15-第15讲微分中值定理教学教案
- 格式:ppt
- 大小:743.50 KB
- 文档页数:65
微分中值定理与导数的应用教案第一章:微分中值定理概述1.1 引言引入微分中值定理的概念和意义。
解释微分中值定理在数学分析和物理学中的应用。
1.2 罗尔定理介绍罗尔定理的定义和条件。
通过示例解释罗尔定理的应用。
1.3 拉格朗日中值定理阐述拉格朗日中值定理的表述和条件。
通过图形和示例解释拉格朗日中值定理的应用。
第二章:导数的应用2.1 函数的单调性引入函数的单调性的概念。
解释导数与函数单调性的关系。
通过示例说明如何利用导数判断函数的单调性。
2.2 函数的极值介绍极值的概念和分类。
解释导数与函数极值的关系。
通过示例说明如何利用导数找到函数的极值点。
2.3 函数的凹凸性引入函数凹凸性的概念。
解释导数与函数凹凸性的关系。
通过示例说明如何利用导数判断函数的凹凸性。
第三章:微分中值定理的应用3.1 洛必达法则介绍洛必达法则的定义和条件。
通过示例解释洛必达法则的应用。
3.2 泰勒公式阐述泰勒公式的定义和意义。
通过示例解释泰勒公式的应用。
3.3 微分中值定理在其他领域的应用举例说明微分中值定理在物理学、工程学等领域的应用。
第四章:导数在经济学的应用4.1 边际分析介绍边际分析的概念和意义。
解释如何利用导数进行边际分析。
通过示例说明导数在边际分析中的应用。
4.2 优化问题介绍优化问题的概念和分类。
解释如何利用导数解决优化问题。
通过示例说明导数在优化问题中的应用。
第五章:微分中值定理与导数的实际应用5.1 实际应用案例介绍介绍一个实际应用案例,如工程设计、经济决策等。
解释该案例中如何应用微分中值定理和导数。
5.2 学生实践项目分配一个实际应用项目给学生们。
指导学生如何利用微分中值定理和导数解决该项目。
5.3 项目成果展示与讨论让学生们展示他们的项目成果。
进行讨论和交流,分享各自的解题思路和经验。
第六章:导数与函数图像6.1 切线与导数解释导数在函数图像上的几何意义。
展示如何从函数的导数得到函数图像上的切线。
通过实例演示导数与切线的关系。
微分中值定理教案章节一:引言与预备知识【教学目标】1. 理解微分中值定理的概念和意义。
2. 掌握基本函数的求导法则。
【教学内容】1. 介绍微分中值定理的背景和应用。
2. 复习基本函数的求导法则,包括幂函数、指数函数、对数函数和三角函数的求导。
【教学活动】1. 教师讲解微分中值定理的概念和意义,引导学生理解其重要性。
2. 学生自主学习基本函数的求导法则,并进行练习。
教案章节二:罗尔定理【教学目标】1. 理解罗尔定理的表述和证明。
2. 掌握罗尔定理在实际问题中的应用。
【教学内容】1. 介绍罗尔定理的表述和证明方法。
2. 通过例题讲解罗尔定理在实际问题中的应用。
【教学活动】1. 教师讲解罗尔定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习罗尔定理的应用,并进行练习。
教案章节三:拉格朗日中值定理【教学目标】1. 理解拉格朗日中值定理的表述和证明。
2. 掌握拉格朗日中值定理在实际问题中的应用。
【教学内容】1. 介绍拉格朗日中值定理的表述和证明方法。
2. 通过例题讲解拉格朗日中值定理在实际问题中的应用。
【教学活动】1. 教师讲解拉格朗日中值定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习拉格朗日中值定理的应用,并进行练习。
教案章节四:柯西中值定理【教学目标】1. 理解柯西中值定理的表述和证明。
2. 掌握柯西中值定理在实际问题中的应用。
【教学内容】1. 介绍柯西中值定理的表述和证明方法。
2. 通过例题讲解柯西中值定理在实际问题中的应用。
【教学活动】1. 教师讲解柯西中值定理的表述和证明,引导学生理解其原理。
2. 学生跟随例题学习柯西中值定理的应用,并进行练习。
