九年级数学上册 4.4 解直角三角形的应用 第1课时 与俯角、仰角有关的应用问题分层作业 湘教版
- 格式:doc
- 大小:875.00 KB
- 文档页数:3
解直角三角形的应用-仰角俯角问题能量储备仰角、俯角:如图2446(1)所示,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。
通关宝典★ 基础方法点方法点:解直角三角形在实际问题中的应用中正确选取直角三角形的边角关系是求解的关键。
例1:如图24410所示,某电视塔高AB 为610米,远处有一栋大楼,某人在楼底C 处测得塔顶B 的仰角为45°,在楼顶D 处测得塔顶B 的仰角为39°。
(1)求大楼与电视塔之间的距离AC ;(2)求大楼的高度CD (精确到1米)。
解:(1)在△ABC 中,∵ ∠ACB =45°,∠A =90°,∴ AC =AB =610米。
答:大楼与电视塔之间的距离AC 为610米。
(2)由矩形的性质可知DE =AC =610米。
在Rt △BDE 中,由tan ∠BDE =BE DE,得BE =DE·tan 39°。
又∵CD =AE ,∴CD =AB -DE·tan 39°=610-610×tan 39°≈116(米)。
答:大楼的高度CD 约为116米。
例2:如图24428所示,为了测得电视塔的高度AB ,在D 处用高为1.2米的测角仪CD ,测得电视塔顶端A 的仰角为42°,再向电视塔方向前进120米,又测得电视塔顶端A 的仰角为61°.求这个电视塔的高度AB .(精确到1米)解:如图24429所示,设AE 为x 米,则塔的高度为(x +1.2)米.∵ tan 61°=AE EF =x EF ,∴ EF =x tan 61°. 又∵ tan 42°=AE CE ,∴ CE =x tan 42°. ∵ CE =120+x tan 61°, ∴ x tan 42°=120+x tan 61°, 解得x ≈215.7,∴ x +1.2≈217(米).∴ 这个电视塔的高度AB 约为217米。
北京版数学九年级上册《仰角与俯角》说课稿一. 教材分析北京版数学九年级上册《仰角与俯角》这一节的内容,主要介绍了仰角和俯角的定义、计算方法以及应用。
通过这一节的学习,使学生能够理解并掌握仰角和俯角的概念,学会如何利用三角板和直尺等工具进行角度的测量和计算,培养学生空间想象能力和实际操作能力。
在教材的处理上,我将以学生的生活经验为基础,利用多媒体教学手段,直观地展示仰角和俯角的概念和应用,通过学生的自主探究和合作交流,使学生能够深刻理解仰角和俯角的含义,提高学生的数学素养。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和几何知识,对于角度的概念也有一定的了解。
但是,对于仰角和俯角这两个概念,学生可能还比较陌生,需要通过具体的实例和生活情境来进行引导和讲解。
此外,学生在进行角度计算时,可能还存在一些困难,需要通过具体的操作和实践来进行巩固。
三. 说教学目标1.知识与技能:学生能够理解仰角和俯角的概念,学会如何利用三角板和直尺等工具进行角度的测量和计算。
2.过程与方法:学生通过自主探究和合作交流,学会如何运用仰角和俯角的概念解决实际问题。
3.情感态度与价值观:学生能够体验到数学与生活的紧密联系,提高学生学习数学的兴趣和自信心。
四. 说教学重难点1.重点:学生能够理解仰角和俯角的概念,学会如何利用三角板和直尺等工具进行角度的测量和计算。
2.难点:学生能够运用仰角和俯角的概念解决实际问题,提高学生的空间想象能力和实际操作能力。
五. 说教学方法与手段在这一节课中,我将采用多媒体教学手段,结合学生的自主探究和合作交流,以案例教学法和问题驱动法为主,引导学生通过观察、思考、操作、交流等活动,掌握仰角和俯角的概念和应用。
六. 说教学过程1.导入新课:通过多媒体展示一些生活中的实例,如登山运动员观察山峰、建筑师观察建筑物的立面图等,引导学生思考这些实例中涉及到的角度概念。
2.自主探究:学生通过观察实例,总结出仰角和俯角的定义,并学会如何利用三角板和直尺等工具进行角度的测量和计算。
