初中数学试卷_圆的对称性附答案
- 格式:doc
- 大小:267.50 KB
- 文档页数:7
5.2圆的对称性第1课时圆的中心对称性=,∠1=25°,则∠2=_______.1.如图,在⊙O中,AC BD2.一条弦把圆分成1:4两部分,则劣弧所对的圆心角为_______.=,∠A=30°,则∠ABC=_______.3.如图,在⊙O中,AB AC4.如图,AB、CD是⊙O的直径,弦CE∥AB,CE的度数为70°,则∠AOC=_______.5.如图所示,圆O的弦AB垂直平分半径OC,则四边形OACBA.是正方形 B.是长方形C.是菱形 D.以上答案都不对6.下列语句中,正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴.A.1个B.2个C.3个D.4个7.如图,AB、AC、BC都是⊙O的弦,∠ABC=∠BAC,则∠AOC与∠BOC相等吗?为什么?8.如图,AB、AC、BC都是⊙O的弦,AB=6 cm,∠ABC=∠BAC,AB与OC相交于点M,求AM的长.,D、E分别是OA、OB上的点,且9.如图,OA、OB、OC是⊙O的半径,AC BCAD=BE,CD与CE相等吗?为什么?10.如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.试问:(1) OE等于OF吗?(2)AC与BD有怎样的数量关系?11.如图,AB为⊙O的直径,点C、D在⊙O上,已知∠BOC=70°,AD∥OC,求∠AOD的度数.12.如图,O为AB所在圆的圆心,已知OA⊥OB,M为弦AB的中点,且MC∥OB交AB于点C.求AC的度数.参考答案1.25°2.72°3.75°4.55°5.C6.A7.相等8.3(cm)9.相等10.(1) 相等(2) 相等11.40°12.60°。
第2章 圆 2.1 圆的对称性1. 下列命题中正确的有( ) ①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧. A.1个 B.2个C.3个D.4个2.如图所示,MN 为⊙O 的弦,∠N =52°,则∠MON 的度数为( )A.38°B.52°C.76°D.104°3.若⊙O 的半径为5,圆心的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( )A.点P 在⊙O 内B.点P 在⊙O 外C.点P 在⊙O 上D.点P 在⊙O 内或在⊙O 外 4.对于下列生活现象的解释其数学原理运用错误的是( )A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理1、只要朝着一个方向努力,一切都会变得得心应手。
20.6.166.16.202022:2822:28:12Jun-2022:282、心不清则无以见道,志不确则无以定功。
二〇二〇年六月十六日2020年6月16日星期二3、有勇气承担命运这才是英雄好汉。
22:286.16.202022:286.16.202022:2822:28:126.16.202022:286.16.20204、与肝胆人共事,无字句处读书。
6.16.20206.16.202022:2822:2822:28:1222:28:125、阅读使人充实,会谈使人敏捷,写作使人精确。
Tuesday, June 16, 2020June 20Tuesday, June 16,20206/16/2020 6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。
3.2 圆的对称性1.以下命题中,正确的有〔 〕 A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴 2.以下说法中,正确的选项是〔 〕 A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等3.以下命题中,不正确的选项是〔 〕 A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对4.如果两个圆心角相等,那么〔 〕A .这两个圆心角所对的弦相等;B .这两个圆心角所对的弧相等C .这两个圆心角所对的弦的弦心距相等;D .以上说法都不对5.如果两条弦相等,那么〔 〕 A .这两条弦所对的弧相等 B .这两条弦所对的圆心角相等 C .这两条弦的弦心距相等D .以上答案都不对5.如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠=︒BAC 20,AD CD ⋂=⋂,那么∠DAC 的度数是〔 〕A. 70°B. 45°C. 35°D. 30°DAOBC6.一条弦把圆分成1:3两局部,那么弦所对的圆心角为 .7.如图3,A 、B 、C 、D 是⊙O 上四点,且D 是AB 的中点,CD 交OB 于E ,55,100=∠=∠OBC AOB ,OEC ∠= 度.8.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点, 130=∠D ,那么BAC ∠的度数是 .9.如图5,AB 是半圆O 的直径,E 是BC 的中点,OE 交弦BC 于点D ,BC=8cm,DE=2cm ,那么AD 的长为 cm.10.如图,∠AOB=90°,C 、D 是弧AB 的三等分点,AB 分别交OC 、OD 于点E 、F ,求证:AE=BF=CD .11.如图,⊙O 中弦AB =CD ,且AB 与CD 交于E 。
圆的对称性一、选择题1、如图3-33所示,弦CD垂直于⊙O的直径AB,垂足为E,且CD=22,BD=3,则AB的长为( )A.2 B.3C.4 D.52、如图3-35所示,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6 cm,则直径AB的长是( )A.23cm B.32cmC.42cm D.43cm3.下列命题:①圆心不同,直径相等的两圆是等圆;②长度相等的两弧是等弧;③圆中最长的弦是直径;④圆的对称轴是圆的直径;⑤圆不是旋转对称图形.其中正确的有( )A.1个B.2个C.3个D.4个4.如图3-36所示,在同心圆中,大圆的弦AB交小圆于C,D,已知AB=2CD,AB的弦心距等于CD长的一半,那么大圆与小圆的半径之比是( )A.3∶2 B.5∶2C.5∶2D.5∶45.下列语句中,不正确的有( )①直径是弦;②弧是半圆;③经过圆内一定点可以作无数条弦;④长度相等的弧是等弧.A.①③④B.②③C.②D.②④6.下列语句中不正确的有①平分弦的直径垂直于弦②圆是轴对称图形,任何一条直径都是它的对称轴③长度相等的两条弧是等弧A.3个B.2个C.1个D.以上都不对7.如图3-37所示,在⊙O中,弦AB的长为6 cm.圆心O到AB的距离为4 cm,则⊙O的半径长为( )A.3 cm B.4 cm C.5 cm D.6 cm 8.如图3-38所示,C为»AB的中点,CN⊥OB于N,弦CD⊥OA于M.若⊙O的半径为5 cm,ON=4 cm,则CD的长等于.二、填空题9.如图3-39所示,在⊙O中,AB和AC是互相垂直的两条弦,OD⊥AB于D,OE⊥AC于E.且AB=8 cm,AC=6 cm,那么⊙O的半径OA的长为.10.P为⊙O内一点,且OP=8 cm,过P的最长弦长为20 cm,则过P的最矩弦长为.11.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为____.最大值为____________.12.(2014•陕西,第17题3分)如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是.三、解答题13、如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB的长,再量中点到AB的距离CD的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径。
