微分中值定理例题
- 格式:doc
- 大小:346.50 KB
- 文档页数:11
理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。
12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。
微分中值定理与导数应用一、选择题1. 设函数()sin f x x =在[0,]π上满足罗尔中值定理的条件,则罗尔中值定理的结论中的=ξ【 】 A. π B. 2π C. 3πD. 4π2. 下列函数中在闭区间],1[e 上满足拉格朗日中值定理条件的是【 】A. x lnB.x ln ln C.xln 1 D.)2ln(x -3. 设函数)3)(2)(1()(---=x x x x f ,则方程0)('=x f 有【 】A. 一个实根B. 二个实根C. 三个实根D. 无实根4. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点5. 若在区间I 上,()0,()0,f x f x '''>≤, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 6. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点7. 若在区间I 上,()0,()0,f x f x '''<≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 8. 下列命题正确的是【 】A. 若0()0f x '=,则0x 是()f x 的极值点B. 若0x 是()f x 的极值点,则0()0f x '=C. 若0()0f x ''=,则()()00x f x ,是()f x 的拐点D. ()0,3是43()23f x x x =++的拐点9. 若在区间I 上,()0,()0,f x f x '''>≥, 则曲线f (x ) 在I 上【 】A. 单调减少且为凹弧B. 单调减少且为凸弧C. 单调增加且为凹弧D. 单调增加且为凸弧 10.函数256, y x x =-+在闭区间 [2,3]上满足罗尔定理,则ξ=【 】A. 0B. 12C. 52D. 2 11.函数22y x x =--在闭区间[1,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 212.函数y =在闭区间[2,2]-上满足罗尔定理,则ξ=【 】A. 0B. 12C. 1D. 2 13.方程410x x --=至少有一个根的区间是【 】A.(0,1/2)B.(1/2,1)C. (2,3)D.(1,2) 14.函数(1)y x x =+.在闭区间[]1,0-上满足罗尔定理的条件,由罗尔定理确定的=ξ 【 】A. 0B. 12-C. 1D.1215.已知函数()32=+f x x x 在闭区间[0,1]上连续,在开区间(0,1)内可导,则拉格朗日定理成立的ξ是【 】 A.± B. C. D. 13±16.设273+=x y ,那么在区间)3,(-∞和),1(+∞内分别为【 】 A.单调增加,单调增加 B.单调增加,单调减小 C.单调减小,单调增加 D.单调减小,单调减小二、填空题1. 曲线53)(23+-=x x x f 的拐点为_____________.2. 曲线x xe x f 2)(=的凹区间为_____________。
M 12丿」I 2丿第三章 微分中值定理与导数的应用习题3-11.解:(1)虽然 f(x)在[—1,1]上连续,f(—1) = f(1),且 f(x)在(—1,1)内可导。
可见,f(x)在[_1,1]上满足罗尔中值定理的条件,因此,必存在一点 匕€(-1,1),使得f 牡)=0,即:f(X)=cosx, F(X)=1 — sin X 且对任一 x 乏0,—】,F'(X)H 0, ”■. f (x),F (x)满足柯西 I 2丿中值定理条件。
—12©宀2=0,满足、; (2)虽然f(x)在[—1,1]上连续,f(_1)= f (1),但 f (x)在(—1,1)内 x = 0点不可导。
可 见,f (x)在[ —1,1]上不满足罗尔中值定理的条件,因此未必存在一点 £ £ (_1,1),使得 f 徉)=0. 2.因为函数是一初等函数,易验证满足条件 3 3 .解:令 y = 3arccos x - arccos(3x - 4x 3), y ‘ = 一 23 —12x 2厂工®®3)2,化简得 y'=0,「. y =c ( C 为常数),又 y(0.5)=兀,故当-0.5<x<0.5,有 y(x)=兀。