4.4 解直角三角形的应用第1课时仰角、俯角相关问题【课堂引入】1.肖颖的教室在教学楼的二楼,一天,他站在教室的窗台前看操场上的旗杆,心想:站在地面上可以利用解直角三角形求得旗杆的高吗?他望着旗杆顶端和旗杆底部,测得视线与水平视线之间的夹角各一个,但是,这两个角怎样命名区别呢?如图4—4 —15,/ CAE / DAE在测量中分别叫什么角呢?图4 —4 —15[答案:仰角和俯角]【探究1】(多媒体出示)鼓励学生独立解决问题,让学生先讨论,教师再给出答案,目的是让学生对仰角、俯角有比较清楚的认识•活动- ' .1.[嘉兴中考]如图4—4—16,在地面上的点A处测得树顶B的仰角为a , AC= 7米,则树高BC 为_7tan a_米.活动实践探究交流新知【探究2】(多媒体出示)2.—棵树AC在地面上的影子BC为10米,如图4 —4—17①,在树影一端B测得树顶A的仰角为45 °,则树高是多少米?如图②,若一只小鸟从树顶A看树影BC的顶端B的俯角为60 °,则树高是多少米?(精确到1米)[答案:10米17米]图4—4 —171.探究1直接根据仰角的意义,求树高.2 •本活动的设计意在引导学生通过自主探究,合作交流,使其对具体问题的认识从形象到抽象,训练学生能从实际问题中抽象出数学知识.旨在培养学生发现问题的意识;提高学生的抽象思维能力,同时也为后续解直角三角形的应用奠定基础.3 .归纳总结主要是把解直角三角图4—4—16【活动总结】(1)弄清题中仰角和俯角的概念,然后根据题意画出图形,建立数学模型. 形的应用条理化,是知识的一次升华,培养学生的概括能力,(2)将实际问题中的数量关系转化为解直角三角形中各突出教学重点元素之间的关系,当有些图形不是直角三角形时,可适当添加辅助线,把它们分割成直角三角形或矩形.图4—4— 20【拓展提升】例2如图4— 4— 21,为了测量顶部不能达到的建筑物 AB 的高度,在地平面上取一点 C,用测量仪测得 A 点的仰角 为45°,再向远处走20米取一点D,使点D 在BC 的延长线 上,此时测得A 的仰角为30°,已知测量仪的高为 1.5米, 求建筑物AB 的高度.(3)解非直角三角形常见的添辅助线的方法:①通过作 高构造直角三角形;②利用图形本身的性质, 如等腰三角形 顶角平分线垂直于底边构造直角三角形. 【应用举例】例1[襄阳中考]如图4— 4— 18,在建筑平台的顶部C 处,测得大树 AB 的顶部A 的仰角为45 °,测得大树 AB 的底部B 的俯角为30°,已知平台的高度 CD 为5 m 则大 树的高度为_(5 + 5_护)_ m 结果保留根号).[解析] 如图4— 4— 19,作CEL AB 于点E ,则/ACE =45°,/ BCE= 30°, BE = CD= 5 m 先在 Rt ^ BCE 中求出 CE 的长,再在 Rt △ ACE 中求出AE 的长.活动开放 训练 体现 应用认真审题是解题的 关键,通过运用一元 一次方程的概念,学 会解决简单的问 题.采取启发式教学 发挥学生的潜能•变式 如图4一 4一 20,线段AB, CD 分别表示甲、乙两 幢楼,AB 丄BD, CD L BD,从甲楼顶 A 测乙楼顶C 的仰角a =30°,已知甲楼高15米,两楼水平距离为24米,求乙楼 的高•[答案:(8』3+ 15)米]例3主要是利用俯角构建直角 三角形和一次方程, 从而求水下深度.B图4— 4hB D 图 4— 4— 19图4—4 —21[答案:(10 . 3+ 11.5)米]例3 [河南中考]在中俄"海上联合——2014”反潜演习中,我军舰A测得潜艇C的俯角为30°,位于军舰A 正上方1000米的反潜直升机B测得潜艇C的俯角为68° .试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin 68 °~ 0.9 ,cos68°~ 0.4 ,tan68° ~2.5 , . 3^ 1.7)图4—4 —22[答案:潜艇C离开海平面的下潜深度约为308米]活动四:课堂总结反思【当堂训练】1. 教材P126练习中的T1, T2.2. 教材P129习题4.4中的T3, T4, T5.当堂检测,及时反馈学习效果.【知识网络】提纲挈领,重点突出._______视线解n侑[阳形的城仰侑、硏川£仰仰、帕仰问题】直问燉_「海平面。