3.2 圆的对称性同步测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 下列说法中正确的是()①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦相等;③两条弦相等,圆心到这两弦的距离相等;④在等圆中,圆心角不变,所对的弦也不变.A.①③B.②④C.①④D.②③2. 如图,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=DA,则∠BCD=()A.105∘B.120∘C.135∘D.150∘3. 如图,已知OA,OB均为⊙O上一点,若∠AOB=80∘,则∠ACB=()A.80∘B.70∘C.60∘D.40∘4. 如图,在Rt△ABC中,∠C=90∘,∠B=25∘,以C为圆心,以CA的长为半径的圆交AB于点D,则弧AD的度数为()A.25∘B.50∘C.45∘D.30∘5. 在⊙O与⊙O′中,若∠AOB=∠A′O′B′,则AB与A′B′的关系为()A.AB=A′B′B.AB>A′B′C.AB<A′B′D.无法确定̂上的点,E是AĈ上的点,若∠BAC=50∘.则6. △ABC的三个顶点在⊙O上,D是AB∠D+∠E=()A.220∘B.230∘C.240∘D.250∘∘̂=CD̂,则AC与BD的关系是()7. 如图,在⊙O中,已知ABA.AC=BDB.AC<BDC.AC>BDD.不确定8. 如图,已知AB是⊙O的直径,BC是弦,∠ABC=30∘,过圆心O作OD⊥BC交弧BC于点D,连接DC,则∠DCB的度数为()度.A.30B.45C.50D.609. 下列五个命题:(1)两个端点能够重合的弧是等弧;(2)圆的任意一条弧必定把圆分成劣弧和优弧两部分(3)经过平面上任意三点可作一个圆;(4)任意一个圆有且只有一个内接三角形(5)三角形的外心到各顶点距离相等.其中真命题有()A.1个B.2个C.3个D.4个二、填空题(本题共计10 小题,每题3 分,共计30分,)10. 如图,AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD=________.11. 如图,四边形ABCD是⊙O的内接四边形,其中AB是⊙O的直径,已知AD=CD,CD // AB,则∠BCD的度数是________.̂=BĈ,那么与∠AOE相等的角有12. 如图,AB、CE是⊙O的直径,∠COD=60∘,且AD________,与∠AOC相等的角有________.13. 从圆内一点P引两条弦AB与CD,则∠APC与弧AC、BD度数间的关系是________.14. 弦AB分圆为1:3两部分,则劣弧所对圆心角为________.15. 一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数为________.16. 如图,弦AB把⊙O分成1:2的两部分,则圆心角∠AOB的大小为________.17. 如图,已知AB 和CD 是⊙O 的两条直径,CE // AB ,若CE ⌢的度数为40∘,则AE ⌢的度数为________.18. 如图,⊙O 中,半径OA ⊥半径OB ,C 是AB̂上任一点,则∠A +∠B =________.19. 如图,扇子的圆心角为α,余下扇形的圆心角为β,为了使扇子的外形美观,通常情况下α与β的比按黄金比例设计,若取黄金比为0.6,则α=________度.三、 解答题 (本题共计 7 小题,共计63分 , )20. 如图,⊙O 的弦AB ,AC 的夹角为50∘,P 、Q 分别是AB̂和AC ̂的中点,求PQ ̂的度数.21. 如图,AB为⊙O的直径,弦CD与AB相交于点E,且OE=DE,试确定BĈ与AD̂之间的数量关系.22. 如图,已知⊙O中,点A,B,C,D在圆上,且AB=CD,求证:AC=BD.23. 如图,在☉O中,AB是直径,C、D是圆上两点,使得AD=BC.求证:AC= BD.24. 如图,在Rt△AOB中,∠B=40∘,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点D.求CD̂的度数.25. 如图,已知AB是⊙O的直径,弦AC // OD.(1)求证:BD̂=CD̂.(2)若AĈ的度数为58∘,求∠AOD的度数.26. 如图,已知AB、CD是⊙O的直径,DF // AB交⊙O于点F,BE // DC交⊙O于点E.(1)求证:BE=DF;(2)写出图中4组不同的且相等的劣弧(不要求证明).参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】C【解答】解:圆心角是顶点在圆心的角,所以①正确;在同圆和等圆中,两个圆心角相等,它们所对的弦相等,所以②错误;③在同圆和等圆中,两条弦相等,圆心到这两弦的距离相等,所以③错误;在等圆中,圆心角不变,所对的弦也不变,所以④正确.故选C.2.【答案】B【解答】解:由题意知,弦BC、CD、DA三等分半圆,☉ 弦BC和CD和DA对的圆心角均为60∘,☉ ∠BCD=120∘.故选B.3.【答案】D【解答】解:由题意得,∠ACB=12∠AOB=12×80∘=40∘.故选D.4.【答案】B【解答】解:连接CD.☉ 在△ABC中,∠ACB=90∘,∠B=25∘☉ ∠A=90∘−∠B=65∘.☉ CA=CD,☉ ∠CDA=∠CAD=65∘(等边对等角),☉ ∠ACD=50∘即弧AD的度数是50∘.故选B.5.【答案】D【解答】解:☉ ⊙O与⊙O′的半径不知大小,☉ AB与A′B′的大小也不能确定.故选D.6.【答案】B【解答】连接OA、OB、OC,如图所示:☉ ∠BAC=50∘,☉ ∠BOC=2∠BAC=100∘,☉ ∠AOB+∠AOC=360∘−100∘=260∘,☉ ∠D=12(∠BOC+∠AOC),∠E=12(∠BOC+∠AOB),☉ ∠D+∠E=12(∠BOC+∠AOC+∠BOC+∠AOB)=12(260∘+100∘+100∘)=230∘.故选:B.7.【答案】A【解答】̂=CD̂,解:☉ AB̂−BĈ=CD̂−BĈ,☉ AB☉ AĈ=BD̂,☉ AC=BD.故选A.8.【答案】A【解答】解:☉ OD⊥BC,∠ABC=30∘,☉ 在直角三角形OBE中,∠BOE=60∘(直角三角形的两个锐角互余);∠DOB(同弧所对的圆周角是所对的圆心角的一半),又☉ ∠DCB=12☉ ∠DCB=30∘;故选A.9.【答案】A【解答】解:(1)两个端点能够重合的弧是等弧;故错误.(2)半圆是特殊的弧,是圆的一半,优弧是大于半圆的弧,劣弧是小于半圆的弧;故错误.(3)经过平面上在同一直线上的三点不能确定一个圆;故错误.(4)任意一个圆有无数个内接三角形,一个三角形只能确定一个外接圆;故错误.(5)三角形的外心是三角形三边的垂直平分线,到各顶点的距离相等;故正确.故选A.二、填空题(本题共计10 小题,每题 3 分,共计30分)10.【答案】120∘【解答】连接OC、OD,☉ BC=CD=DA,̂=DĈ=CB̂,☉ AD☉ 弦BC、CD、DA三等分半圆,☉ 弦BC和CD和DA对的圆心角均为60∘,(180∘+60∘)=120∘.☉ ∠BCD=1211.【答案】120∘【解答】解:如图,连结AC,设∠CAD=α.☉ AB是⊙O的直径,☉ ∠ACB=90∘.☉ AD=CD,☉ ∠ACD=∠CAD=α,☉ CD // AB,☉ ∠ACD=∠CAB=α,☉ ∠DAB=∠CAD+∠CAB=2α,AD=BC.☉ CD // AB,☉ 四边形ABCD是等腰梯形,☉ ∠B=∠DAB=2α.在△ABC中,☉ ∠ACB=90∘,☉ ∠CAB+∠B=90∘,☉ α+2α=90∘,☉ α=30∘,☉ ∠B=2α=60∘☉ CD // AB,☉ ∠BCD=180∘−∠B=120∘.故答案为120∘.12.【答案】∠AOD,∠DOC,∠BOC,∠DOE,∠DOB,∠BOE 【解答】解:如图,☉ AB是⊙O的直径,∠COD=60∘,☉ ∠AOD+∠BOC=120∘.̂=BĈ,☉ AD∘☉ ∠AOE=∠BOC=60∘,☉ ∠AOC=2∠COD=120∘,☉ ∠DOE=∠DOB=∠BOE=120∘.综上所述,∠AOE相等的角有:∠AOD,∠DOC,∠BOC;与∠AOC相等的角有:∠DOE,∠DOB,∠BOE.故答案分别是:∠AOD,∠DOC,∠BOC;∠DOE,∠DOB,∠BOE.13.【答案】∠APC=12(弧AC的度数+弧BD的度数)【解答】解:如图,连BC,☉ ∠APC=∠B+∠C,又☉ ∠B=12弧AC的度数,∠C=12弧BD的度数,☉ ∠APC=12(弧AC的度数+弧BD的度数).14.【答案】90∘【解答】解:设弦AB分圆的两部分别为x,3x,☉ x+3x=360∘,解得:x=90,则劣弧所对圆心角为90∘.故答案为:90∘15.【答案】144∘【解答】解:☉ 弦AB 把圆O 分成2:3两部分,☉ 弧AB 的度数是25×360∘=144∘, ☉ 弧AB 所对的圆心角∠AOB 的度数是144∘,故答案为:144∘.16.【答案】120∘【解答】解:☉ 弦AB 把⊙O 分成1:2的两部分,☉ 弧AB 的度数=13×360∘=120∘,☉ ∠AOB =120∘.故答案为120∘.17.【答案】70∘【解答】解:连接OE ,☉ CE ⌢=40∘,∘☉ OC =OE ,☉ ∠E =180∘−40∘2=70∘.☉ CE // AB ,☉ ∠AOE =∠E =70∘,☉ AE ⌢的度数为70∘,故答案为:70∘.18.