教案章节五:微分中值定理的应用【教学目标】1. 理解微分中值定理在实际问题中的应用。
2. 掌握利用微分中值定理解决实际问题的方法。
【教学内容】1. 介绍微分中值定理在实际问题中的应用,如求函数的单调区间、极值和最值等。
2. 通过例题讲解如何利用微分中值定理解决实际问题。
微分中值定理教案章节一:预备知识1.1 函数的极限教学目标:理解函数极限的概念,掌握极限的计算方法。
教学内容:引入函数极限的概念,探讨极限的性质和计算方法,如夹逼定理、单调有界定理等。
教学方法:通过具体例子和问题引导学生理解极限的概念,利用图形和数学分析软件演示极限过程,让学生体会极限的意义。
1.2 连续函数教学目标:理解连续函数的概念,掌握连续函数的性质和判断方法。
教学内容:介绍连续函数的定义,探讨连续函数的性质,如保号性、保界性等,学习连续函数的判断方法。
教学方法:通过具体例子和问题引导学生理解连续函数的概念,利用图形和数学分析软件演示连续函数的性质,让学生掌握判断连续函数的方法。
教案章节二:微分中值定理2.1 罗尔定理教学目标:理解罗尔定理的内容和意义,学会运用罗尔定理解决问题。
教学内容:介绍罗尔定理的定义,探讨罗尔定理的条件和结论,学习如何应用罗尔定理解决问题。
教学方法:通过具体例子和问题引导学生理解罗尔定理的内容,利用图形和数学分析软件演示罗尔定理的应用,让学生学会运用罗尔定理解决问题。
2.2 拉格朗日中值定理教学目标:理解拉格朗日中值定理的内容和意义,学会运用拉格朗日中值定理解决问题。
教学内容:介绍拉格朗日中值定理的定义,探讨拉格朗日中值定理的条件和结论,学习如何应用拉格朗日中值定理解决问题。
教学方法:通过具体例子和问题引导学生理解拉格朗日中值定理的内容,利用图形和数学分析软件演示拉格朗日中值定理的应用,让学生学会运用拉格朗日中值定理解决问题。
教案章节三:微分中值定理的应用3.1 导数的应用教学目标:理解导数的概念,掌握导数的计算方法。
教学内容:引入导数的概念,探讨导数的性质和计算方法,如求导法则、高阶导数等。
教学方法:通过具体例子和问题引导学生理解导数的概念,利用图形和数学分析软件演示导数过程,让学生体会导数的意义。
3.2 函数的单调性教学目标:理解函数单调性的概念,掌握函数单调性的判断方法。
《微分中值定理》一、教材分析我说课的内容是中国经济出版社《数学分析》教材中第四章第一节《微分中值定理》.《数学分析》课程是师范专科院校小学教育专业的必修课程.中值定理是微分学的基本定理,是一系列中值定理的总称,是应用导数研究函数在区间上整体性态的有力工具.本节课是在已经学习了导数运算的基础上,通过微分中值定理建立函数与其导数之间的联系,使学生对微分学有初步的理论认识,并为今后应用导数把握函数特征打下基础.二、教学目标本着师范专业对《数学分析》课程”必须够用”的原则,根据培养师范生“数学应用能力”的教学要求,我制定了本节课的教学目标如下:1.知识目标:理解和记忆罗尔定理、拉格朗日中值定理和柯西中值定理的条件和结论,并深刻理解三个定理之间的异同及其几何意义2.能力目标:会应用三个定理进行简单的不等式、等式证明和方程根存在的证明3.德育目标:通过定理的几何意义体会”形象思维”在数学分析学习中的应用,通过三个定理的联系体会数学中”将一般化为特殊,将复杂问题化为简单问题”的论证思想.三、教学重点、难点我所教授的学生是师范专业科学双语二年级的学生,由于学生的数学基础比较薄弱,对于数学分析中理论性的内容,本着”领会实质,掌握应用“的原则,我将本节课的教学重难点制定如下:1.教学重点:理解和记忆罗尔定理、拉格朗日定理和柯西定理的条件和结论;会应用三个定理进行简单的不等式、等式证明和方程根存在的证明2.教学难点:深刻理解三个定理之间的异同及其几何意义四、教学方法由于数学分析课程自身的特点,本节课我采用以教师讲授为主,学生探究练习为辅的综合讲授法.并在教学中贯穿对学生形象思维能力的培养与训练,激发学生的学习兴趣与潜能,以到达较好的教学效果.五、说教学过程遵循着“复习旧知---讲授新知---总结归纳”的原则,本节课的教学内容由以下四部分组成:对于教学过程我将分别从整体和细节两个角度进行说明.(一) 整体把握由于数学分析课程中的理论内容抽象难懂,为了更好的激发学生的学习兴趣,提高学生的理解能力,因此我采用形象思维的方法进行教学,即通过直观信息总结抽象的结论,通过函数图像的变化总结定理之间条件与结论的变化,进一步得到每一个定理的应用方式。
