余2,这个数最小是________。
答案:313. 一个数的1/4加上这个数的1/5等于2,这个数是________。
答案:104. 一个数的2倍减去3等于这个数加上5,这个数是________。
答案:8三、解答题(每题10分,共50分)1. 一个数的5倍加上另一个数的4倍等于70,如果这两个数的和是14,求这两个数。
答案:设这两个数分别为x和y,则有5x + 4y = 70和x + y = 14。
解这个方程组得到x = 6,y = 8。
2. 一个班级有学生人数是老师的4倍,如果老师增加1人,学生人数就是老师的3倍,求原来班级有多少名学生。
答案:设原来班级有x名学生,则有x = 4y和x = 3(y + 1),其中y是老师人数。
“华杯赛”试题(四年级组) 一、填空题(每题10分,共80分) 1、规定x △y =5xy +3x +ay ,其中a 为常数.比如9△4=5×9×4+3×9+4a =207+4a .当a 取___________时,对任何数x 和y ,有x △y =y △x . 2、编号为1―9的九个盒子中共放有351粒米,已知每个盒子都比前一号盒子多相同粒米.如果1号盒内放了11粒米,那么后面的盒子比它前一号的盒子多放__________粒米。
3、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□.但是我记得,它能被11和13整除,那么这个号码是_________. 4、一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨 根.(损耗忽略不计) 5、5个数写成一排,前3个数的平均值是15,后两个的数的平均值是10,这五个数的平均值是__________. 6、工人铺一条路基,若每天铺260米,铺完全路长就得比原计划延长8天;若每天铺300米,铺完全路长仍要比原计划延长4天,这条路长_________米. 7、A 、B 、C 、D 四个同学猜测他们之中谁被评为三好学生. A 说:“如果我被评上,那么B 也被评上.”B 说:“如果我被评上,那么C 也被评上.”C 说:“如果D 没评上,那么我也没评上.”实际上他们之中只有一个没被评上,并且A 、B 、C 说的都是正确的.则没被评上三好学生的是。
8、如图1,一共有个三角形. 二、解答题(每题10分,共40分,要求写出解答过程) 9、甲、乙两港的航程有500千米,上午10点一艘货船从甲港开往乙港(顺流而下),下午2点一艘客船从乙港开往甲港.客船开出12小时与货船相遇.已知货船每小时行15千米,水流速度每小时5千米,客船每小时行多少千米?(本题15分) 10、一列客车以每小时40千米的速度在9时由甲城开往乙城,一列快车以每小时58千米的速度在11时也由甲城开往乙城,为了行驶安全,列车间的距离不应小于8千米,那么客车最晚应在什么时候停车让快车错过?(本题15分) 11、甲、乙两车分别从A 、B 两站同时相向开出,已知甲车速度是乙车速度的2倍,甲、乙到达途中C 站的时刻依次为5∶00和17∶00,这两车相遇是什么时刻? (本题20分) 12、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外∶∶∶∶∶∶∶∶∶装∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶订∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶∶线∶∶∶∶∶∶∶∶∶∶学校姓名考号两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少? (本题20分)“华杯赛”试题(四年级组)参考答案.填空题参考详解:1. 3解:如果对任何数x 和y ,有x y y x ∆=∆,代入算式,得ax y yx ay x xy ++=++3535化简,得0))(3(=--y x a ,由于对任何数x 和y ,都有上式成立,所以03=-a ,即3=a ,所以,当3=a 时,对任何数x 和y ,有x y y x ∆=∆.2. 7解:这是一个等差数列问题,已知项数n =9,首项a 1=11,S 9=351,求公差d ,∵S 9=(a 1+a 9)×9÷2∴a 9=2S 9÷9-a 1=2×351÷9-11=67d =(a 9-a 1)÷(9-1) =(67-11)÷8=7∴后面的盒子比它前一号的盒子多放7粒米.3. 285714解:285700÷(11×13)=1997余129.余数129再加14就能被143整除,故后两位数是14.4. 200解:以一根钢轨的重量为单一量.(1)一根钢轨重多少千克? 1900÷4 = 475(千克).(2)95000千克能制造多少根钢轨? 95000÷475 = 200(根).95000÷(1900÷4) = 200(根).答:可以制造200根钢轨.5. 13解:(3⨯15+2⨯10)÷(3+2)=13.6. 7800解:260×8-300×4=880(米);880÷(300-260)=22(天);260×(22+8)=7800(米).7. A解:由C 说可推出D 必被评上,否则如果D 没评上,则C 也没评上,与“只有一人没有评上”矛盾.再由A 、B 所说可知:假设A 被评上,则B 被评上,由B 被评上,则C 被评上.这样四人全被评上,矛盾.因此A 没有评上三好学生.8. 35解:Ⅰ.与ABE ∆相同的三角形共有5个;Ⅱ.与ABP ∆相同的三角形共有10个;Ⅲ.与ABF ∆相同的三角形共有5个;Ⅳ.与AFP ∆相同的三角形共有5个;∆相同的三角形共有5个;Ⅴ.与ACD∆相同的三角形共有5个.Ⅵ.与AGD所以图中共有三角形为5+10+5+5+5+5=35(个).二.解答题(9、10题各15分;11、12题各20分,共70分。