「兀f f 兀、 4 .证明:显然f(x), F(x)都满足在'|0,二I 上连续,在10,二 内可导L 2」 I 2丿 c oxsn ——x、、2丿F Q-F(O)12丿兀--1 2F( x) -1 sixn_c O 弓-x厂(X )_F(x) ZL"2 /兀 X ,,即 tan I - -- U--1,此时l 4 2丿 2f JI「兀X = 2 I — -arctan l — -1L 4l 2显然萨〔0,-〕,即丿」 I 2丿5.解:因为f(0) = f (1)= f (2) = f (3) =0,又因为f(x)在任一区间内都连续而且可导, 所以f (X)在任一区间 0,1 ], 1,2], [2,3]内满足罗尔中值定理的条件, 所以由罗尔定理,得:3" -(0,1), "^(1,2), ©-(2,3),使得:f 徉1 )= 0 r =) &:◎(=), 30 因为6.证明:设f(x) =0的n+1个相异实根为X o V X 1 <X 2 <H( <X n则由罗尔中值定理知:存在J (i =1,2,川n):X0 <:勺1cj ■<X2 vill <-1^Xn ,使得再由罗尔中值定理至少存在So =1,2,川n-1):上11 C 巴21 V ©2 吒 W ©3 V i 11 < J n d W G n ,使得7.解:反证法,倘若 p(X)=0有两个实根,设为X^X 2,由于多项式函数 p(x)在[X 1,X 2]上连续且可导,故由罗尔中值定理存在一点E€(X I ,X 2),使得P 徉)=0,而这与所设p'(x)=0没有实根相矛盾,命题得证。
例1设()x f '在[]b a ,上存在,且()()b f a f '<',而r 为()a f '与()b f '之间的任一值,则在()b a ,内存在一点ξ,使得()r f ='ξ[7].例2设()x f 在()+∞,a 内可导,且()()A x f x f x a x ==+∞→→+lim lim ,试证:至少存在一点 ()+∞∈,a ξ,使得()0='ξf [7].例3设函数()x f 在[]b a ,上可导,且()()0_<'⋅'+b f a f ,则在()b a ,内至少存在一个ξ,使得()0='ξf [7].例4()x f 在[]b a ,上连续,在()b a ,内二阶可导,且()()()b f c f a f ==,()b c a <<, 试证:至少存在一个()b a ,∈ξ,使得()0=''ξf [2].例5设()x f 在[]1,0上有三阶导数,()()010==f f ,设()()x f x x F 3=,证明:存在 ()1,0∈ξ使得()0='''ξF .例6设()x f 在[]b a ,上可微,且()x f 在a 点的右导数()0<'+a f ,在b 点的左导数 ()0<'-b f ,()()c b f a f ==,证明:()x f '在()b a ,内至少有两个零点.例7设()x f 在R 上二次可导,()0>''x f ,又存在一点0x ,使()00<x f ,且 ()0lim <='-∞→a x f x ,()0lim >='+∞→b x f x ,证明:()x f 在R 上有且仅有两个零点. 例8()[]1,0在x f 上二次可导,()()010==f f ,试证明:存在()1,0∈ξ,使得()()()ξξξf f '-=''211[4].例9设()[]1,0在x f 上连续,在()1,0上可导, ()()010==f f ,121=⎪⎭⎫ ⎝⎛f .证明: 至少存在一点()1,0∈ξ使得()1='ξf .例10设函数()x f 在闭区间[]b a ,上连续,在开区间()b a ,上二次可微,连结()()a f a ,与()()b f b ,的直线段与曲线()x f y =相交于()()c f c ,,其中b c a <<.证明在()b a ,上至少存在一点ξ,使得()0=''ξf [1].例11设()x f 在[]b a ,上连续,在()b a ,内可导,且()()1==b f a f 试证:存在ξ, ()b a ,∈η使得 ()()[]1='+-ηηξηf f e [1].例12 设函数()x f 在[]b a ,上连续,在()b a ,上二阶可微,并且()()b f a f =,证明:若存在点()b a c ,∈,使得()()a f c f >,则必存在点()b a ,,,∈ζηξ,使得()0>'ξf ,()0<'ηf ,()0<''ζf [6].例13设()x f 定义在[]1,0上,()x f '存在且()x f '单调递减,()00=f ,证明: 对于 10≤+≤≤≤b a b a ,恒有()()()b f a f b a f +≤+.例14 设()x f 在[]b a ,上连续,在()b a ,可导,b a <≤0,()()b f a f ≠.证明:存在η,()b a ,∈ξ,使得()()ηηξf b a f '+='2 [6]. 例15 设()x f 在[]b a ,上连续,在()b a ,可导,且()0≠'x f ,试证:存在η,()b a ,∈ξ,使得()()ηηξ---=''e ab e e f f ab [1]. 例16设函数()x f 在[]b a ,上连续,在()b a ,可导,证明:存在()b a ,∈ξ,使得()()()()ξξξf f ab a af b bf '+=--[1]. 例17设()[]b a x f ,在上连续()0>a ,在()b a ,可导,证明:在()b a ,内存在ξ,η,使()()ab f f ηηξ'='2[1].例18 设()[]b a x f ,在上连续,在()b a ,内可微,0>>a b ,证明:在()b a ,内存在321,,x x x ,使得()()()()33223222211ln42x f x a b a b x x f a b x x f '-='+='. (3) 例19设()x f 在()b a ,内二次可微,试用柯西中值定理证明:任意x ,()b a x ,0∈,存在ξ在x 与0x 之间,使()()()()()()2000021x x f x x x f x f x f -''+-'+=ξ成立[6]. (8)。