【答案】135∘【解答】解:在优弧AB̂上取点D ,连接DC 、DB , ☉ OA ⊥OB ,☉ ∠AOB =90∘,☉ ∠ADB =45∘,☉ ∠ACB =180∘−45∘=135∘,☉ ∠A +∠B =360∘−135∘90∘=135∘, 故答案为:135∘.19.【答案】 135【解答】解:☉ ∠α+∠β=360∘,且∠α:∠β=0.6,☉ ∠β=360∘÷1.6=225∘,∠α=360∘−225∘=135∘. 故本题答案为:135∘.三、 解答题 (本题共计 7 小题 ,每题 10 分 ,共计70分 ) 20.【答案】解:☉ P 、Q 分别是AB̂和AC ̂的中点, ☉ OP ⊥AB ,OQ ⊥AC ,☉ ∠OEA =∠OFA =90∘,∘☉ ∠EOF=180∘−50∘=130∘,̂的度数为130∘.☉ PQ【解答】̂和AĈ的中点,解:☉ P、Q分别是AB☉ OP⊥AB,OQ⊥AC,☉ ∠OEA=∠OFA=90∘,而∠CAB=50∘,☉ ∠EOF=180∘−50∘=130∘,̂的度数为130∘.☉ PQ21.【答案】解:连结OC、OD,如图,☉ OE=DE,☉ ∠1=∠D,☉ ∠2=∠1+∠D=2∠1,☉ OC=OD,☉ ∠D=∠C,☉ ∠C=∠1,☉ ∠BOC=∠C+∠2,☉ ∠BOC=3∠1,☉ BĈ=3AD̂.【解答】解:连结OC、OD,如图,☉ OE=DE,☉ ∠1=∠D,☉ ∠2=∠1+∠D=2∠1,☉ OC=OD,☉ ∠D=∠C,☉ ∠C=∠1,☉ ∠BOC=∠C+∠2,☉ ∠BOC=3∠1,☉ BĈ=3AD̂.22.【答案】证明:☉ AB=CD,̂=CD̂,☉ AB̂+BĈ=CD̂+BĈ,☉ AB̂=BD̂,即AC☉ AC=BD.【解答】证明:☉ AB=CD,̂=CD̂,☉ AB̂+BĈ=CD̂+BĈ,☉ AB̂=BD̂,即AC☉ AC=BD.23.【答案】证明:☉ AD=BC,̂=BĈ,☉ AD☉ AĈ=BD̂,☉ AC=BD.【解答】证明:☉ AD=BC,̂=BĈ,☉ AD☉ AĈ=BD̂,☉ AC=BD.24.【答案】解:连接OC,☉ ∠O=90∘,∠B=40∘,☉ ∠A=180∘−90∘−40∘=50∘,☉ OA=OC,☉ ∠ACO=∠A=50∘,☉ ∠COD=∠ACO−∠B=10∘,̂的度数是10∘..☉ CD【解答】解:连接OC,☉ ∠O=90∘,∠B=40∘,☉ ∠A=180∘−90∘−40∘=50∘,☉ OA=OC,☉ ∠ACO=∠A=50∘,☉ ∠COD=∠ACO−∠B=10∘,̂的度数是10∘..☉ CD25.【答案】解:(1)证明:连接OC.☉ OA=OC,☉ ∠OAC=∠ACO.☉ AC // OD,☉ ∠OAC=∠BOD.☉ ∠DOC=∠ACO.☉ ∠BOD=∠COD,̂=CD̂.☉ BD☉ BD ̂=CD ̂=12BC ̂=(180∘−58∘)=61∘. ☉ AD̂=61∘+85∘=119∘, ☉ ∠AOD =119∘.【解答】解:(1)证明:连接OC .☉ OA =OC , ☉ ∠OAC =∠ACO .☉ AC // OD ,☉ ∠OAC =∠BOD .☉ ∠DOC =∠ACO .☉ ∠BOD =∠COD ,☉ BD̂=CD ̂.(2)☉ BD ̂=CD ̂, ☉ BD ̂=CD ̂=12BC ̂=(180∘−58∘)=61∘. ☉ AD̂=61∘+85∘=119∘, ☉ ∠AOD =119∘.26.【答案】(1)证明:☉ DF // AB ,BE // DC , ☉ ∠EBA =∠COA =∠CDF .☉ ECÂ=CAF ̂, ☉ BÊ=DF ̂, ☉ BE =DF ;(2)图中相等的劣弧有:DF̂=BE ̂, EĈ=FA ̂=AC ̂=BD ̂, DÂ=BC ̂, BF̂=DE ̂等. 【解答】(1)证明:☉ DF // AB ,BE // DC , ☉ ∠EBA =∠COA =∠CDF .̂=DF̂,☉ BE☉ BE=DF;(2)图中相等的劣弧有:DF̂=BÊ,EĈ=FÂ=AĈ=BD̂,DÂ=BĈ,BF̂=DÊ等.。
青岛版初中数学重点知识精选掌握知识点,多做练习题,基础知识很重要!青岛版初中数学和你一起共同进步学业有成!3.1 圆的对称性一. 选择题1. ⊙O中,弦AB所对的弧为120°,圆的半径为2,则圆心到弦AB的距离OC 为()A. B. 1 C. D.2. 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果,则AE的长为()A. 2B. 3C. 4D. 53. 如图,⊙O的弦AB垂直于直径MN,C为垂足,若OA=5cm,下面四个结论中可能成立的是()A. B.C. D.4. 一种花边由如图的弓形组成,的半径为,弦AB=2,则弓形的高CD为()A. B. C. 1 D.5. 下列命题中正确的是()A. 圆只有一条对称轴B. 平分弦的直径垂直于弦C. 垂直于弦的直径平分这条弦D. 相等的圆心角所对的弧相等6. 如图,已知AD=BC,则AB与CD的关系为()A. AB>CDB. AB=CDC. AB<CDD. 不能确定二. 填空题7. 半径为6cm的圆中,有一条长的弦,则圆心到此弦的距离为___________cm。
8. 已知⊙O的直径为10cm,点A在圆上,则OA=___________cm。
9. 如图,∠A=30°,则B=___________。
10. 过⊙O内一点M的最长的弦为6cm,最短的弦长为4cm,则OM的长为___________。
11. ⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,则AB和CD 的距离为___________。
12. ⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,则CD=___________。
三. 解答题13. 如图,⊙O的直径为4cm,弦AB的长为,你能求出∠OAB的度数吗?写出你的计算过程。
14. 已知,⊙O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC。
求证:15. 如图,在⊙O中,A、B、C、D为圆上四点,且OC、OD交AB于E、F,AE=FB,则:(1)OE与OF有什么关系?为什么?(2)与相等吗?为什么?16. 如图,⊙O上有三点A、B、C且AB=AC=6,∠BAC=120°,求⊙O的半径。
专题18 圆的对称性例1 15°或75° 提示:分AB 、AC 在圆心O 同侧、异侧两种情况讨论.例2 B(2)⊙O 的半径不变,因为AB =AC =BD =2,此题求法和(1)一样,⊙O 的半径为2. 例4 提示:BD 2-AD 2=(BE 2+ED 2)-(AE 2+ED 2)=(BE +AE )(BE -AE )=AB (BE -AE ),只需要证明AC =BE -AE 即可.在BA 上截取BF =AC .连DF 可证明△DBF ≌△DCA ,则DF =AD ,AE =EF .例5 (1)由条件,得(AM -1)2+(BM -1)2+(CM -1)2=0,∴AM =BM =CM =1.因此,M 是AB 中点,且∠ACB =90°. (2)由(1)知,∠A =∠PCM ,又PD ∥AB ,∴∠A =∠CPD ,∠PCM =∠CPD ,因此,,CD PM CPM DCP ==,于是有DP =CM =1.例6 (1)连结BD 、CD ,∵AD 是直径,所以∠ABD =∠ACD =90°,又∵AB =AC ,AD =AD ,∴△ABD ≌△ACD ,∴∠BAD =∠DAC ,∴AD 平分∠BAC .(2)连结OB 、OC ,则OA ⊥BC ,又AE =OE ,得AB =BO =OA =OC ,△AOB ,△AOC 都为等边三角形,连结OG ,则∠GOF =90°,FG =2.(3)取BD 的中点M ,过M 作MS ⊥P A 于S ,MT ⊥PF 于T ,连AM ,FM .∠BPM =∠DPM =30°,∠APM =∠FPM =60°,则MS =MT ,MA =MF ,Rt △ASM ≌Rt △FTM ,Rt △PMS ≌Rt △PMF .∴PS =12PM .∴P A +PF =2PS =2PT =PM .同理可证:PB +PD =3PM .∴13333PA PF PM PB PD PM +===+为定值. A 级 1.49或7 2.85 3.1 4.335.C 6.D 7.D 8.过O 点作OE ⊥AB 于E ,OF ⊥CD 于F ,连结OD ,OA ,则AE =BE ,CF =DF ,∵OE 2=AO 2-AE 2=(4214AB -),OF 2=OD 2-FD 2=414-C C D 2,∴OE 2+OF 2=(4214AB -)+(4214CD -)=PF 2+OF 2=OP 2=12,即4214AB -+4214CD -=1,故AB 2+CD 2=28.