第十二届“华杯赛”浙江赛区复赛试题及答案(四年级组)小学数学四年级下册竞赛试题及答案人教课标版一、填空题(每题10分, 共80分)1、计算:123456+234567+345678+456789+567901+679012+790123+901234=__________.2、国庆节接受检阅的一列车队共52辆, 每辆车长4米, 每相邻两辆车相隔6米, 车队每分钟行驶105米。
这列车队要通过536米长的检阅场地, 要分钟。
3、把长2厘米宽1厘米的长方形如图(1)一层、两层、三层地摆下去, 摆完第十五层, 这个图形的周长是厘米。
4、北京某四合院子正好是个边长10米的正方形, 在院子中央修了一条宽2米的“十字形”甬路, 如图(2)这条“十字形”甬路的面积是平方米。
图(1)图(2)5、哥哥和弟弟共有故事书120本, 哥哥的故事书本数是弟弟的3倍, 哥哥有故事书本, 弟弟有故事书本.6、甲、乙两个粮仓共存粮320吨, 后来从甲粮仓运出40吨, 给乙粮仓运进20吨, 这时甲仓存粮是乙仓的2倍, 甲、乙两个粮仓原来各存粮分别为吨和吨.7、今年爸爸的年龄是小芳年龄的3倍, 几年前, 爸爸的年龄是小芳年龄的5倍, 再几年前, 爸爸的年龄是小芳年龄的7倍.他们的年龄差在20岁至30岁之间, 爸爸今年岁.8、篮中有许多李子, 如果将其中的一半又1个给第一个人, 将余下的一半又2个给第二个人, 然后将剩下的一半又3个给第三个人, 篮中刚好一个也不剩, 篮中原来有个李子.二、解答题(共70分, 要求写出解答过程)9、如果小方给小明一个玻璃球, 两人的玻璃球数相等;如果小明给小方一个玻璃球, 则小方的玻璃球数就是小明的两倍.问小明、小方原来各有多少个玻璃球?(本题15分)10、原计划有420块砖让若干学生搬运, 每人运砖一样多, 实际增加了一个学生, 这样每个学生就比原计划少搬2块.问:原有学生多少人?(本题15分)11、把99粒棋子放在两种型号的17个盒子里, 每个大盒子里放12粒, 每个小盒子里放5粒, 恰好放完.问大、小盒子各多少个?(本题20分)12、有A、B、C、D、E五个小足球队参加足球比赛, 到现在为止, A队赛了4场, B队赛了3场, C队赛了2场, D队赛了1场.那么E队赛了几场?(本题20分)第十二届“华杯赛”浙江赛区复赛试题(三年级组)参考答案一、填空(每题10分, 共80分)题号 1 2 3 4 5 6 7 8答案 4098760 10 90 36 90, 30 240, 80 36 34注:第5题、6题, 每空5分.填空题参考详解:1.4098760解:123456+234567+345678+456789+567901+679012+790123+901234=(123456+901234)+(234567+790123)+(345678+679012)+(456789+56 7901)=1024690+1024690+1024690+1024690=1024690×4=40987602.10解:因为车队行驶的路程等于检阅场地的长度与车队长度的和。
四年级华赛试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 圆的周长是直径的π倍。
B. 圆的周长是半径的2π倍。
C. 圆的周长是直径的2倍。
D. 圆的周长是半径的π倍。
答案:B2. 一个数乘以0,结果是多少?A. 0B. 1C. 这个数D. 无法确定答案:A3. 下列哪个选项是偶数?A. 3B. 5C. 7D. 8答案:D4. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 15B. 20C. 25D. 30答案:C5. 哪个选项是正确的分数?A. 1/2B. 2/0C. 3/1D. 4/0答案:A6. 一个数减去它自己,结果是多少?A. 0B. 1C. 2D. 这个数答案:A7. 下列哪个选项是质数?A. 2B. 4C. 6D. 8答案:A8. 一个数乘以1,结果是多少?A. 0B. 1C. 这个数D. 无法确定答案:C9. 一个数除以它自己(不为0),结果是多少?A. 0B. 1C. 这个数D. 无法确定答案:B10. 一个数加上0,结果是多少?A. 0B. 1C. 这个数D. 无法确定答案:C二、填空题(每题2分,共20分)1. 一个数的平方是16,这个数是______。
答案:4或-42. 一个数的一半是5,这个数是______。
答案:103. 一个数的三倍是27,这个数是______。