《微分中值定理及其应⽤》内容⼩结与典型例题⼀、基本结论与定理1、费马引理:可导函数极值点处导数等于0,曲线有⽔平切线2、罗尔定理:闭区间上端点值相等的连续可导函数必存在导数等于0的点3、拉格朗⽇中值定理:闭区间上连续可导函数必存在导数等于曲线端点连线的斜率的点4、柯西中值定理:闭区间上连续可导的两个函数,分母的导数不等于0时,存在⼀点使得两函数端点值的差的⽐值等于该点处两个函数的导数值的⽐值.5、泰勒中值定理:如果函数在点x0的某个邻域内具有n+1阶导数,则有⼆、有关中值命题证明的思路与⽅法利⽤逆向思维 , 设辅助函数 . ⼀般解题⽅法:(1) 证明含⼀个中值的等式或根的存在,多⽤罗尔定理,可⽤原函数法找辅助函数。
验证根的唯⼀性、⾄少、⾄多数量⼀般借助于反证法,基于罗尔定理验证.(2) 若结论中涉及到含中值的两个不同函数,可考虑⽤柯西中值定理.(3) 若结论中含两个或两个以上的中值,必须多次应⽤中值定理。
⼀般⾸先考虑将不同的中值分别放置于不同的两侧,然后对于各侧使⽤中值定理.(4) 若已知条件中含⼆阶及⼆阶以上的导数 , 多考虑⽤泰勒公式 , 对于⼀阶、两阶也可考虑对导数⽤中值定理.(5) 若结论为不等式 , 要注意适当放⼤或缩⼩的技巧.(6)罗尔定理、柯西定理⼀般只⽤于等式结论的证明,⽽拉格朗⽇中值定理(泰勒中值定理的特殊情况)和泰勒中值定理即可⽤于等式的证明,也可⽤于不等式的证明。
对于包含有函数值、⾃变量取值、导数值的中值命题的证明,⼀般⾸先考虑拉格朗⽇中值定理和泰勒中值定理.三、⽤导数研究函数的性态(1)单调性的判定(2)凹凸性的判定(3)极值点、极值、拐点的判定和计算(4)最值判定与计算(5)曲率和曲率圆的计算(6)借助单调性、凹凸性、极值、最值验证函数不等式或常值不等式(7)应⽤拉格朗⽇中值定理求极限(8)应⽤洛必达法则求极限(9)应⽤带⽪亚诺余项的麦克劳林公式求极限(10)分析作图法的基本步骤。
第六章 微分中值定理及其应用总练习题1、证明:若f(x)在(a,b)内可导,且+→a x lim f(x)=-→b x lim f(x),则至少存在一点ξ∈(a,b),使f ’(ξ)=0.证:定义f(a)=+→a x lim f(x),f(b)=-→b x lim f(x),则f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),由罗尔中值定理知 至少存在一点ξ∈(a,b),使f ’(ξ)=0.2、证明:若x>0,则 (1)1x +-x =θ(x)x 21+,其中41<θ(x)<21;(2)0x lim →θ(x)=41,+∞→x lim θ(x)=21. 证:(1)由拉格朗日中值定理得:1x +-x =θ(x)x 21+, (0<θ(x)<1),∴θ(x)x 2+=x1x 1-+=1x ++x ,∴θ(x)=41+21[1)x(x +-x].∵1)x(x +-x>2x -x=0,∴41+21[1)x(x +-x]>41; 又1)x(x +-x=x1)x(x x ++<xx x 2+=21,∴41+21[1)x(x +-x] <21.∴41<θ(x)<21.(2)(1)中已证θ(x)=41+21[1)x(x +-x],∴0x lim →θ(x)=0x lim →{41+21[1)x(x +-x]}=41; +∞→x lim θ(x)=+∞→x lim {41+21[1)x(x +-x]}=41+21+∞→x lim 1x111++=21.3、设函数f 在[a,b]上连续,在(a,b)内可导,且ab>0. 证明: 存在ξ∈(a,b),使得f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).证:记F(x)=xf (x),G(x)=x 1,根据柯西中值定理,存在ξ∈(a,b),使得)(G )(F ξξ''=G(a)-G(b)F(a)-F(b),又)(G )(F ξξ''=f(ξ)- ξf ’(ξ),∴f(ξ)- ξf ’(ξ)=G(a)-G(b)F(a)-F(b).又f(b)f(a)b a b -a 1=b -a bf (a)-af (b)=a1-b 1a f(a)-bf(b)=G(a)-G(b)F(a)-F(b), ∴f(b)f(a)b ab -a 1=f(ξ)- ξf ’(ξ).4、设函数f 在[a,b]上三阶可导,证明: 存在ξ∈(a,b),使得f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ). 证:记F(x)=f(x)-f(a)-21(x-a)[f ’(x)+f ’(a)],G(x)=(x-a)3,则 F,G 在[a,b]上二阶可导,F ’(x)=f ’(x)-21[f ’(x)+f ’(a)]-21(x-a)f ”(x),G ’(x)=3(x-a)2,F ”(x)=f ”(x)-21f ”(x)-21f ”(x)-21(x-a)f ’”(x)=-21(x-a)f ’”(x);G ”(x)=6(x-a).且F(a)=F ’(a)=0,G(a)=G ’(a)=0.根据柯西中值定理,存在η∈(a,b),使得)(G )(F ηη''=G(a)-G(b)F(a)-F(b)=G(b)F(b)=3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+', 又根据柯西中值定理,存在ξ∈(a, η),使得)(G )(F ξξ''''=(a)G -)(G (a)F -)(F ''''ηη=)(G )(F ηη'',又)(G )(F ξξ''''=a)-6()(f )a (21-ξξξ'''-=-121f ”’(ξ).