§3. 1 中值定理一、罗尔定理一、罗尔定理首先,观察图1. 设曲线弧 是函数[]) ,)((b a x x f y ∈=的图形. 这是一条连续的曲线弧,除端点外处处具有不垂直于x 轴的切线,且两 个端点的纵坐标相等,即)()(b f a f =.可以发现曲线的最高点或最低 点C 处, 曲线有水平的切线. 如果记C 点的横坐标为ξ,那么就有0)(='ξf现在用分析语言把这个几何现象描述出来,就是下面的罗尔定理. 为了应用方便,先介绍费马(Fermat )引理.费马(Fermat )引理 设函数)(x f 在点0x 的某邻域)(0x U 内有定义,并且在0x 处可导,如果对任意的)(0x U x ∈,有 )()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0='x f .证明 不妨设)(0x U x ∈时,)()(0x f x f ≤ (如果)()(0x f x f ≥,可以类似地证明).于是,对于)(00x U x x ∈∆+,有 )()(00x f x x f ≤∆+, 从而当0>∆x 时,0)()(00≤∆-∆+xx f x x f ;当0<∆x 时,0)()(00≥∆-∆+xx f x x f .根据函数)(x f 在0x 可导的条件及极限的保号性,便得到0)()(lim )()(0000≤∆-∆+='='+→∆+xx f x x f x f x f x , .0)()(lim )()(0000- 0≥∆-∆+='='-→∆x x f x x f x f x f x 所以,0)(0='x f .证毕. (通常称导数等于零的点为函数的驻点(或稳定点,临界点))罗尔定理 如果函数y =f (x )在闭区间[a , b ]上连续, 在开区间(a , b )内可导, 且有f (a )=f (b ), 那么在(a , b )内至少在一点ξ , 使得f '(ξ)=0.证明 由于)(x f 在闭区间[]b a ,上连续,根据闭区间上连续函数的最大值和最小值定理,)(x f 在闭区间[]b a ,上必定取得它的最大值M 和最小值m .这样,只有两种可能情形:(1)M =m .这时)(x f 在区间[]b a ,上必然取相同的数值M :)(x f =M .由此,),(b a x ∈∀,有0)(='x f .因此,任取),(b a ∈ξ,有0)(='ξf .(2)M >m .因为)()(b f a f =,,所以M 和m 这两个数中至少有—个不等于)(x f 在区间[]b a ,的端点处的函数值.为确定起见,不妨设M )(a f ≠(如果设m )(a f ≠,证达完全类似).那末必定在开区间(b a ,) 内有一点ξ使=)(ξf M .因此,[]b a x ,∈∀ ,有)()(ξf x f ≤,从而由费马引理可知0)(='ξf .定理证毕. 注 证明方程有根,一是用零点定理,二是用罗尔定理.y图1⌒AB例1 设)(x f 在[]1,0上连续,)1,0(内可导,且1)21(,0)1()0(===f f f ,试证:至少存在一个)1,0(∈ξ,使1)(='ξf . 证明: 令x x f x F -=)()(,则0)0(=F ,21)21(=F ,1)1(-=F .由闭区间上连续函数的零点定理可知,存在)1,21(∈η,使0)(=ηF .再由罗尔定理得,至少存在一个)1,0(),0(⊂∈ηξ,使0)(='ξF ,即1)(='ξf .