第1课时 与俯角、仰角有关的应用问题1.了解仰角、俯角的概念.2.会利用解直角三角形解决与视角有关的实际问题,逐步培养分析问题、解决问题的能力.3.经历利用解直角三角形解决实际问题的过程,体验数学来源于生活,服务于生活.知识探究阅读教材P125“动脑筋”,完成下面的内容:如下图,视线与水平线所成的角∠1叫作仰角;∠2叫作俯角.阅读教材P125“做一做”~P126例1,完成下面的例题:1.如图,在高为28.5 m 的楼顶平台D 处,用仪器测得一路灯电线杆底部B 的俯角为15°,仪器高度AD 为1.5 m .求这根电线杆与这座楼的距离BC.(精确到1 m)解:在Rt △ABC 中,∠C =90°,∠BAC =90°-15°=75°,AC =CD +AD =28.5+1.5=30(m).∵tan ∠BAC =BC AC, ∴BC =AC ·tan ∠BAC =30×tan75°≈112(m).自学反馈1.如图,在水平地面上,由点A 测得旗杆BC 顶点C 的仰角为60°,点A 到旗杆的距离AB=12米,则旗杆的高度为( )A .米B .6米C .米D .12米2. 如图,从热气球C 上测定建筑物A 、B 底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A 、D 、B 在同一直线上,建筑物A 、B 间的距离为( )A .1503米B .1803米C .2003米D .2203米3.如图,为了测量楼的高度,自楼的顶部A 看地面上的一点B ,俯角为30°,已知地面上的这点与楼的水平距离BC 为30m ,那么楼的高度AC 为 m (结果保留根号).4.如图是引拉线固定电线杆的示意图.已知:CD ⊥AB ,CD =33m ,∠CAD =∠CBD =60°,则拉线AC 的长是 m .活动1 小组讨论例1 如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)解:在R t △ADC 中,∠ADC =90°,∠DAC =30°,AD =4.∵tan30°=CD AD =CD 4,∴CD =433. ∴CE =433+1.68≈4.0. 答:这棵树的高大约有4.0米高.活动2 跟踪训练1.一棵大树在一次强台风中于离地面5 m 处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为多少?2. 一测量爱好者,在海边测量位于正东方向的小岛高度A C .如图所示,他先在点B 测得山顶点A 的仰角是30°,然后然后沿正东方向前行62米到达D 点,在点D 测得山顶A 点的仰角为60°(B 、C 、D 三点在同一水平面上,且测量仪的高度忽略不计).求小岛的高度A C .(结果精确到1米,参考数据:2≈1.4,3≈1.7)课堂小结做这一类题的一般步骤:1.建立直角三角形模型;2.利用解直角三角形的知识解题.教学至此,敬请使用《名校课堂》相关课时部分.【预习导学】自学反馈1.C2. C3. 104. 6【合作探究】活动2 跟踪训练1.解:设大树的根部为点A ,折断处为点B ,倒下后树梢与地面接触处为点C. 则在△ABC 中有∠A =90°,∠C =30°,AB =5 m ,∵sinC =AB BC ,∴BC =AB sinC =5sin30°=5÷12=10(m), ∴大树的高为AB +BC =5+10=15(m).答:这棵大树在折断前的高度为15 m.2.解:由题意,知∠ADC =60°,∠ABC =30°.设AC =x 米.在Rt △ACD 中,tan60°=CDAC , ∴CD =︒60tan AC =3x =33x . 在Rt △ACB 中,tan30°=BC AC , 即33=3362xx +.解得x =313≈53.∴小岛的高度AC 为53米.。
28.2解直角三角形的实际应用——仰角、俯角及方位角的重难点解析今天我说课的课题是28.2解直角三角形的实际应用(第一课时),下面我将从教材分析、教法学法、教学程序、设计思路四个方面进行阐述。
一、教材分析(一)教材地位和作用这是一节复习课,是在学生学习了《解直角三角形》和《解直角三角形的应用》后进行的阶段性小结。