得x 1=-3(舍去),x 2=75,∴正方形JKLM 的边长为145.B 级1.26-3)))提示:作OM ⊥CD 于M ,则EC =12(EF -CD).))2.103))))3.3R))提示:设D'是D 点关于直径AB 对称的点,连结CD'交AB 于P ,则P 点使CP +PD 最小,∠COD'=120°,CP +PD =CP +PD'=CD'=3R.)))4.D)))提示:如图:,得⎩⎪⎨⎪⎧a 2+12=r 2(2-a)2+(12)2=r 2),解得a =1316,r =51716))) 5.A 提示:连结OM ,则OM ⊥AC.)))6.解法一:连结OD 交AC 于点F ,∵D 为⌒AC 的中点,∴AC ⊥OD ,AF =CF.又DE ⊥AB ,∴∠DEO=∠AFO.∴△ODE ≌△OAF.∴AF =DE.∵DE =3∴AC =6.解法二:延长DE 交⊙O 于点G ,易证⌒AC =2⌒AD =⌒AD +⌒AG =⌒DG ,则DG =AC =2DE =6.7.连结BO 并延长交AD 于H ,因AB =BD ,故BH ⊥AD ,又∠ADC =90°,则BH ∥CD ,从而△OPB ∽△CPD ,得CD BO =CP PO ,即CD 1.5=0.61.5-0.6,解得CD =1.于是AD =AC 2-CD 2=22,又OH =12)C D =12,则AB =AH 2+BH 2=2+4=6,BC =AC 2-AB 2=9-6=3).∴四边形ABCD 的周长为1+22+3+ 6.)))8.提示:延长DC 至N ,使CN =CM ,连结BN ,则∠BCN =∠BAD =∠BDA =∠BCA ,可证得△BCN ≌△BCM ,Rt △BAM ≌Rt △BDN.)9.⑴AO =8,BO =6,AB =BC =10,AD =CO =16,DB =AD -AB =6,过D 作DE ⊥BC 于E ,由Rt △DEB ∽Rt △AOB ,得DE =245,BE =185,EO =6+185=485.∴D(-485,245).⑵A(0,-8),C(-16,0),P(-4,-6),经过D ,P 两点的直线为y =-2714x -967,点(2,-10)不在直线DP上.)))10.⑴在AE 上截取AF =BP ,连结AC ,BC ,FC ,PC ,可证明△CAF ≌△CBP ,CF =CP .又CD ⊥PA ,则PE =FE ,故AE =PB +PE.⑵AE =PE -PB ,在PE 上截取PF =PB ,连结AC ,BC ,FC ,PC ,可证明△CPF ≌△CPB ,CF =CB =CA.又CD ⊥AP ,则FE =AE ,故AE =PE -PB.)))11.连结BD ,∠CBA =∠DBA ,CB =BD ,由∠AOC =∠CBD ,∠A =∠BDE ,得△AOH ∽△DBM ,∴OH OA =BM BD =12,即BM =12BC.)))12.延长AC 至点E ,使CE =BC ,连结MA ,MB ,ME ,BE.∵AD =DC +BC =DC+CE =DE ,又MD ⊥AE ,∴MA =ME ,∠MAE =∠MEA.∵∠MAE =∠MBC ,,又由CE =BC 得∠CEB =∠CBE ,∴∠MEB =∠MBE ,得MA =ME =MB ,即M为优弧⌒AB 的中点,而MN ⊥AB ,∴MN 是⊙O 的直径.。
2 圆的对称性一、选择题(共10小题)1.(2012•江宁区二模)形如半圆型的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为()A.(﹣1,)B.(0,)C.(,0)D.(1,)2.已知⊙O中,弦AB长为,OD⊥AB于点D,交劣弧AB于点C,CD=1,则⊙O的半径是()A.1B.2C.3D.43.下列说法:①若∠1与∠2是同位角,则∠1=∠2②等腰三角形的高,中线,角平分线互相重合③对角线互相垂直且相等的四边形是正方形④等腰梯形是轴对称图形,但不是中心对称图形⑤平分弦的直径垂直于弦,并且平分弦所对的两条弧,其中正确的个数是()A.0B.1C.2D.34.(2013•邵东县模拟)⊙O的半径为R,若∠AOB=α,则弦AB的长为()A.B.2RsinαC.D.R sinα5.已知矩形ABCD的边AB=3,AD=4,如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是()A.3<r<5 B.3<r≤4 C.4<r≤5 D.无法确定6.已知圆的半径为5cm,圆心到弦的距离为4cm,那么这条弦长是()A.3cm B.6cm C.8cm D.10cm7.半径为5的⊙O,圆心在原点O,点P(﹣3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定8.一个点到圆周的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm9.(2010•昌平区一模)如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A.B.C.D.10.(2013•合肥模拟)如图,是半径为1的圆弧,△AOC为等边三角形,D 是上的一动点,则四边形AODC 的面积s的取值范围是()A.≤s ≤B.<s ≤C.≤s ≤D.<s <二、填空题(共10小题)(除非特别说明,请填准确值)11.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?12.一条弦AB分圆的直径为3cm和7cm两部分,弦和直径相交成60°角,则AB=_________cm.13.若⊙O的半径为13cm,圆心O到弦AB的距离为5cm,则弦AB的长为_________cm.14.已知点P是半径为5的⊙O内一定点,且PO=4,则过点P的所有弦中,弦长可取到的整数值共有的条数是_________.15.若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A_________.16.在下图所列的图形中选出轴对称图形:_________.17.作圆,使这些圆都经过线段AB的两个端点A和B,这些圆的圆心所组成的图形是_________.18.以已知点O为圆心,可以画_________个圆.19.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC=_________.20.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=_________度.三、解答题(共10小题)(选答题,不自动判卷)21.已知:AB交⊙O于C、D,且AC=BD.请证明:OA=OB.22.如图,AB是⊙O的直径,CD是弦,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF.23.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.24.已知⊙O的半径为12cm,弦AB=16cm.(1)求圆心O到弦AB的距离;(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?25.如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂足,E是的中点,求证:∠OAE=∠EAD.(写出两种以上的证明方法)26.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,(1)求CD的长;(2)若直线CD绕点E顺时针旋转15°,交⊙O于C、D,直接写出弦CD的长.27.已知:如图,在⊙O中,∠A=∠C,求证:AB=CD(利用三角函数证明).28.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,求弦AB的长.29.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB的长.30.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.参考答案与试题解析一、选择题(共10小题)1.(2012•江宁区二模)形如半圆型的量角器直径为4cm,放在如图所示的平面直角坐标系中(量角器的中心与坐标原点O重合,零刻度线在x轴上),连接60°和120°刻度线的一个端点P、Q,线段PQ交y轴于点A,则点A的坐标为()A.(﹣1,)B.(0,)C.(,0)D.(1,)考点:圆心角、弧、弦的关系;坐标与图形性质;解直角三角形.分析:连接OQ、OP,求出∠POQ的度数,得出等边三角形POQ,得出PQ=OQ=OP=2,∠OPQ=∠OQP=60°,求出∠AOQ度数,根据三角形的内角和定理求出∠QAO,求出AQ、OA,即可得出答案.