∴3a)-(b ](a)f (b)f )[a -b (21-f(a)-f(b)'+'=-121f ”’(ξ). ∴f(b)=f(a)+21(b-a)[f ’(a)+f ’(b)]-121(b-a)3f ”’(ξ).5、对f(x)=ln(1+x)应用拉格朗日中值定理,证明: 对x>0,有0<x)ln(11+-x1<1.证:f ’(x)=x11+. 对f 在区间[0,x]应用拉格朗日中值定理得: f ’(ξ)=0-x f (0)-f (x)=x ln1-x)ln(1+= x x)ln(1+,∴ln(1+x)=xf ’(ξ)=ξ1x+. ∴x)ln(11+=x ξ1+=x 1+x ξ;即x)ln(11+-x 1=xξ.又0<xξ<1,∴0<x)ln(11+-x1<1.6、设a 1,a 2,…,a n 为n 个正实数,且f(x)=(na a a x n x 2x 1+⋯++)x1. 证明:(1)0x lim →f(x)=nx n x 2x 1a ··a ·a ⋯;(2)∞→x lim f(x)=max{a 1,a 2,…,a n }. 证:(1)0x lim →f(x)=e na a a ln x 1lim x n x 2x 10+⋯++→x = exn x 2x 1nx n 2x 21x 10a a a a ln a a ln a a ln a lim+⋯+++⋯++→x= ena ln a ln a ln n21+⋯++=n xn x 2x 1a ··a ·a ⋯. (2)记A=max{a 1,a 2,…,a n },则0<Aa k≤1, (k=1,2,…,n)∵f(x)=A[n)A a()A a ()Aa (x n x 2x 1+⋯++]x 1,∴A(n 1)x 1<f(x)≤A , 又∞→x lim A(n1)x1=A ,∴∞→x lim f(x)=A=max{a 1,a 2,…,a n }.7、求下列极根: (1)=→1x lim (1-x 2)x)-ln(11;(2)2xx x x)ln(1-xe lim+→;(3)sinxx 1sinx lim20x →.解:(1)=→1x lim (1-x 2)x)-ln(11=e)x 1ln()x 1ln(lim21x --=→= e21x x1)x 1(x 2lim--=→=ex 1x 2lim1x +=→=e.(2)2x 0x x x)ln(1-xe lim +→=2xx 11-xe e lim xx0x ++→=2x)(11xe 2e lim 2x x 0x +++→=23. (3)sinxx 1sinx lim20x →=)sinx x ·x 1sin x (lim 0x →=)x 1sin x (lim 0x →·sinx x lim 0x →=0·1=0.8、设h>0,函数f 在U(a,h)内具有n+2阶连续导数,且f (n+2)(a)≠0, f 在U(a,h)内的泰勒公式为:f(a+h)=f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )θh a (f 1)(n +++h n+1, 0<θ<1.证明:θlimh →=2n 1+. 证:f 在U(a,h)内带皮亚诺型余项的n+2阶泰勒公式为:f(a+h)= f(a)+f ’(a)h+…+n!)a (f (n)h n +1)!(n )a (f 1)(n ++h n+1+2)!(n )a (f 2)(n ++h n+2+o(h n+2),与题中所给泰勒公式相减得:1)!(n )a (f )θh a (f 1)(n 1)(n +-+++h n+1=2)!(n )a (f 2)(n ++h n+2+o (h n+2).∴1)!(n θ+·θh )a (f )θh a (f 1)(n 1)(n ++-+=2)!(n )a (f 2)(n +++2n 2n h )h (++o .令h →0两端取极限得:1)!(n )a (f 2)(n ++θlim 0h →=2)!(n )a (f 2)(n ++,∴θlim 0h →=2n 1+.9、设k>0,试问k 为何值时,方程arctanx-kx=0存在正根.解:若方程arctanx-kx=0有正根x 0,∵f(x)=arctanx-kx 在[0,x 0]上可导, 且f(0)=f(x 0)=0,由罗尔中值定理知,存在ξ∈(0,x 0),使得 f ’(ξ)=2ξ11+-k=0. 可见0<k<1. 反之,当0<k<1时,由f ’(x)=2x11+-k 连续,f ’(0)=1-k>0, ∴存在某邻域U(0,δ),使得在U(0,δ)内,f ’(x)>0,f(x)严格递增, 从而存在a>0,使f(a)>f(0)=0. 又+∞→x lim f(x)=-∞,∴存在b>a ,使f(b)<0, 由根的存在定理知,arctanx-kx=0在(a,b)内有正根. ∴当且仅当0<k<1时,原方程存在正根.10、证明:对任一多项式p(x)来说,一定存在点x 1与x 2,使p(x)在(x 1,+∞)与(-∞,x 2)上分别严格单调.证:设p(x)=a 0x n +a 1x n-1+…+ a n-1x+a n ,其中a 0≠0,不妨设a 0>0. 当n=1时,p(x)=a 0x+a 1,p ’(x)=a 0>0,∴p(x)在R 上严格增,结论成立. 当n ≥2时,p ’(x)=na 0x n-1+(n-1)a 1x n-2+…+ a n-1,若n 为奇数,则∞→x lim p ’(x)=+∞,∴对任给的G>0,存在M>0,使 当|x|>M 时,有p ’(x)>G>0,取x 1=M ,x 2=-M ,则 p(x)在(x 1,+∞)与(-∞,x 2)上均严格增.若n 为偶数,则+∞→x lim p ’(x)=+∞,-∞→x lim p ’(x)=-∞, ∴对任给的G>0,存在M>0,使当x>M 时,有p ’(x)>G>0,当x<-M 时,p ’(x)<-G<0,取x 1=M ,x 2=-M , 则p(x)在(x 1,+∞)上严格增,在(-∞,x 2)上严格减. 综上原命题得证。