《解直角三角形的应用》是第二十八章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。
因此本课无论是在本章还是在整个初中数学中都具有重要的地位,在中考中是个比较重要的考点。
(分值约占6---10分,常出现在第19题—第21题)(二)教学目标1、知识技能目标:进一步理解并掌握直角三角形中各元素之间的内在联系,会利用解直角三角形的知识解决仰角、俯角及方位角等有关的综合性实际问题.2、过程方法目标:在将实际问题抽象为数学问题,画出示意图,转化为解直角三角形问题的过程中,体会“数学建模”和“数形结合”的思想,培养学生分析问题、解决问题的能力.3、情感态度目标:渗透数形结合和数学建模的数学思想,激发学生学习兴趣,调动学生的积极性和主动性;培养学生理论联系实际,勇于探索敢于创新的精神.(三)教学重点与难点重点:熟练解直角三角形及会利用解直角三角形的知识去解决有关仰角、俯角及方位角的实际问题。
难点:把实际问题转化为解直角三角形的问题。
二、教法学法(一)教法分析本节课着重采用的是探究启发、分组讨论、讲练结合等教学方法,通过多媒体课件,以历年中考题创设问题情境,引出课题,简洁回顾原有的知识,引导学生从实际应用中建立数学模型。
(二)学法分析通过独立思考、小组合作、讲练结合、学生讲评等学习方式,理解直角三角形中各元素之间的内在联系,发挥学生的主观能动性。
使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析、解决问题的能力和综合运用知识的能力。
三、教学程序本节课我将围绕 情景引入、复习回顾、探索知识、课堂练习、小结梳理、作业布置 这六个环节展开复习教学,具体步骤是:(一)情景引入问题:(2015云南19题6分)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB =30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA =60°.请你根据以上测量数据求出河的宽度?方式:是以云南省去年的中考题为问题而引出的。
课题:28.2.2解直角三角形的应用1(仰角和俯角)课型:新授课 班级:9.7教学目标知识与技能:能根据解直角三角形的知识解决与仰角、俯角有关的实际问题,逐步培养学生分析问题、解决问题的能力.过程与方法:借助辅助线把实际问题转化为解直角三角形的问题,渗透转化思想和数形结合的思想.情感态度与价值观:在探索过程中,发展学生的探究意识和合作交流的习惯. 学情分析解直角三角形的应用1的主要内容是利用解直角三角形的基本理论知识去解决生活中与仰角和俯角有关的简单实际问题.学生已经学习了"锐角三角函数、解直角三角形的条件、方法,已具备了一定的几何识图及计算能力,也掌握了一定的数学思想方法和数学活动经验。
但是把一些实际问题转化为解直角三角形的数学问题,对学生分析问题的能力要求较高,而我所任教班级的学生在这方面的能力有所欠缺,所以这会使学生学习感到困难,因此在教学中我以例题为主,进行了层层递进的变式训练,引导学生学会分析问题,获得解决实际问题的一般策略。
教学重点:根据解直角三角形的知识解决与仰角、俯角有关的实际问题教学难点:将某些实际问题中的数量关系归结为直角三角形中元素之间的关系,从而解决问题.教学流程一、复习回顾:直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1) 三边之间关系:(2) 锐角之间关系:(3) 边角之间关系:设计意图:引导学生回顾直角三角形中五个元素的关系, 为学生利用解直角三角解决实际问题为做好铺垫。
说明:此环节用PPT 课件显示,省时、高效,知识的内在联系一目了然。
AC B a c b二、新知探究(一)仰角、俯角的概念介绍在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.设计意图:结合动画图例,让学生直观地理解仰 角和俯角概念,为例题分析解除知识障碍。