二、拉格朗日中值定理罗尔定理中)()(b f a f =这个条件是相当特殊的,它使罗尔定理的应用受到限制.如果把)()(b f a f =这个条件取消,但仍保留其余两个条件,并相应地改变结论,那末就得到微分学中十分重要的拉格朗日中值定理.拉格朗日中值定理 如果函数f (x )在闭区间[a , b ]上连续, 在开区间(a ,<b ), 使得等式 f (b )-f (a )=f '(ξ)(b -a ) 成立.在证明之前,先看一下定理的几何意义.如果把(1)式改写成)()()(ξf a b a f b f '=--, 由图2可看出,ab a f b f --)()(为弦AB 的斜率,而)(ξf '为曲线在点C 处的切线的斜率.因此拉格朗日中值定理的几何意义是;如果连续曲线)(x f y =的弦AB 上除端点外处处具有不垂直于x 那末这弧上至少有一点C ,使曲线在C 点处的切线平行于弦AB .从罗尔定理的几何意义中(图1)看出,由于)()(b f a f =,弦AB 是平行于x 轴的,因此点C 处的切线实际上也平行于弦AB .由此可见,罗尔定理是拉格朗日中值定理的特殊情形.从上述拉格朗日中值定理与罗尔定理的关系,自然想到利用罗尔定理来证明拉格朗日中值定理.但在拉格朗日中值定理中,函数)(x f 不一定具备)()(b f a f =这个条件,为此我们设想构造一个与)(x f 有密切联系的函数)(x φ(称为辅助函数),使)(x φ满足条件)()(b a φφ=.然后对)(x φ应用罗尔定理,再把对)(x φ所得的结论转化到)(x f 上,证得所要的结果.我们从拉格朗日中值定理的几何解释中来寻找辅助函数,从图3—2中看到,有向线段NM 的值是x 的函数,把它表示为)(x φ,它与)(x f 有密切的联系,当a x =及b x =时,点M 与点N 重合,即有0)()(==b a φφ.为求得函数)(x φ的表达式,设直线AB 的方程为)(x L y =,则)()()()()(a x ab a f b f a f x L ---+=,由于点M 、N 的纵坐标依次为)(x f 及)(x L ,故表示有向线段NM 的值的函数)()()()()()()()(a x ab a f b f a f x f x L x f x -----=-=φ.下面就利用这个辅助函数来证明拉格朗日中值定理.定理的证明: 引进辅函数 令 ϕ(x )=f (x )-f (a )-ab a f b f --)()((x -a ).容易验证函数f (x )适合罗尔定理的条件: ϕ(a )=ϕ(b )=0, ϕ(x )在闭区间[a , b ] 上连续在开区间(a , b )内可导, 且ϕ '(x )=f '(x )-ab a f b f --)()(.根据罗尔定理, 可知在开区间(a , b )内至少有一点ξ, 使ϕ '(ξ)=0, 即 f '(ξ)-ab a f b f --)()(=0.图2由此得ab a f b f --)()(= f '(ξ) , 即 f (b )-f (a )=f '(ξ)(b -a ). 定理证毕.f (b )-f (a )=f '(ξ)(b -a )叫做拉格朗日中值公式. 这个公式对于b <a 也成立. 拉格朗日中值公式的其它形式:设x 为区间[a , b ]内一点, x +∆x 为这区间内的另一点(∆x >0或∆x <0), 则在[x , x +∆x ] (∆x >0)或[x +∆x , x ] (∆x <0)应用拉格朗日中值公式, 得f (x +∆x )-f (x )=f '(x +θ∆x ) ⋅∆x (0<θ<1).如果记f (x )为y , 则上式又可写为∆y =f '(x +θ∆x ) ⋅∆x (0<θ<1).试与微分d y =f '(x ) ⋅∆x 比较: d y =f '(x ) ⋅∆x 是函数增量∆y 的近似表达式, 而 f '(x +θ∆x ) ⋅∆x 是函数增量∆y 的精确表达式.