解答:解:连接OQ、PO,则∠POQ=120°﹣60°=60,∵PO=OQ,∴△POQ是等边三角形,∴PQ=OP=OQ=×4cm=2cm,∠OPQ=∠OQP=60°,∵∠AOQ=90°﹣60°=30°,∴∠QAO=180°﹣60°﹣30°=90°,∴AQ=OQ=2cm,∵在Rt△AOQ中,由勾股定理得:OA==,∴A的坐标是(0,),故选B.点评:本题考查了圆心角、弧、弦之间的关系,三角形的内角和定理,勾股定理,等边三角形的性质和判定等知识点,解此题的关键是构造三角形后求出OA的长,主要考查学生分析问题和解决问题的能力.2.已知⊙O中,弦AB长为,OD⊥AB于点D,交劣弧AB于点C,CD=1,则⊙O的半径是()A.1B.2C.3D.4考点:垂径定理;勾股定理.分析:连接OA,根据垂径定理求出AD,设⊙O的半径是R,则OA=R,OD=R﹣1,在Rt△OAD中,由勾股定理得出方程R2=(R﹣1)2+()2,求出R即可.解答:解:连接OA,∵OC是半径,OC⊥AB,∴AD=BD=AB=,设⊙O的半径是R,则OA=R,OD=R﹣1,在Rt△OAD中,由勾股定理得:OA2=OD2+AD2,即R2=(R﹣1)2+()2,R=2,故选B.点评:本题考查了垂径定理和勾股定理,关键是构造直角三角形,用了方程思想.3.下列说法:①若∠1与∠2是同位角,则∠1=∠2②等腰三角形的高,中线,角平分线互相重合③对角线互相垂直且相等的四边形是正方形④等腰梯形是轴对称图形,但不是中心对称图形⑤平分弦的直径垂直于弦,并且平分弦所对的两条弧,其中正确的个数是()A.0B.1C.2D.3考点:垂径定理;同位角、内错角、同旁内角;等腰三角形的性质;正方形的判定;等腰梯形的性质.分析:根据只有在平行线中,同位角才相等,等腰三角形的顶角的平分线,底边上的高,底边上的中线互相重合,对角线互相平分、垂直、相等的四边形才是正方形,等腰梯形是轴对称图形,但不是中心对称图形,即可判断①②③④;画出反例图形即可判断⑤.解答:解:∵只有在平行线中,同位角才相等,∴①错误;∵等腰三角形的顶角的平分线,底边上的高,底边上的中线互相重合,∴②错误;∵对角线互相平分、垂直、相等的四边形才是正方形,∴③错误;∵等腰梯形是轴对称图形,但不是中心对称图形,∴④正确;如图AB是⊙O直径,CD是⊙O弦,AB平分CD,但AB和CD不垂直,∴⑤错误;故选B.点评:本题考查了等腰三角形性质,平行线的性质,同位角,等腰梯形性质,正方形的判定等知识点的应用,主要考查学生的辨析能力.4.(2013•邵东县模拟)⊙O的半径为R,若∠AOB=α,则弦AB的长为()A.B.2RsinαC.D.R sinα考点:垂径定理;解直角三角形.分析:过O作OC⊥AB于C,由垂径定理得出AB=2AC,根据等腰三角形性质求出∠AOC=∠BOC=∠AOB=,根据sin∠AOC=求出AC=Rsin,即可求出AB.解答:解:过O作OC⊥AB于C,则由垂径定理得:AB=2AC=2BC,∵OA=OB,∴∠AOC=∠BOC=∠AOB=,在△AOC中,sin∠AOC=,∴AC=Rsin,∴AB=2AC=2Rsin,故选A.点评:本题考查了垂径定理,等腰三角形性质,解直角三角形等知识点,关键是求出AC的长和得出AB=2AC.5.已知矩形ABCD的边AB=3,AD=4,如果以点A为圆心作⊙A,使B,C,D三点中在圆内和在圆外都至少有一个点,那么⊙A的半径r的取值范围是()A.3<r<5 B.3<r≤4 C.4<r≤5 D.无法确定考点:点与圆的位置关系.分析:四边形ABCD是矩形,则△ABC是直角三角形.根据勾股定理得到:AC=5,B,C,D三点中在圆内和在圆外都至少有一个点,由题意可知一定是B在圆内,则半径r>3,一定是点C在圆外,则半径r<5,所以3<r<5.解答:解:∵AB=3,AD=4,∴AC=5,∴点C一定在圆外,点B一定在圆内,∴⊙A的半径r的取值范围是:3<r<5.故选A.点评:本题主要考查了勾股定理,以及点和圆的位置关系,可以通过点到圆心的距离与圆的半径比较大小,判定点和圆的位置关系.6.已知圆的半径为5cm,圆心到弦的距离为4cm,那么这条弦长是()A.3cm B.6cm C.8cm D.10cm考点:垂径定理;勾股定理.专题:计算题.分析:连接OA,根据垂径定理求出AC=BC,根据勾股定理求出AC即可.解答:解:连接OA,∵OC⊥AB,OC过圆心O,∴AC=BC,由勾股定理得:AC===3(cm),∴AB=2AC=6(cm).故选B.点评:本题主要考查对勾股定理,垂径定理等知识点的理解和掌握,能求出AC=BC和AC的长是解此题的关键.7.半径为5的⊙O,圆心在原点O,点P(﹣3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定考点:点与圆的位置关系;勾股定理.专题:计算题.分析:连接OP,根据勾股定理求出OP,把OP和圆的半径比较即可.解答:解:连接OP.∵P(﹣3,4),由勾股定理得:OP==5,∵圆的半径5,∴P在圆O上.故选B.点评:本题主要考查对勾股定理,直线与圆的位置关系等知识点的理解和掌握,能求出OP长和能根据直线与圆的位置关系性质进行判断是解此题的关键.8.一个点到圆周的最小距离为4cm,最大距离为9cm,则该圆的半径是()A.2.5 cm或6.5 cm B.2.5 cm C.6.5 cm D.5 cm或13cm考点:点与圆的位置关系.分析:点P应分为位于圆的内部位于外部两种情况讨论.当点P在圆内时,点到圆的最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解.解答:解:当点P在圆内时,最近点的距离为4cm,最远点的距离为9cm,则直径是13cm,因而半径是6.5cm;当点P在圆外时,最近点的距离为4cm,最远点的距离为9cm,则直径是5cm,因而半径是2.5cm.故选A.点评:本题考查了点与圆的位置关系,注意分两种情况进行讨论是解决本题的关键.9.(2010•昌平区一模)如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象;垂径定理.专题:压轴题;动点型.分析:连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.解答:解:连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选A.点评:解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.10.(2013•合肥模拟)如图,是半径为1的圆弧,△AOC为等边三角形,D 是上的一动点,则四边形AODC的面积s的取值范围是()A.≤s≤B.<s≤C.≤s≤D.<s<考点:等边三角形的性质;垂径定理.专题:压轴题;动点型.分析:根据题意,得四边形AODC的最小面积即是三角形AOC的面积,最大面积即是当OD⊥OC时四边形的面积.要求三角形AOC的面积,作CD⊥AO于D.根据等边三角形的性质以及直角三角形的性质,求得CD=,得其面积是;要求最大面积,只需再进一步求得三角形DOC的面积,即是,则最大面积是.解答:解:根据题意,得四边形AODC的面积最小即是三角形AOC的面积,最大面积即是当OD⊥OC 时四边形的面积.作CH⊥AO于H,∵△AOC为等边三角形∴CH=∴S△AOC=;当OD⊥OC时面积最大,∴S△OCD=,则最大面积是+=∴四边形AODC的面积s的取值范围是<s≤.故选B.点评:此题首先要能够正确分析出要求的四边形的最小面积和最大面积,然后根据等边三角形的性质以及三角形的面积公式进行计算.二、填空题(共10小题)(除非特别说明,请填准确值)11.牛牛和壮壮在沙滩上玩游戏,需要画一个圆,而他们手中没有任何工具,请你帮他们想一个办法,怎样可以得到一个圆?考点:圆的认识.分析:根据圆的定义:到定点的距离等于定长的点的集合可以得到答案.解答:解:可让牛牛站在原地旋转,壮壮拉直牛牛的手臂,绕牛牛走一圈,用脚在沙滩上画出一条曲线,就是一个圆.点评:本题考查了圆的认识,了解圆的定义是解决本题的关键.12.一条弦AB分圆的直径为3cm和7cm两部分,弦和直径相交成60°角,则AB=2cm.考点:垂径定理.分析:根据题意画出图形,作弦的弦心距,根据题意可知,半径OA=5cm,ND=3cm,ON=2cm,利用勾股定理易求得NM=1cm,OM=cm,进一步可求出AM,进而求出AB.解答:解:根据题意画出图形,如图示,作OM⊥AB于M,连接OA,∴AM=BM,CD=10cm,ND=3cm,∴ON=2cm,∵∠ONM=60°,OM⊥AB,∴MN=1cm,∴OM=,在Rt△OMA中,AM===,∴AB=2AM=2.点评:本题主要考查了垂径定理,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,设法确定其中两边,进而利用勾股定理确定第三边.13.