(二)典型例题剖析例题1: 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m ,这栋高楼有多高?解法一:(作A D ⊥BC 于D ,在Rt △ABD 和RtACD 中,分别利用tan ∠BAD 和tan ∠CAD 求出BD 和 D和CD ,再求和即可。
4.4 解直角三角形的应用第1课时 仰角、俯角问题一.教学三维目标(一)、知识目标使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题.(二)、能力目标逐步培养分析问题、解决问题的能力.二、教学重点、难点和疑点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.三、教学过程(一)回忆知识1.解直角三角形指什么?2.解直角三角形主要依据什么?(1)勾股定理:a 2+b 2=c 2(2)锐角之间的关系:∠A+∠B=90°(3)边角之间的关系:tanA=的邻边的对边A A ∠∠(二)新授概念 1.仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义.2.例1:如图(6-16),某飞机于空中A 处探测到目标C ,此时飞行高度斜边的邻边A A ∠=cos 斜边的对边A A ∠=sinAC=1200米,从飞机上看地平面控制点B 的俯角α=16°31′,求飞机A 到控制点B 距离(精确到1米)解:在Rt △ABC 中sinB=AB AC∴AB=B AC sin =2843.01200=4221(米)答:飞机A 到控制点B 的距离约为4221米.例2:2003年10月15日“神州”5号载人航天飞船发射成功。
当飞船完成变轨后,就在离地形表面350km 的圆形轨道上运行。
如图,当飞船运行到地球表面上P 点的正上方时,从飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P 点的距离是多少?(地球半径约为6400km ,结果精确到0.1km )分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。
将问题放到直角三角形FOQ 中解决。
4.4 解直角三角形的应用
第1课时与俯角、仰角有关的应用问题
1.[xx·天津]如图446,甲、乙两座建筑物的水平距离BC为78 m,从甲的顶部A 处测得乙的顶部D处的俯角为48°,测得乙的底部C处的俯角为58°.求甲、乙建筑物的高度AB和DC.(结果取整数,参考数据:tan 48°≈1.11,tan 58°≈1.60)
图446
2.[xx·昆明]小婷在放学路上,看到隧道上方有一块宣传“中国—南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10 m,隧道高6.5 m(即BC=6.5 m),求标语牌CD的长.(结果保留小数点后一位,参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90,3≈1.73)
图447
3.[xx·张家界]2017年9月8日~10日,第六届翼装飞行世界锦标赛在我市天门山风景区隆重举行,来自全球11个国家的16名选手参加了激烈的角逐.如图448,某选手从离水平地面1 000 m高的A点出发(AB=1 000 m),沿俯角为30°的方向直线飞行1 400 m 到达D点,然后打开降落伞沿俯角为60°的方向降落到地面上的C点,求该选手飞行的水
平距离BC.
(1)
(2)
图448
4.[xx·镇江]如图449,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D 在同一平面上,两幢楼之间的距离BD为24 m.小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8 m到达点G处,测得教学楼CD顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6 m,求教学楼AB的高度.(精确到0.1 m,参考数据:2≈1.41,3≈1.73)
图449
参考答案
1.AB≈125 m,DC≈38 m
2.6.3 m 3.800 3 m 4.13.3 m
如有侵权请联系告知删除,感谢你们的配合!。