作为拉格朗日中值定理的应用, 我们证明如下推论:推论1 如果函数f (x )在区间I 上的导数恒为零, 那么f (x )在区间I 上是一个常数. 证 在区间I 上任取两点x 1, x 2(x 1<x 2), 应用拉格朗日中值定理, 就得f (x 2)-f (x 1)=f '(ξ)(x 2 - x 1) (x 1<ξ< x 2).由假定, f '(ξ)=0, 所以f (x 2)-f (x 1)=0, 即f (x 2)=f (x 1).因为x 1, x 2是I 上任意两点, 所以上面的等式表明: f (x )在I 上的函数值总是相等的, 这就是说, f (x )在区间I 上是一个常数. 例2. 证明当x >0时,x x xx <+<+)1ln(1. 证 设f (x )=ln(1+x ), 显然f (x )在区间[0, x ]上满足拉格朗日中值定理的条件, 根据定理, 就有 f (x )-f (0)=f '(ξ)(x -0), 0<ξ<x 。
《微分中值定理》教学设计第9眷l999年第4期第4期兵团教育学院JOU'~ALOFBINGTUAN蹦玎DND糟Tm丌rEx~1.9N4Dee.1999《微分中值定理》教学设计王淑责微分学中值定理包括费马定理,罗尔中值定理,拉格朗日中值定理和柯西中值定理.用发现法讲授这组定理,可以使学生体验发现真理的乐趣,学习解决问题的策略.提高发现问题,分析同题,解决问题的能力.文…给出了用发现法讲授微分中值定理的一种教学设计.本文给出用发现法讲授微分中值定理的另一种教学设计.l费马定理1.1有关概念(1)设函数f在的某个邻域U()内有定义,若对U()内的一切x都有f(x)≤U(xo)(f(x)≥U())(1)则称函数f在取得极大(小)值,称xo为函数f的极大(小)值点.如图所示,连续函数y=f(x)的图象C是一条连续曲线,x1与是f的极大值点,是f的极小值点.对应地,点(x1,f())与(,f(x3))是曲线C上的局部最高点,(.f())是曲线C上的局部最低点.(2)设菌敬f在Xo可导,若f(x0)=0,则称为函数f的稳定点.1.2问题l:可导函数f的图象在其极值点处的切线有何特点?能否用f=()表示这一特点?(1)探索问题l的答案:囝1观察图1.容易得出l}(下结论:可导函数f的图象在其板值点处的切线平行于x轴. 这一特点可表示为f()=0(2)概括上述结论,提出猜想l:设函数f在可导,若为f的极值点,则f,()=O(2)(3)判断猜想l的正确性:设为f的极小值点.则存在的某个邻域U(xo.8).使得对一切xEU(,8),均有f(x)一f(xo)I>0于是.当<x<时,≤0.当<x<+由f在可导与极限的不等式性质得到一76—f((≤0,f()(/>o故有f(xo)=0同理可得.当xo为f的极大值点时.亦有r(xo)=0于是.我们得到下面的定理.定理l:设函数f在可导.若xo为f的极值点,则f()=02罗尔中值定理2.1问题2:两端点处等高的连续的光精曲线c'是否存在平行于x轴的切线?(1)探索问题2的答案:观察图2,窖易得出下结论:若函数f在【a,b]上连续,在(a.b)内可导,并且f(a)=f(b),则f在(a,b)内至少有一个极值点毛在该点处,曲线c的切线平行于x轴,即f(})=0(2)概括上述结论,提出猜想2:若函数f在【a.b]上连续,在(a.b)内可导,并且f(a)=f(b).则在(a,b)内至少存在一点e,使得f(e)=0(3)判断猜想2的正确性:由于函数f在【a.b]上连续.所以函数f在【a,b]上存在最大值M与最小值rno若M=m,则f(x)~-c.~(x)------o.任取一点E∈(a,b).均有f(e)=0圉2若M≠m.则由f()=f(b)可知:M与m至少有一个在(a,b)内的某一点e处取得,于是.} 是f的投值点.由定理l,f(e)=0于是,我们得到以下定理.