若⊙O的半径为13cm,圆心O到弦AB的距离为5cm,则弦AB的长为24cm.考点:垂径定理;勾股定理.专题:计算题.分析:在△OBD中,利用勾股定理即可求得BD的长,然后根据垂径定理可得:AB=2BD,即可求解.解答:解:连接OB,∵在Rt△ODB中,OD=4cm,OB=5cm.由勾股定理得:BD2=OB2﹣OD2=132﹣52=144,∴BD=12,又OD⊥AB,∴AB=2BD=2×12=24cm.故答案是24.点评:本题主要考查垂径定理,圆中有关半径、弦长以及弦心距的计算一般是利用垂径定理转化成解直角三角形.14.已知点P是半径为5的⊙O内一定点,且PO=4,则过点P的所有弦中,弦长可取到的整数值共有的条数是8条.考点:垂径定理;勾股定理.专题:推理填空题.分析:求出最长弦(直径)和最短弦(垂直于OP的弦),再求出之间的数,得出符合条件的弦,相加即可求出答案.解答:解:过P点最长的弦是直径,等于10,最短的弦是垂直于PO的弦,根据勾股定理和垂径定理求出是6,10和6之间有7,8,9,每个都有两条弦,关于OP对称,共6条,1+1+6=8,故答案为:8条.点评:本题考查了勾股定理和垂径定理的应用,此题是一道比较容易出错的题目,考虑一定要全面,争取做到不重不漏.15.若⊙A的半径为5,圆心A的坐标为(3,4),点P的坐标是(5,8),则点P在⊙A内部.考点:点与圆的位置关系;坐标与图形性质.分析:首先根据两点的坐标求得两点之间的距离,然后利用两点之间的距离和圆A的半径求得点与圆的位置关系.解答:解:∵A的坐标为(3,4),点P的坐标是(5,8),∴AP==2∵⊙A的半径为5,∴5>2∴点P在⊙A的内部故答案为:内部.点评:本题考查了点与圆的位置关系,解题得到关键是根据两点的坐标求得两点之间的距离.16.在下图所列的图形中选出轴对称图形:②③④⑥.考点:圆的认识;轴对称图形.分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形进行判断.解答:解:①⑤都不是轴对称图形,②③④⑥是轴对称图形,故答案为:②③④⑥.点评:本题主要考查轴对称的知识点,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.17.作圆,使这些圆都经过线段AB的两个端点A和B,这些圆的圆心所组成的图形是线段AB的垂直平分线.考点:圆的认识;线段垂直平分线的性质.分析:利用圆的性质可以得到圆上的所有点到圆心的距离相等,从而得到所有圆心到A、B两点的距离相等,从而得到结论.解答:解:∵圆上的所有点到圆心的距离相等,∴无论圆心O在哪里,总有OA=OB,即:所有圆心到A、B两点的距离相等,∵到A、B两点的距离相等的点在线段AB的垂直平分线上,故答案为:线段AB的垂直平分线.点评:本题考查的是线段垂直平分线的性质,即线段的垂直平分线上的点到线段的两个端点的距离相等.18.以已知点O为圆心,可以画无数个圆.考点:圆的认识.分析:圆心固定,半径不确定,可以画出无数个圆,由此选择答案解决问题.解答:解:以一点为圆心,以任意长为半径可以画无数个同心圆,故答案为:无数.点评:此题考查:圆心确定圆的位置,半径确定圆的大小这一知识.19.如图,AB为⊙O的直径,AD∥OC,∠AOD=84°,则∠BOC=48°.考点:圆的认识;平行线的性质.分析:根据半径相等和等腰三角形的性质得到∠D=∠A,利用三角形内角和定理可计算出∠A,然后根据平行线的性质即可得到∠BOC的度数.解答:解:∵OD=OC,∴∠D=∠A,∵∠AOD=84°,∴∠A=(180°﹣84°)=48°,又∵AD∥OC,∴∠BOC=∠A=48°.故答案为:48°.点评:本题考查了有关圆的知识:圆的半径都相等.也考查了等腰三角形的性质和平行线的性质.20.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=25度.考点:圆的认识;三角形内角和定理;三角形的外角性质.分析:解答此题要作辅助线OB,根据OA=OB=BD=半径,构造出两个等腰三角形,结合三角形外角和内角的关系解决.解答:解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.点评:此题主要考查了等腰三角形的基本性质,以及三角形内角和定理,难易程度适中.三、解答题(共10小题)(选答题,不自动判卷)21.已知:AB交⊙O于C、D,且AC=BD.请证明:OA=OB.考点:垂径定理;线段垂直平分线的性质.专题:证明题.分析:过O作OE⊥AB于E,根据垂径定理求出CE=DE,求出AE=BE,根据线段的垂直平分线定理求出即可.解答:证明:过O作OE⊥AB于E,∵OE过圆心O,∴CE=DE,∵AC=BD,∴AE=BE,∵OE⊥AB,∴OA=OB.点评:本题考查了线段的垂直平分线定理和垂径定理的应用,主要培养学生运用定理进行推理的能力,题目比较典型,难度适中.22.如图,AB是⊙O的直径,CD是弦,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF.考点:垂径定理.专题:证明题.分析:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,再由平行线分线段成比例定理即可求解.解答:证明:过O作OG⊥CD,由垂径定理可知OG垂直平分CD,则CG=DG,∵CE⊥CD,DF⊥CD,OG⊥CD,∴CE∥OG∥DF,∵CG=DG,∴OE=OF,∵OA=OB,∴AE=BF.点评:本题综合考查了垂径定理和平行线分线段成比例定理,解答此题的关键是作出辅助线,构造出平行线,再利用平行线的性质解答.23.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.考点:圆心角、弧、弦的关系;平行线的判定与性质;三角形内角和定理;含30度角的直角三角形.专题:证明题.分析:连接OE,推出DE⊥OC,求出∠EDO=90°,根据OD=OC=OE,求出∠DEO=30°,求出∠EOC,根据OC⊥AB,求出∠AOC=90°,求出∠AOE=30°,即可求出答案.解答:证明:连接OE,∵AB⊥OC,DE∥AB,∴DE⊥OC,∴∠EDO=90°,∵D为OC中点,∴OD=OC=OE,∴∠DEO=30°,∴∠EOC=90°﹣30°=60°,∵OC⊥AB,∴∠AOC=90°,∴∠AOE=90°﹣60°=30°,即∠AOE=30°,∠COE=60°,∴=2(圆心角的度数等于它所对的弧的度数).点评:本题考查了三角形的内角和定理,平行线的性质和判定,圆心角、弧、弦之间的关系,和30度角的直角三角形,主要考查学生运用定理进行推理的能力,题目比较好,综合性比较强.24.已知⊙O的半径为12cm,弦AB=16cm.(1)求圆心O到弦AB的距离;(2)如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成什么样的图形?考点:垂径定理;勾股定理.专题:计算题.分析:(1)连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,求出BC,再根据勾股定理求出OC即可;(2)弦AB的中点形成一个以O为圆心,以4cm为半径的圆周.解答:(1)解:连接OB,过O作OC⊥AB于C,则线段OC的长就是圆心O到弦AB的距离,∵OC⊥AB,OC过圆心O,∴AC=BC=AB=8cm,在Rt△OCB中,由勾股定理得:OC===4(cm),答:圆心O到弦AB的距离是4cm.(2)解:如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点到圆心O的距离都是4cm,∴如果弦AB的长度保持不变,两个端点在圆周上滑动,那么弦AB的中点形成一个以O为圆心,以4cm为半径的圆周.点评:本题考查了勾股定理和垂径定理的应用,主要培养学生运用定理进行推理和计算的能力,题型较好,难度适中.25.如图,△ABC的三个顶点在⊙0上,AD⊥BC,D为垂足,E是的中点,求证:∠OAE=∠EAD.(写出两种以上的证明方法)考点:圆心角、弧、弦的关系;三角形内角和定理.专题:证明题.分析:方法一:连接OB,利用同弧所对的圆周角是它所对圆心角的一半,三角形内角和定理,同弧所对的圆周角相等即可证明此题.方法二:连接OE,利用垂径定理可得OE⊥BC,再利用AD⊥BC,可得OE∥AD,然后即可证明.解答:证明:(1)连接OB,则∠AOB=2∠ACB,∠OAB=∠OBA,∵AD⊥BC,∴∠OAB=(180°﹣∠AOB),=90°﹣∠AOB=90°﹣∠ACB=∠DAC,∵E是弧BC的中点,∴∠EAB=∠EAC,∴∠EAO=∠EAB﹣∠OAB=∠EAC﹣∠DAC=∠EAD.(2)连接OE,∵E是的中点,∴弧BE=弧EC,∴OE⊥BC,∵AD⊥BC,∴OE∥AD,∴∠OEA=∠EAD,∵OE=OA,∴∠OAE=∠OEA,∴∠OAE=∠EAD.