>第三章 微分中值定理与导数的应用一、选择题1、则,且存在,,设 ,1)x (f )x (f )x (f 0)x (f 0)x (f 00000-=+''''='>( )是否为极值点不能断定的极值点 不是 的极小值点是的极大值点 是0000x )D ()x (f x )C ( )x (f x )B ()x (f x )A (2、处必有在则处连续且取得极大值,在点函数 x )x (f x x )x (f y 00==( )0)x (f )B ( 0)x ('f )A (00<''= 或不存在 且 0)x (f )D (0)x (f 0)x (f )C (0'00=<''=3、的凸区间是 x e y x -=( )) , 2( (D) ) , (2 (C) 2) , ( (B) 2) , ( (A)∞+-∞+--∞-∞,4、在区间 [-1,1] 上满足罗尔定理条件的函数是 ( )(A)xx sin )x (f = (B)2)1x ()x (f += (C) 3 2x )x (f = (D)1x )x (f 2+=5、设f (x) 和g (x) 都在x=a 处取得极大值,F (x)=f (x)g (x),则F(x)在x=a 处( ) (A) 必取得极大值 (B)必取得极小值 (C)不取极值 (D)不能确定是否取得极值6、满足罗尔定理的区间是使函数 )x 1(x y 322-=( )(A) [-1,1] (B) [0,1] (C) [-2,2] (D) ]5 4, 5 3[- 7、x 2 e x y -=的凹区间是( )(A))2,(-∞ (B) )2,(--∞ (C) ) 1(∞+, (D) ) 1(∞+-,&8、函数)x (f 在0x x = 处连续,若0x 为)x (f 的极值点,则必有( ) .(A)0)(0='x f (B)0)(0≠'x f (C)0)(0='x f 或)(0x f '不存在 (D))(0x f '不存在 9、当a= ( ) 时,处取到极值在 3x 3sin3x asinx f(x)π=+=( ) (A) 1 (B) 2 (C)3 π(D) 010、间是适合罗尔定理条件的区使函数 )x 1(x )x (f 322-=( )]5 4, 5 3[)D ( ]2,2[)C ( ]1,1[)B ( ]1,0[)A (--- 11、(),则上的凹弧与凸弧分界点为连续曲线,若 )x (f y )x (f x 00=( )的极值必定不是的极值点为必定为曲线的驻点, 必为曲线的拐点, )x (f x )D ( )x (f x )C ( ))x (f x ( )B ( ))x (f x ( )A (000000、二、填空题 1、__________________e y82x的凸区间是曲线-=.2、______________ 2 x y x 的极小值点是函数=.3、的凸区间为曲线x 3 e y x+=_____________________ . 4、函数f (x )=x x 3-在[0,3]上满足罗尔定理的条件,由罗尔定理确定的罗尔中值点ξ= . 5、设曲线y =a 23bx x +以点(1,3)为拐点,则数组(a ,b )= . 6、函数1x 3x y 3+-=在区间 [-2,0] 上的最大值为 ,最小值为 . 7、函数 x sin ln y =在 [65, 6 ππ] 上的罗尔中值点ξ= . …8、1 x y +=在区间 [ 1,3 ] 的拉格朗日中值点ξ = _______________. 9、______________ 2 x y x 的极小值点是函数=. 10、______________ 2x y x 的极小值点是函数⋅=。
微分中值定理典型例题
定义微分中值定理:
微分中值定理指函数y(x)在某区间[a,b]上满足:函数连续,且二阶导数连续,且存在某点c使得a<c<b,
那么,在区间[a,b]上有:
y''(c)=[y'(b) - y'(a)]/(b - a)
例:设函数y=f(x)在区间[0,2]上连续,且其导数和二阶导数连续,求二阶导数在x=1处的值
解:利用微分中值定理,
知道f''(1)=:
[f'(2)-f'(0)] / (2 - 0)
即:
f''(1)=[f'(2)-f'(0)] / 2
只需要将该区间[0,2]上函数f(x)的一阶和二阶导数连续性给出,就可以求出f''(1)的值。
微分中值定理在计算函数及其导数时,是一种重要的工具,它可以减少计算量,提高计算效率。
它可以帮助我们推测函数特性,用于优化函数以及定义图像行为,等等。
微分中值定理给计算科学家带来了许多便利。