定理2:若函数f满足条件:r在【a,b]上连续;2'在(a,b)内可导;3.f()=fib)剜在(a,b)内至少存在一点∈'使得f(})=02.2思考题:定理2中的三个条件各起什么作用?取消或减弱其中一条,结论会发生什么变化?3拉格朗日中值定理3.1问题3:以A,B为端点的光精曲线c.是否存在平行于弦AB的切线?(1)探索问题3的答案:图3作曲线c的割线1,使它平行于弦AB.移动剖线1.始终保持使I平行于AB.当相邻两个割点重合于点P时.就得到了曲线C 的平行于一77—弦AB的切线.这时切线的斜率f(e)等于弦AB的斜率鱼.(2)概括上述结论.提出猜想3:设函数f在【a'b]上连续.在(a,b)内可导,则在(a,b)内至少存在一点e.使得f(e):(3)(3)判断猜想3的正确性:将f(e)=亡变塑为f(e)一幽毫=0.由此可见,若能找到一个可导函数g(x),使得g(e)=})一{{.则对g(x)应用定理2即可.为使g(x)符合上述要求,根据一求导公式,只要取g(x)=f(x)一x+c(c为任意常数)即可.特别地,当c=0时.g (x):f()一令g(x)=f(x)一x,x∈[a'b】,则g(x)在[a'b]上连续,在(a,b)内可导.并且g(a):=g(b)由定理2,在(a.)内至少存在一点e'使得g)=})一幽三:0.目㈣一于是.我们得到下面的定理:定理3:设函数f在【a'b]上连续,在(alb)内可导,则在(a,b)内至少存在一点使得f(e) :f—(.—b.)——-——f.(—a—)b—a3.2定理3与定理2的关亲:定理2是定理3的特殊情况,定理3是定理2的推广.4柯西中值定理4.1问题4:设C是以A,B为端点的光滑曲线.其参量方程为x=f(t).y=g(t).a≤t≤b,该曲线是否存在平行于弦AB的切线?(1)探索问题4的答案:作曲线C的割线l,使l平行于弦AB,移动1.始终使l平行于弦AB.当相邻两割点莺合于P时.就得到曲线C的平行于弦AB的切线.这时,切线斜率为,割线斜率为撸{罄(2)归纳上述结论,提出猜想4:若函数f与g满足条件:1.,都在[a'b]上连续;2,都在(a.b)内可导;3',f与g在(a'b)内不同时为0;4'.g(a)≠g(b).则在(a.b)内至少存在一点e,使得:(4)g(e)g(b)一g(a)——78一田4(3)判断猜想4的正确性:将=变形为[g(b)一g(a)】f(e)一【f(b)一f(a)]g(∈):0(5)由此可见,若能找到一个函数F(x),它满足定理2的条件,并且(x)=【g(b)一g(a)]f(x)一【f(b)一f(a)]g(x)(6)则对函数F(x)应用定理2即可证得(5)式成立.易知,满足条件(6)的函数F(x)应具有以下形式F(x):[g(b)一g(a)】f(x)一[f(b)一f(a)】g(x)C(c为任意常数)这样的函数F(x)是否满足定理2的条件呢?验证可知.上述F(x)确实满足定理2的所有条件.故对上述F(x)(特别地.取c=0亦可)应用定理2即可.令F(x)=【g(b)一g(a)】f(x)一[f(b)一f(a)】g(x),xE【a,b】,则F(x)在【a.b]上连续.在(a.b)内可导.并且F(a)=f(a)g(b)一g(a)f(b)=F(b),故由定理2可知,至少存在一点e∈(a,b),使得F(∈)=0,即【g(b)一g(a)]f(e)一【f(b)一f(a)]g(∈)=0'(7)假如g(e)=0.则有[g(b)一g(a)】f(e):0,由于g(a)≠g(b),所以f(∈):0,这与"f,在(a.b)内不同时为0矛盾!所以g(e)≠0.故由(7)式即可证得(4)式成立.于是,我们得到下述定理.定理4:若函数f与g满足条件:1',在[a'b】上连续;2',在(a.b)内可导;3.,f与g在(a.b)不同时为0;4',g(a)≠g(b).则在(a.b)内至少存在一点e,使得£一l=ff)g(e)g(b)一g(a)4.2定理4与定理3的关系:在定理4中.取g(t):t.