点评:此题主要考查学生对三角形内角和定理和圆心角、弧、弦的关系等知识点的理解和掌握,此题难度不大,关键是作好辅助线,方法一:连接OB,方法二:连接OE,属于中档题.26.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,(1)求CD的长;(2)若直线CD绕点E顺时针旋转15°,交⊙O于C、D,直接写出弦CD的长.考点:垂径定理;勾股定理.分析:(1)作OH⊥CD于H,连接OD,求出AB=6cm,半径OD=3cm,在Rt△OHE中,OE=2cm,∠OEH=60°,由勾股定理求出OH=cm,在Rt△OHD中,由勾股定理得求出HD=cm,由垂径定理得出DC=2DH,代入即可;(2)求出OE,∠OEH=45°,根据勾股定理求出OH,在Rt△OHD中,由勾股定理得求出HD,由垂径定理得出DC=2DH,代入即可.解答:解:(1)作OH⊥CD于H,连接OD,∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=6cm,半径OD=3cm,∵在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=60°,∴OH=cm,在Rt△OHD中,由勾股定理得:HD=cm,∵OH⊥CD,∴由垂径定理得:DC=2DH=2cm;(2)作OH⊥CD于H,连接OD,∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=cm6,半径OD=3cm,∵若直线CD绕点E顺时针旋转15°,∴∠OEH=60°﹣15°=45°,在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=45°,∴OH=cm,在Rt△OHD中,由勾股定理得:HD==(cm),∵OH⊥CD,∴由垂径定理得:DC=2DH=2cm;即CD=2cm.点评:本题考查了垂径定理,勾股定理,含30度角的直角三角形性质,等腰直角三角形性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.27.已知:如图,在⊙O中,∠A=∠C,求证:AB=CD(利用三角函数证明).考点:垂径定理;解直角三角形.专题:证明题.分析:作OE⊥AB于E,OF⊥CD于F,设⊙O半径为R,根据sinA=,、inC=和∠A=∠C求出OE=OF,由勾股定理求出AE=CF,由垂径定理得出DC=2DF,AB=2AE,即可求出答案.解答:证明:作OE⊥AB于E,OF⊥CD于F设⊙O半径为R,sinA=,sinC=,∴OE=RsinA,OF=RsinC,∵∠A=∠C,∴sinA=sinC,∴OE=OF,由勾股定理得:CF2=OC2﹣OF2,AE2=OA2﹣OE2,∴AE=CF,由垂径定理得:DC=2DF,AB=2AE,∴AB=CD.点评:本题考查了勾股定理,垂径定理,解直角三角形等知识点,主要培养学生运用定理进行推理的能力.28.如图,CD是⊙O的直径,弦AB⊥CD于点H,若∠D=30°,CH=1cm,求弦AB的长.考点:垂径定理;含30度角的直角三角形;勾股定理.分析:连接OA,根据等腰三角形性质求出∠D=∠OAD=30°,求出∠AOH=60°,根据垂径定理求出AB=2AH=2BH,求出∠HAO=30°,推出AO=2OH=C0,求出OH=CH=1cm,AO=2cm,在Rt△AHO 中,由勾股定理求出AH即可.解答:解:连接OA,∵OA=OD,∴∠D=∠OAD=30°,∴∠AOH=30°+30°=60°,∵AB⊥DH,∴∠AHO=90°,AB=2AH=2BH,∴∠HAO=30°,∴AO=2OH=C0,∴OH=CH=1cm,∴AO=2cm,在Rt△AHO中,由勾股定理得:AH==cm,∴AB=2cm.点评:本题考查了三角形的内角和定理,含30度角的直角三角形的性质,勾股定理,垂径定理,等腰三角形的性质等知识点的应用,主要考查学生综合运用性质进行计算和推理的能力,题目具有一定的代表性,是一道比较好的题目.29.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB 的长.考点:垂径定理;等腰三角形的性质;勾股定理.专题:计算题.分析:①连接AD、OB,根据三线合一得出AO过D,在Rt△OBD中,根据勾股定理求出BD,在Rt△ADB 中,根据勾股定理求出AB即可.②求出BD、AD,根据勾股定理求出AB即可.解答:解:①如图,连接AD,连接OB,∵△ABC是等腰三角形,∴根据等腰三角形的性质(三线合一定理)得出,AO⊥BC,AO平分BC,∵OD⊥BC,∴根据垂直定理得:OD平分BC,即A、O、D三点共线,∴AO过D,∵等腰△ABC内接于半径为6cm的⊙O,∴OA=6cm,BD=DC,AD⊥BC,在Rt△OBD中,由勾股定理得:BD===4(cm),在Rt△ADB中,由勾股定理得:AB===4(cm),②如图:同法求出BD=4cm,AD=6cm﹣2cm=4cm,由勾股定理得:AB===4(cm),答:AB的长是4cm或4cm.点评:本题考查了垂径定理,等腰三角形性质,勾股定理等知识点的应用,关键是正确作辅助线后求出BD的长,题目具有一定的代表性,难度也适中,是一道比较好的题目.注意:分类讨论.30.如图,在⊙O内有折线OABC,其中OA=7,AB=12,∠A=∠B=60°,求BC的长.考点:垂径定理;等边三角形的判定与性质;含30度角的直角三角形.专题:计算题.分析:延长AO交BC于D,过O作OE⊥BC于E,根据垂径定理求出BC=2BE,根据等边三角形的性质和判定求出AD=BD=AB=12,求出OD的长,根据含30度角的直角三角形性质求出DE即可解答:解:延长AO交BC于D,过O作OE⊥BC于E,∵OE过圆心O,OE⊥BC,∴BC=2CE=2BE(垂径定理),∵∠A=∠B=60°,∴DA=DB,∴△DAB是等边三角形(有一个角等于60°的等腰三角形是等边三角形),∴AD=BD=AB=12,∠ADB=60°,∴OD=AD﹣OA=12﹣7=5,∵∠OED=90°,∠ODE=60°,∴∠DOE=30°,∴DE=OD=(在直角三角形中,如果有一个角是30°,那么它所对的直角边等于斜边的一半),∴BE=12﹣=,∴BC=2BE=19(根据垂径定理已推出,在第三行).点评:本题考查了垂径定理,等边三角形的性质和判定,含30度角的直角三角形的性质等知识点的理解和掌握,关键是正确作辅助线后求出BE的长,题目比较典型,难度适中.。
5.2圆的对称性(2)检测练习1.如图,已知⊙O的直径AB⊥CD于点E,则下列结论不一定成立的是()A.CE=DE B.AE=OE C.=D.△OCE≌△ODE2.往直径为52cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()A.8cm B.10cm C.16cm D.20cm3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC,若∠CAB=22.5°,CD=8cm,则⊙O的半径为()A.8cm B.4cm C.4cm D.5cm4.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 5.如图,AB为⊙O的直径,弦CD⊥AB于点H,若AB=10,CD=8,则OH的长度为.6.如图,⊙O的直径为10cm,弦AB为6cm,点P为弦上的一动点,若OP的长为整数,则OP的可能值是.7.已知⊙O的半径为13cm,弦AB的长为10cm,则圆心O到AB的距离为cm.8.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB 交于点D.求AD的长.9.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,(1)求⊙O的半径;(2)求O到弦BC的距离.10.某地有一座圆弧形拱桥,所在圆的圆心为点O,桥下水面宽度AB为7.2m,过点O作OC⊥AB 于点D,交圆弧于点C,CD=2.4m(如图).现有一艘宽3m、船舱顶部高出水面AB2m的货船要经过这座拱桥,此货船能否顺利通过这座拱桥?5.2圆的对称性(2)检测练习答案版本1.【解答】解:∵⊙O的直径AB⊥CD于点E,∴CE=DE,弧CB=弧BD,在△OCE和△ODE中,,∴△OCE≌△ODE,故选:B.2.【解答】解:连接OB,过点O作OC⊥AB于点D,交⊙O于点C,如图所示:∵AB=48cm,∴BD=AB=×48=24(cm),∵⊙O的直径为52cm,∴OB=OC=26cm,在Rt△OBD中,OD===10(cm),∴CD=OC﹣OD=26﹣10=16(cm),故选:C.3.