题型1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题2.根据极限,利用洛比达法则,进行计算3.根据函数,计算导数,求函数的单调性以及极值、最值4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点5.根据函数,利用极限的性质,求渐近线的方程内容一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则一些类型(00、∞∞、∞•0、∞-∞、0∞、00、∞1等) 三.函数的单调性及极值 1.单调性 2.极值四.函数的凹凸性及拐点 1.凹凸性 2.拐点五.函数的渐近线 水平渐近线、垂直渐近线典型例题题型I 方程根的证明题型II 不等式(或等式)的证明题型III 利用导数确定函数的单调区间及极值 题型IV 求函数的凹凸区间及拐点自测题三一.填空题 二.选择题 三.解答题4月13日微分中值定理及导数应用练习题基础题: 一.填空题1.函数12-=x y 在[]1,1-上满足罗尔定理条件的=ξ 。
3.1)(2-+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。
4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。
5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 .6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中.7. =→x x x 3cos 5cos lim 2π35-8.=++∞→xx x arctan )11ln(lim0 9.)tan 11(lim 2x x xx -→=3110.0lim(sin )x x x +→=1二. 选择题1.罗尔定理中的三个条件:)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =,是)(x f 在),(b a 内至少存在一点ξ,使0)(='ξf 成立的( ).A . 必要条件B .充分条件C . 充要条件D . 既非充分也非必要条件2.下列函数在]1 ,1[-上满足罗尔定理条件的是( ).A. x e x f =)(B. ||)(x x f =C. 21)(x x f -=D.⎪⎩⎪⎨⎧=≠=0,00 ,1sin )(x x xx x f 3.若)(x f 在),(b a 内可导,且21x x 、是),(b a 内任意两点,则至少存在一点ξ,使下式成立( ).A . ),()()()()(2112b a f x x x f x f ∈'-=-ξξB . ξξ)()()()(2121f x x x f x f '-=-在12,x x 之间C . 211221)()()()(x x f x x x f x f <<'-=-ξξD . 211212)()()()(x x f x x x f x f <<'-=-ξξ4.下列各式运用洛必达法则正确的是( B )A . ==∞→∞→n n n n n en ln limlim11lim=∞→n n eB . =-+→x x x x x sin sin lim∞=-+→xxx cos 1cos 1lim 0C . x x x x x x x x x cos 1cos1sin 2lim sin 1sinlim020-=→→不存在D . x x e x 0lim →=11lim 0=→xx e5. 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A .xx x sin lim20→ B .x x xtan 0)1(lim +→ C .x xx x sin lim+∞→ D . xnx e x +∞→lim综合题: 三.证明题1.验证罗尔定理对函数x y sin ln =在区间⎥⎦⎤⎢⎣⎡65,6ππ上的正确性。
中值定理考研题库中值定理是微积分中的重要定理之一,它是由法国数学家拉格朗日在18世纪提出的。
中值定理主要有三种形式:罗尔中值定理、拉格朗日中值定理和柯西中值定理。
这三种形式的中值定理在解决函数连续性和可导性相关的问题时起到了重要的作用。
在考研数学中,中值定理也是一个常考的知识点,下面我们来看看一些典型的中值定理考研题。
首先,我们来看一个典型的罗尔中值定理的考研题。
题目如下:已知函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),证明:存在ξ∈(a,b),使得f'(ξ)=0。
这道题目考察的是罗尔中值定理的应用。
根据罗尔中值定理,如果函数在区间[a,b]上连续,在(a,b)内可导,并且在a和b处取相等的函数值,那么在(a,b)内至少存在一个点ξ,使得函数的导数等于0。
所以,我们可以通过证明ξ存在来解决这道题目。
接下来,我们来看一个拉格朗日中值定理的考研题。
题目如下:设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f'(x)在(a,b)内不恒为0。
证明:存在ξ∈(a,b),使得f(b)-f(a)=(b-a)f'(ξ)。
这道题目考察的是拉格朗日中值定理的应用。
根据拉格朗日中值定理,如果函数在区间[a,b]上连续,在(a,b)内可导,并且导函数不恒为0,那么在(a,b)内至少存在一个点ξ,使得函数在[a,b]上的增量等于函数在(a,b)内的导数乘以自变量增量。
