上海市崇明区-学年八年级上学期期末考试数学测试试题
- 格式:doc
- 大小:520.50 KB
- 文档页数:12
上海市崇明区2023-2024学年八年级上学期期末数学模拟试题(五四制)一、单选题1.下列二次根式中,为最简二次根式的是( )A B C D2x 的取值范围是( )A .25x >B .25x ≥C .25x <D .25x ≤ 3.一元二次方程220x x --=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根4.已知函数y kx =,y 随x 的增大而减小,另有函数k y x=-,两个函数在同一平面直角坐标系内的大致图象可能是( )A .B .C .D .5.在ABC V 中,6AB =,5BC =,4AC =,AD 平分BAC ∠交BC 于点D ,EF 垂直平分线段AD 交AD 于点E ,交BC 的延长线于点F ,则AF 之长为( )A .5B .6C .345D .76.在ABC V 中,A B C ∠∠∠、、的对边分别是a ,b ,c .下列条件中,不能说明ABC V 是直角三角形的是( )A .::3:4:5ABC ∠∠∠=B .C A B ∠=∠-∠ C .222b a c =-D .::5:12:13a b c =二、填空题7=. 8.2.9.方程2x x =-的根是 .10.在实数范围内分解因式421449a a -+=.11.在函数52y x =-中,自变量x 的取值范围是. 12.一次函数21y x =-在y 轴上的截距b =,它与y 轴的交点坐标是.13.某县为做大旅游产业,在2018年投入资金3.2亿元,预计2020年投入资金6亿元,设旅游产业投资的年平均增长率为x ,则可列方程为.14.在Rt △ABC 中,∠C =90°,两锐角的度数之比为2:1,其最短边为1,射线CP 交AB 所在的直线于点P ,且∠ACP =30°,则线段CP 的长为.15.如图,在ABC V 中,O 是三条角平分线的交点,过点O 作DE BC ∥交AB 于点D ,交AC 于点E ,若6AB =,4AC =,则ADE V 的周长为.16.点P 的横坐标是1,纵坐标比横坐标小2,则点P 的坐标是.17.在平面直角坐标系中,若函数21a y x--=(a 为常数)的图象经过(2,3),(1,6),(4,)A B C m --其中的两点,则m =.18.如图,一张矩形纸片ABCD 的长8cm AD =,宽4cm AB =,现将其折叠,使点D 与点B 重合,折痕为EF ,则折痕EF 的长是cm .三、解答题19 20.解方程:(1)228=0x x --;(2)(3)3x x x -=-.21.已知关于x 的一元二次方程()()220b c x ax b c +-+-=,其中a ,b ,c 分别为ABC V 三边的长.(1)已知1x =是方程的根,求证:ABC V 是等腰三角形;(2)如果ABC V 是直角三角形,其中90B ??,请你判断方程的根的情况,并说明理由. 22.如图所示,已知ABC V ,求作点I ,使点I 到ABC V 三边的距离相等.23.求证:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半. 24.如图所示,在ABC V 中,AD 平分BAC ∠,DE AB ⊥于E ,DF AC ⊥于F ,8AB =厘米,6AC =厘米.已知ABC V 的面积为21平方厘米,求DE 的长度.25.某商店以40元/千克的单价新进一批茶叶,经调查发现,在一段时间内,销售量y (千克)与销售x (元/千克)之间函数关系如图所示.(1)求y 与x 函数关系式;(2)商店想在销售成本不超过3800元的情况下,使销售利润达到3000元,销售单价应定为多少?26.已知y 是关于z 的正比例函数,比例系数是2;z 是关于x 的反比例函数,比例系数是3-.(1)写出此正比例函数和反比例函数的表达式.(2)求当5z =时,x ,y 的值.(3)求y 关于x 的函数表达式,这个函数是反比例函数吗?27.如图,ABC V 和ADE V 中,AB AD =,B D ∠=∠,BC DE =.边AD 与边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧.(1)若30B ∠=︒,70APC ∠=︒,求CAE ∠的度数;(2)当30B ∠=︒,AB AC ⊥,6AB =时,设AP x =,请用含x 的式子表示PD ,并写出PD 的最大值.。