答案:94. 一个数的四倍是32,这个数是______。
答案:85. 一个数的六倍是36,这个数是______。
答案:66. 一个数的八倍是64,这个数是______。
答案:87. 一个数的十倍是100,这个数是______。
答案:108. 一个数的十二倍是72,这个数是______。
答案:69. 一个数的十五倍是90,这个数是______。
答案:610. 一个数的二十倍是200,这个数是______。
答案:10三、解答题(每题5分,共20分)1. 一个长方形的长是8厘米,宽是4厘米,求它的周长和面积。
同文教育四年级思维体操班测试题一、我会填空。
1、书架上有10本不同的小说和8本不同的漫画,小明要从书2、文文要从5幅水彩画、4幅油画、3幅水墨画中选取两幅不同类型的画布置客厅,有( )种选法。
3、如右图,把A、B、C、D、E这五部分分成4种不同的颜色涂色,且相邻的部分不能使用同一种颜色。
请问:这幅图共有()种不同的涂色方法。
4、甲、乙、丙、丁、戊五个人竞选班长、副班长、纪律委员、卫生委员四个职位,每个人只能担任一个职位,并且每个职位只能由一个人担任。
如果班长不能由乙、丙担任,有()种可能的选举结果。
5、在如图所示的减法竖式中,相同的汉字代车兵兵车表相同的数字,不同的汉字代表不同的数字。
- 兵相兵那么每个汉字代表的数字为:车=(),相兵相兵=(),相=(),被减数是()。
二、我会计算。
(1)44÷32×64 (2)50×27×44÷(25×11×9)三、我会解决。
1、一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且这个五位数恰好是原数的4倍,那么原来的五位数是多少?2、请将如图所示的竖式补充完整。
□□×□ 2□□□□ 76 □□3、请把如图所示的除法竖式补充完整。
□□□□□□□□□□□3 6 9□□□2 4 6□□□□□□参考答案:一、我会填空;1、18;2、120;3、96;4、72;5、车=1,兵=2,相=9,被减数是1221.二、我会计算。
(1)44÷32×64 (2)50×27×44÷(25×11×9)=44×(64÷32) =(50÷25)×(27÷9)×(44÷11)=44×2 =2×3×4=88 =24三、我会解决。
1、21978×4=87912,原来的五位数是219782、 5 7× 1 21 1 45 76 8 43、 3 2 2123 3 9 6 0 63 6 92 7 02 4 62 4 62 4 6。
“华杯赛”试题(四年级组) 一、填空题(每题10分,共80分) 1、规定x △y =5xy +3x +ay ,其中a 为常数.比如9△4=5×9×4+3×9+4a =207+4a .当a 取___________时,对任何数x 和y ,有x △y =y △x . 2、编号为1―9的九个盒子中共放有351粒米,已知每个盒子都比前一号盒子多相同粒米.如果1号盒内放了11粒米,那么后面的盒子比它前一号的盒子多放__________粒米。
3、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□.但是我记得,它能被11和13整除,那么这个号码是_________. 4、一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨 根.(损耗忽略不计) 5、5个数写成一排,前3个数的平均值是15,后两个的数的平均值是10,这五个数的平均值是__________. 6、工人铺一条路基,若每天铺260米,铺完全路长就得比原计划延长8天;若每天铺300米,铺完全路长仍要比原计划延长4天,这条路长_________米. 7、A 、B 、C 、D 四个同学猜测他们之中谁被评为三好学生. A 说:“如果我被评上,那么B 也被评上.”B 说:“如果我被评上,那么C 也被评上.”C 说:“如果D 没评上,那么我也没评上.”实际上他们之中只有一个没被评上,并且A 、B 、C 说的都是正确的.则没被评上三好学生的是 。
8、如图1,一共有 个三角形. 二、解答题(每题10分,共40分,要求写出解答过程) 9、甲、乙两港的航程有500千米,上午10点一艘货船从甲港开往乙港(顺流而下),下午2点一艘客船从乙港开往甲港.客船开出12小时与货船相遇.已知货船每小时行15千米,水流速度每小时5千米,客船每小时行多少千米? (本题15分)
10、一列客车以每小时40千米的速度在9时由甲城开往乙城,一列快车以每小时58千米的速度在11时也由甲城开往乙城,为了行驶安全,列车间的距离不应小于8千米,那么客车最晚应在什么时候停车让快车错过?(本题15分)
11、甲、乙两车分别从A、B两站同时相向开出,已知甲车速度是乙车速度的2倍,甲、乙到达途中C站的时刻依次为5∶00和17∶00,这两车相遇是什么时刻?(本题20分)
12、一个正方体木块放在桌子上,每一面都有一个数,位于对面两个数的和都等于13,小张能看到顶面和两个侧面,看到的三个数和为18;小李能看到顶面和另外两个侧面,看到的三个数的和为24,那么贴着桌子的这一面的数是多少?