即得定理3.因此,定理4是定理3的推广.5拉格朔日中值定理的应用5.1问题5:设函数f在区间I上可导.并且f一O.是否必有f(x)一c(常数)?(1)探索问题5的答案:在区问I上取定一点,对于区间I上的任意点x(≠),由定理4可知,在与x之间至少存在一点e.使得f(x)一f(xo)=f(∈)?(x一)=0?(x—xo)=0即f(x)~l(xo)于是.我们得到以下推论.推论l:若函数f在区间I上可导,并且r(x)一0,则在I上f(x)一c(2)推论2:若函数f,g在区间I上可导,并且f一.则在I上f(x)一g(x)+C注:令h(x):f(x)一g(x).由推论1即此推论.5.2证明恒等式例1证明:对任何实数x'恒有一79—啡+号,分析:令f(x)=啡+ar.c啦.xE(一∞,+∞),由推论1,只要证明"f'(x)-~--O,并且存在xo使f(xo)号"即可.证明:令f(x)=arc啦+arcctgx,xE(一∞,+..).由于"x)=1+;o,x∈(一...+),并且f(1)删1+ea~tgl号+专号所以arclgx+a号5.3证明不等式例2:证明不等式丽h<a蛐<h,(h>0)分析:由于arctgharctgh—a如,(h>0)所以,要证的不等式等价于:<趔旨<?故应对函数f(x)=眦啦在[0,h]上应用拉格朗日中值定理,将塑}转化为.然后再比较,1,1的大小即可.证明:令f(x)arc啦,x∈[0.h]因为f(x)在[0,hi上连续,在(O,h)内可导故由拉格朗日中值定理.在(O,h)内至少存在一点∈.得因为o<e<h-所以<<于是,有<墅<1又因为h>O,所以,<aret~<:h参考文献l,周祖逵:发现法讲授中值定理的一种尝试,数学通报.1991,3(作者:副教授兵团载院/石大师院)一日O一。
微分中值定理【教学内容】 拉格朗日中值定理 【教学目的】1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义;2、能应用拉格朗日中值定理证明不等式。
3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】1、拉格朗日中值定理,拉格朗日中值定理的应用2、拉格朗日中值定理证明中辅助函数的引入。
3、利用导数证明不等式的技巧。
【教学过程】一、背景及回顾在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。
这样一来,类似于求已知曲线上点的切线问题已获完美解决。
但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。
另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。
由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导③)()(b f a f =则在()b a ,内至少存在一点c ,使得0)('=c f二、新课讲解1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理,但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容:2.1拉格朗日定理若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导则在开区间()b a ,内至少存在一点c ,使 ()()ab a f b fc f --=)('注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。
b 、若加上)()(b f a f =,则()()00)('=-=--=ab a b a f b fc f 即:0)('=c f ,拉格朗日定理变为罗尔定理,换句话说罗尔定理是拉格朗日定理的特例。