所以,我们可以通过证明ξ存在来解决这道题目。
最后,我们来看一个柯西中值定理的考研题。
题目如下:设函数f(x)和g(x)在区间[a,b]上连续,在(a,b)内可导,并且g'(x)≠0。
证明:存在ξ∈(a,b),使得[f(b)-f(a)]g'(ξ)=[g(b)-g(a)]f'(ξ)。
这道题目考察的是柯西中值定理的应用。
根据柯西中值定理,如果函数f(x)和g(x)在区间[a,b]上连续,在(a,b)内可导,并且g'(x)≠0,那么在(a,b)内至少存在一个点ξ,使得函数f(x)在[a,b]上的增量与函数g(x)在[a,b]上的增量之比等于函数f(x)在(a,b)内的导数与函数g(x)在(a,b)内的导数之比。
理工大学微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理()()1.()0,(0)0,f x f f f ϕξξξξζξξξ'' <=>><≤[][]''''''[]<<≤1212121212121221112111211221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζϕ''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。
12n 12n 12n 11221122n 0011000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n nni i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >∀⋯⋯∈<<1++⋯+=++⋯+≤⋯=<=>α.'''=+-+∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 0011110000111()()()()().x 2!()()()()()(()()().)nn ni i i i i i i nni nniiiiiii i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======⎛⎫''-'-≥+-<<'≥+-===- ⎪⎝⎭∑∑∑∑∑∑∑注:x()3.)tan.2F ,F 2(0)0,(0)0,((cos02F f xf F F f ππξξπξξππππππξ [0]0'∈=[0]0=∴===[0]∈设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续,在(,)内可导,且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cossin F cos sin 0222222cos0)tan22x x x f f f πξξξξξξξξξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。
4.设)(x f 在]1 , 0[上连续,在)1,0(内可导,且0)1()0(==f f ,,1)21(=f试证:(1)至少存在一点),1,21(∈η使得η=η)(f ;(2)对任意实数λ,必存在), , 0(η∈ξ 使得 ].)([1)(ξ-ξλ=-ξ'f f证明:(1)设xx f x F -=)()(,则],1,21[)(∈x F 又1)1(,21)21(-==F F ,所以0)1()21(<⋅F F 由零点定理知:,0)(),1,21(=η∈η∃F 使得即.)(η=ηf(2)构造辅助函数:])([)(x x f e x G x-=λ-则),0()(],,0[)(η∈η∈D x G C x G又0)(,0)0(=η=G G所以将上应用罗尔定理,有,在]0[)(ηx G 存在),(η∈ξ0使得0)(=ξ'G .0]}1)([])([{)(=-ξ'+ξ-ξλ-=ξ'λξ-f f e G又 ,0≠λξ-e得0]1)([])([=-ξ'+ξ-ξλ-f f 即 1)(])([-ξ'=ξ-ξλf f 结论成立。
5.求证:对任意实数x ,22arctan ln(1).x x x ≥+、 证明:设)1ln(arctan 2)(2x x x f +-=,则0)0(=fx x f arctan 2)(=',当0>x 时,有,0)(>'x f )(x f 在),0(+∞严格单增,有0)(>x f ,当0<x 时,有,0)(<'x f )(x f 在)0,(-∞严格单减,有0)(>x f , 所以对任意实数x ,0)(≥x f ,结论成立。
(后半部分也可利用偶函数的性质证明).6.(1) 设n 为正整数,试利用拉格朗日中值定理证明不等式:111ln(1);1n n n<+<+ (2) 利用(1)的结果证明数列111(1)ln 23n x n n=++++-收敛. 证明:(1)设,ln )(x x f =对于正整数n ,显然有)(x f 在区间]1,[+n n 上满足拉氏 中值定理,所以至少存在一点)1,(+∈ξn n ,使得)(1)()1(ξ'=-+f n f n f即ξ=-+=+1ln )1ln()11ln(n n n 又nn 1111<ξ<+,从而n n n 1)11ln(11<+<+ 成立。
(2)n nn n x x n n ln )1211()1ln()11211(1++++-+-++++=-+ .0)11ln(11<+-+=n n所以数列为单调递减数列。