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故选:C.4.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5(cm),当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得:OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm);综上所述,AC的长为4cm或2cm,故选:C.5.【解答】解:连接OC,∵CD⊥AB,∴CH=DH=CD=×8=4,∵直径AB=10,∴OC=5,在Rt△OCH中,OH==3,故答案为:3.6.【解答】解:如图:连接OA,作OM⊥AB与M,∵⊙O的直径为10,∴半径为5,∴OP的最大值为5,∵OM⊥AB与M,∴AM=BM,∵AB=6,∴AM=3,在Rt△AOM中,OM==4,∵OM的长即为OP的最小值,∴4≤OP≤5.∵OP是整数,∴OP=4或5.故答案为4或5.7.【解答】解:如图,作OC⊥AB于C,连接OA,则AC=BC=AB=5,在Rt△OAC中,OC==12,所以圆心O到AB的距离为12cm.故答案为12.8.【解答】解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵S△ABC=AC•BC=AB•CE,∴CE===,∴AE==,∴AD=2AE=.9.【解答】解:(1)连接OB,设半径为r,则OE=r﹣2,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,∴BE=DE=4,在Rt△OBE中,∵OE2+BE2=OB2 ,∴(r﹣2)2+42=r2∴r=5.(2)∵r=5,∴AC=10,EC=8,BE=DE=4cm,∴BC==4(cm)∵OF⊥BC,∴S△BCO=BC⋅OF=OC⋅BE∴4⋅OF=5×4,∴OF=.10.【解答】解:如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=7.2m,∴BD=AB=3.6m.又∵CD=2.4m,设OB=OC=ON=rm,则OD=(r﹣2.4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣2.4)2+3.62,解得r=3.9.∵CD=2.4m,船舱顶部为正方形并高出水面AB2m,∴CE=2.4﹣2=0.4m,∴OE=r﹣CE=3.9﹣0.4=3.5m,在Rt△OEN中,EN2=ON2﹣OE2=3.92﹣3.52=2.96(m2),∴EN=2.96(m).∴MN=2EN=2×≈3.44m>3m.∴此货船能顺利通过这座拱桥.。
3.2圆的对称性
一、选择题
1、如图3-33所示,弦CD垂直于⊙O的直径AB,垂足为E,且CD=22,BD =3,则AB的长为 ( )
A.2 B.3
C.4 D.5
2、如图3-35所示,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD =6 cm,则直径AB的长是 ( )
A.23cm B.32cm
C.42cm D.43cm
3.下列命题:①圆心不同,直径相等的两圆是等圆;②长度相等的两弧是等弧;
③圆中最长的弦是直径;④圆的对称轴是圆的直径;⑤圆不是旋转对称图形.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4.如图3-36所示,在同心圆中,大圆的弦AB交小圆于C,D,已知AB=2CD,AB的弦心距等于CD长的一半,那么大圆与小圆的半径之比是 ( )
A.3∶2 B.5∶2
C.5∶2 D.5∶4
5.下列语句中,不正确的有 ( )
①直径是弦;②弧是半圆;③经过圆内一定点可以作无数条弦;④长度相等的弧是等弧.
A.①③④B.②③ C.② D.②④
6.下列语句中不正确的有
①平分弦的直径垂直于弦②圆是轴对称图形,任何一条直径都是它的对称轴③长度相等的两条弧是等弧
A.3个
B.2个
C.1个
D.以上都不对
7.如图3-37所示,在⊙O中,弦AB的长为6 cm.圆心O到AB的距离为4 cm,则⊙O的半径长为 ( )
A.3 cm B.4 cm C.5 cm D.6 cm
8.如图3-38所示,C为AB的中点,CN⊥OB于N,弦CD⊥OA于M.若⊙O的半径为5 cm,ON=4 cm,则CD的长等于.
二、填空题
9.如图3-39所示,在⊙O中,AB和AC是互相垂直的两条弦,OD⊥AB于D,OE ⊥AC于E.且AB=8 cm,AC=6 cm,那么⊙O的半径OA的长为.10.P为⊙O内一点,且OP=8 cm,过P的最长弦长为20 cm,则过P的最矩弦长为.
11.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM的长的最小值为____.最大值为____________.
12.(2014•陕西,第17题3分)如图,⊙O的半径是2,直线l与⊙O相
交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若
∠AMB=45°,则四边形MANB面积的最大值是.
三、解答题
13、如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB的长,再量中点到AB的距离CD的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径。
14.如图3-41所示,AB是直径,弦CD⊥AB,垂足为P,AC=CD=23,求OP的长.
15.如图3-42所示,⊙O的直径是4 cm,C是AB的中点,弦AB,CD相交于P,CD=23cm,求∠APC的度数.
16.(2014•湖北黄石,第19题7分)如图,A、B是圆O上的两点,∠AOB=120°,C是AB弧的中点.
(1)求证:AB平分∠OAC;
(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.
参考答案
1.B
2.D
3..B[提示:①③正确.]
4.C[提示:AB 与CD 的弦心距相同.]
5.C
6.B
7.C[提示:本题考查垂径定理与勾股定理的综合应用.作OC ⊥AB 于点C ,连接AO ,则OC =4,AC =3,所以在Rt △AOC 中,AO =22AC OC +=5(cm).故选C .]
8.6 cm[提示:由题意可知CD =CE =2CN ,又CN =222254CO ON -=-=3,所以CD =2CN =6(cm),故填6 cm .]
9.5 cm
10.12 cm [提示:过P 的最长弦为直径,即直径等于20 cm ,最短弦为过P 且垂直OP 的弦,利用勾股定理可求最短弦的一半长为6 cm ,则弦长为12 cm .]
11、分析:当OM 垂直于AB 时OM 最小,当M 于A 或B 重合时,OM 最大
解:当OM 垂直于AB 时OM 最小,这时AM=1/2AB=4,连AO 得直角三角形AOM ,由勾股定理得,0M=3,当M 于A 或B 重合时,OM 最大为半径5 12.4 13、分析:由CD 平分弧AB 且垂直于AB,得CD 经过圆心O,连AO,由垂径定理得AD=1/2AB, 设圆形工件半径为r ,OD=OC-CD=r-CD,在直角三角形AOD 中,由勾股定理,求出r 。
解、小亮的做法合理.
取AB =8 m ,CD =2 m, 设圆形工件半径为r ,
∴r 2=(r -2)2+42. 得r =5(m).
14.解:连接OC ,∵AB 是直径,CD ⊥AB ,∴CP =12
CD =3.在Rt △ACP 中,AP =2222(23)(3)AC CP -=-=3,∴OP =AP -AO =3-AO =3-OC .在Rt
△COP中,OC2=OP2+CP2,即OC2=(3-OC)2+2
(3).解得OC=2.∴OP=3-2=1.
15.解:连接OC,交AB于E.∵C是AB的中点,∴OC⊥AB,∴∠PEC=90°.作
OF⊥CD,垂足为F,∴CF=1
2
CD=
1
233
2
⨯=(cm).∵⊙O的直径是4 cm,∴
OC=2 cm.在Rt△COF中,cosC=
3
2
CF
OC
=,∴∠C=30°,∴∠APC=90°-
30°=60°.
16.解答:(1)证明:连接OC,∵∠AOB=120°,C是AB弧的中点,∴∠AOC=∠BOC=60°,
∵OA=OC,
∴△ACO是等边三角形,
∴OA=AC,同理OB=BC,
∴OA=AC=BC=OB,
∴四边形AOBC是菱形,
∴A B平分∠OAC;
(2)解:连接OC,
∵C为弧AB中点,∠AOB=120°,∴∠AOC=60°,
∵OA=OC,
∴OAC是等边三角形,
∵OA=AC,
∴AP=AC,
∴∠APC=30°,
∴△OPC是直角三角形,
∴.。