(本题20分)
“华杯赛”试题(四年级组)
参考答案
一、 填空(每题10分,共80分)
.
填空题参考详解:
1. 3
解:如果对任何数x 和y ,有x y y x ∆=∆,
代入算式,得ax y yx ay x xy ++=++3535化简,得0))(3(=--y x a ,
由于对任何数x 和y ,都有上式成立,所以03=-a ,即3=a ,
所以,当3=a 时,对任何数x 和y ,有x y y x ∆=∆.
2. 7
解:这是一个等差数列问题,已知项数n =9,首项a 1=11,S 9=351,求公差d , ∵S 9=(a 1+a 9)×9÷2
∴a 9=2S 9÷9-a 1=2×351÷9-11=67
d =(a 9-a 1)÷(9-1) =(67-11)÷8=7
∴后面的盒子比它前一号的盒子多放7粒米.
3. 285714
解:285700÷(11×13)=1997余129.
余数129再加14就能被143整除,故后两位数是14.
4. 200
解:以一根钢轨的重量为单一量.
(1)一根钢轨重多少千克? 1900÷4 = 475(千克).
(2)95000千克能制造多少根钢轨? 95000÷475 = 200(根).
95000÷(1900÷4) = 200(根).
答:可以制造200根钢轨.
5. 13
解:(3⨯15+2⨯10)÷(3+2)=13.
6. 7800
解:260×8-300×4=880(米);880÷(300-260)=22(天);260×(22+8)=7800(米).
7. A
解:由C 说可推出D 必被评上,否则如果D 没评上,则C 也没评上,与“只有一人没有评上”矛盾.再由A 、B 所说可知:假设A 被评上,则B 被评上,由B 被评上,则C 被评上.这样四人全被评上,矛盾.因此A 没有评上三好学生.
8. 35
∆相同的三角形共有5个;
解:Ⅰ.与ABE
∆相同的三角形共有10个;
Ⅱ.与ABP
∆相同的三角形共有5个;
Ⅲ.与ABF
∆相同的三角形共有5个;
Ⅳ.与AFP
∆相同的三角形共有5个;
Ⅴ.与ACD
∆相同的三角形共有5个.
Ⅵ.与AGD
所以图中共有三角形为5+10+5+5+5+5=35(个).
二.解答题(9、10题各15分;11、12题各20分,共70分。
要求写出简要过程)
9. 20
解:(1)货船在相遇前4小时航行的路程为:
(15+5)×4=80(千米)…………………………………………………………(5)分(2)客船开出12小时期间,货船与客船共航行路程为:
500-80=420(千米)…………………………………………………………(3)分(3)客船与货船的速度和为:
420÷12=35(千米)…………………………………………………………(3)分(4)客船速度为:
35-15=20(千米)……………………………………………………………(3)分
综合算式:
[500-(15+5)×4]÷12-15
=(500-80)÷12-15
= 420÷12-15
=35-15
=20(千米).
答:客船每小时行20千米.…………………………………………………………(1)分
10. 15
解:从条件上看“列车间的距离不应小于8千米”,所以快车要追上客车的距离是比客车早发车多走的距离少8千米.
(1)客车比快车早发车的时数:11-9=2(千米)……………………………(2)分
(2)快车要追上的距离:40×2-8=80-8=72(千米)…………………………(4)分
(3)快车要追的时数:72÷(58-40)=72÷18=4(小时)………………………(5)分
(4)停车让快车错过的时候:11+4=15(时)(即下午3时)……………(3)分
综合算式:
11+[40×(11-9)-8]÷(58-40)
=11+[80-8]÷18
=11+72÷18
=11+4
=15(时)
答:客车最晚应在15时(下午3时)停车让快车错过.…………………………(1)分
11. 9∶00
解:(1)甲车到达C站时,乙车距C站还差17-5=12(时)的路。
…………………(7)分
(2)这段路两车共行需12÷(2+1)=4(时)………………………………………(8)分(3)所以两车相遇时刻是5+4=9(时).…………………………………………(4)分答:这两车相遇时刻是9:00。
…………………………………………………………(1)分12. 5
解:(1)4个侧面和2个顶面的和为:18+24=42……………………………………(4)分(2)四个侧面的和应该是:13+13=26……………………………………………(4)分(3)顶面的数是:(42-26)÷2=8…………………………………………………(6)分(4)底面的数是:13-8=5.……………………………………………………(5)分答:贴着桌子的这一面的数是5。
…………………………………………………(1)分。