又nn n n x xn n 111)11ln(111-+>+-+=-+112111)()()(x x x x x x x x n n n n n +-++-+-=-++1)121()111()111(+-++--+-+> n n n n 011>+=n 所以此数列有下界,由单调有界准则知此数列收敛。
7.设()f x 在[]0,1上二阶可导,且()()01f f =.求证在()0,1内至少存在一点ξ,使得()()20f f ξξξ'''+=证明: 作辅助函数()2()F x x f x '=, 由()f x 在[]0,1上二阶可导,知()F x 在[]0,1上可导,从而()F x 在[]0,1上连续.又()f x 在[]0,1上满足Rolle 定理的条件,从而由Rolle 定理知:()0,1η∃∈,使得()0f η'=。
又(0)0F =,()2()0F f ηηη'==这样,()F x 在[]0,η上满足Rolle 定理的条件,由Rolle 定理,有()()()0,0,1,0F ξηξ'∃∈⊂=使得又()()()22F x xf x x f x ''''=+()()()220F f f ξξξξξ''''∴=+=∴()()20f f ξξξ'''+=,结论得证.8.已知()f x 在[0,1]上连续,且在()0,1内可导,且()0f =0,()1f =1。
求证 (1) 存在()0,1ξ∈ 使得()12f ξ=。
(2) 存在两个不同的点(),0,1ηλ∈,使得()()112f f ηλ+='' 证明:(1)()()()1,00,11,02f x C f f ∈[0,1]==<<1且又,故由连续函数介值定理知()()10,1,.2f ξξ∃∈=使(2)对()f x 在区间ξ[0,],ξ[,1]上分别应用拉格朗日中值定理,得()()0,,,,ηξλξηλ∃∈∈,1≠,使()()()()()()()1101011122.21121f f f f f f ξξηλξξξξξξ----''======---()()1122(1) 2.f f ξξηλ∴+=+-='' 9. 设)(x f 在],[b a 上二阶可导,且0)(,0)(<''>'x f x f ,证明在),(b a 内, 方程xb a f x f x f --=')()()(有惟一的实根.证明:(1)根的存在性:设xa f x bf x xf x F )()()()(--=,则],,[)(b a C x F ∈),,()(b a D x F ∈又)()()(b F a bf a F =-=,由罗尔定理知:,0)(),,(=ξ'∈ξF b a 使得至少存在一点即方程0)(='x F 至少有一个根,而)()()()()(a f x f b x f x x f x F -'-'+='xb a f x f x f x F --='=')()()(0)(,变形即为方程.)()()(至少有一个根所以方程x b a f x f x f --='(2)根的惟一性:)()()()()(a f x f x f b x x F -+'-=')()()(2)(x f b x x f x F ''-+'='' ),((b a x ∈∀.0)(,0,0)(,0)(>''<-<''>'x F b x x f x f 可知,由已知条件,有惟一零点。
严格单增,)()(x F x F ''∴.)()()(有惟一一个根所以方程xb a f x f x f --='10.证明arcsin arccos (11).2x x x π+=-≤≤证:设()arcsin arccos f x x x =+, [1,1]x ∈- 则在(1,1)-上()(0f x '=+=(),(1,1)f x C x ∴≡∈- (0)arcsin 0arccos0022f ππ=+=+=又即 .2C π=又(1),2f π±=()arcsin arccos 2f x x x π=+=[1,1]x ∈-11.证明当0,ln(1).1xx x x x><+<+时 证:设()ln(1)f x x =+, ()f x 在[]0x ,上满足拉氏定理条件,()(0)()(0),(0)f x f f x x ξξ'∴-=-<<1(0)0,(),1f f x x'==+ 由上式得ln(1)1x x ξ+=+,又0x ξ<< 111x ξ∴<+<+ 11111x ξ∴<<++ ,11x x x x ξ∴<<++ 即 ln(1)1xx x x<+<+ 12. 0,ln b a b b a b a b a a -->><<设证明: 证:将待证不等式整理为1ln ln 1,b a b b a a-<<- 设函数()ln ,f x x =,则()[,]f x a b 在上满足拉格朗日定理的条件,于是存在(,)a b ξ∈,使得ln ln 1()b a f b a ξξ-'==-由于(,)a b ξ∈,故111.b a ξ<<所以1ln ln 1b a b b a a -<<-,即ln .b a b b ab a a--<<13.证明:不等式2sin 1(01)2xx e x x -+<+<<成立证:设函数2()sin (1),[0,1].2xx f x e x x -=+-+∈则有()cos x f x e x x -'=-+-,()f x '的正负难以确定,继续求导得()sin 1x f x e x -''=--。