2015年五年级数学下册 解简易方程 1课件 西师大版
- 格式:ppt
- 大小:2.27 MB
- 文档页数:10
教案标题:五年级下册数学教案-5.4 解简易方程︳西师大版一、教学目标1. 让学生理解方程的概念,掌握解简易方程的方法。
2. 培养学生运用方程解决实际问题的能力。
3. 培养学生对方程的兴趣,激发学生的求知欲。
二、教学内容1. 方程的概念2. 解简易方程的方法3. 方程在实际问题中的应用三、教学重点与难点1. 教学重点:方程的概念,解简易方程的方法。
2. 教学难点:理解方程中的未知数,掌握解方程的方法。
四、教学过程1. 导入新课通过一个实际问题,引导学生理解方程的概念。
例如:小明有5元钱,买了一个铅笔盒后还剩下2元钱,问铅笔盒多少钱?通过这个问题,让学生认识到方程是解决实际问题的有力工具。
2. 讲解方程的概念方程是由等号连接的两个表达式,其中包含一个或多个未知数。
方程中的未知数需要通过解方程来求解。
例如:x 3 = 7,其中x就是未知数。
3. 讲解解简易方程的方法(1)移项法:将方程中的项移动到等号的另一边。
例如:x 3 = 7,将3移到等号右边,得到x = 7 - 3。
(2)消元法:通过加减乘除运算,消去方程中的未知数。
例如:2x = 6,将方程两边同时除以2,得到x = 3。
(3)代入法:将已知数值代入方程中,求解未知数。
例如:x 3 = 7,将7代入方程,得到x 3 = 7,解得x = 4。
4. 操练解方程让学生通过练习,掌握解简易方程的方法。
可以设置一些简单的方程,让学生尝试解答。
5. 方程在实际问题中的应用通过一些实际问题,让学生运用方程解决。
例如:小明和小红共有10元钱,小明有x元钱,小红有y元钱,问x和y分别是多少?6. 总结回顾本节课所学内容,强调方程的概念和解简易方程的方法。
提醒学生在解决实际问题时要灵活运用方程。
五、课后作业布置一些与方程相关的练习题,让学生巩固所学知识。
六、板书设计1. 方程的概念2. 解简易方程的方法3. 方程在实际问题中的应用七、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学方法,以便更好地提高教学质量。
解简易方程之方法及难点归纳重点概念:方程,方程的解,解方程,等式的基本性质(详见“知识点汇总”)要点回顾:“解方程”就是要运用“等式的基本性质”,对“方程”的左右两边同时进行运算,以求出“方程的解”的过程。
(方程的解即是如同“X=6”的形式)“解方程”就好像是要把复杂的绳结解开,因此一般要按照“绳结”形成的过程逆向操作(逆运算)。
过程规范:先写“解:”,“=”号对齐往下写,同时运算前左右两边要照抄,解的未知数写在左边。
注意事项:以下内容除了标明的外,全都是正确的方程习题示例,且没有跳步,请仔细观看其中每步的解题意图。
带“*”号的题目不会考查,但了解它们有助于掌握解复杂方程的一般方法,对简单的方程也就自然游刃有余了。
一、一步方程只有一步计算的方程,直接逆运算除未知数外的部分。
难点:当未知数出现在减数和除数时,要先逆运算含未知数的部分。
二、两步方程两步方程中,若是只有同级运算,也可以先计算,后当做一步方程求解。
注意要“带符号移动”,增添括号时还要注意符号的变化。
如果含有两级运算,就“逆着运算顺序”同时变化,如含有未知数的一边是“先乘后减”,则先逆运算减法(即两边同加),再逆运算乘法(即两边同时除以),依此类推。
难点:当未知数出现在减数和除数时,要先把含有未知数的部分看作一个整体(可以看成是一个新的未知数),就相当于简化成了一步方程。
因此原方程就可以看成是6+y=10,5y=6和10-y=8的形式。
三、三步方程(一)应用乘法分配律,共同因数是已知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是已知数的,既可以逆用乘法分配律提取共同因数而将其简化为两步方程,也可以直接算出已知部分而化简。
通过比较可以看出,一般来说提取共同因数的方法确实计算量要少一些,不容易算错。
(二)应用乘法分配律,共同因数是未知数的具有乘法分配律的形式,即两个有共同因数的乘积(或具有相同除数的除法式子)相加或相减,而共同因数(或除数)是未知数的,只能逆用乘法分配律提取共同因数而将其难点:隐藏的因数或错看的未知数容易成为此类问题的难点和易错点。