一、选择题(每题3分,共30分)1. 下列数中,既是正数又是整数的是()A. -2B. 0.5C. -3.14D. 102. 如果一个数的绝对值是5,那么这个数是()A. 5B. -5C. 5或-5D. 无法确定3. 下列各组数中,成等差数列的是()A. 2, 4, 6, 8B. 1, 3, 6, 10C. 3, 5, 7, 9D. 4, 7, 10, 134. 在直角坐标系中,点A(-3,2)关于原点的对称点是()A. (3,-2)B. (-3,-2)C. (2,-3)D. (-2,3)5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = 2x^2 - 3x + 16. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形7. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是()A. 26cmB. 24cmC. 22cmD. 20cm8. 一个数的平方根是±3,那么这个数是()A. 9B. -9C. 9或-9D. 无法确定9. 在平面直角坐标系中,点P(2,-3)到x轴的距离是()A. 2B. 3C. 5D. 610. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. (a + b)^2 = a^2 + 2ab + b^2C. (a - b)^2 = a^2 - 2ab + b^2D. a^2 - b^2 = (a + b)(a - b)二、填空题(每题3分,共30分)11. 0.3的平方根是__________。
12. 下列数中,是负数的是__________。
13. 2a + 3b = 0,若a = 1,则b =__________。
14. 下列函数中,是正比例函数的是__________。
15. 在直角坐标系中,点M(-4,3)关于y轴的对称点是__________。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题是假命题的是( )A .角平分线上的点到角两边的距离相等B .直角三角形的两个说角互余C .同旁内角互补D .一个角等于60°的等腰三角形是等边三角形【答案】C【分析】利用角平分线的性质、直角三角形的性质、平行线的性质及等边三角形的判定分别判断后即可确定正确的答案.【详解】解:A 、角平分线上的点到角两边的距离相等,正确;B 、直角三角形的两锐角互余,正确;C 、两直线平行,同旁内角互补,故原命题错误;D 、一个角等于60°的等腰三角形是等边三角形,正确,故选:C .【点睛】考查了角平分线的性质、直角三角形的性质及等边三角形的判定,属于基础性知识,难度不大. 2.已知A 、B 两个港口之间的距离为100千米,水流的速度为b 千米/时,一艘轮船在静水中的速度为a 千米/时,则轮船往返两个港口之间一次需要的时间是( ) A .100a +100b B .200a b + C .100a b ++100a b - D .100a b +﹣100a b - 【答案】C 【分析】直接根据题意得出顺水速度和逆水速度,进而可得出答案.【详解】由题意得:顺水速度为()a b +千米/时,逆水速度为()-a b 千米/时则往返一次所需时间为100100a b a b++- 故选:C .【点睛】本题考查了分式的实际应用,依据题意,正确得出顺水速度和逆水速度是解题关键.3.如图,已知AD =CB ,添加下列条件还不能判定△ABC ≌△BAD 的是( )A .AC =BDB .∠DAB =∠CBAC .∠CAB =∠DBAD .∠C =∠D =90°【答案】C【分析】由全等三角形的判定可求解.【详解】当AC =BD 时,且AD =BC ,AB =AB ,由“SSS”可证△ABC ≌△BAD ;当∠DAB =∠CBA 时,且AD =BC ,AB =AB ,由“SAS”可证△ABC ≌△BAD ;当∠CAB =∠DBA 时,不能判定△ABC ≌△BAD ;当∠C =∠D =90°时,且AD =BC ,AB =AB ,由“HL”可证Rt △ABC ≌Rt △BAD ;故选C .【点睛】本题考查了全等三角形的判定,灵活运用全等三角形的判定是本题的关键.4.已知ABC ∆的三边长分别为a b c 、、,且()()()M a b c a b c a b c =+++---那么( )A .0M >B .0M ≥C .0M =D .0M <【答案】D【分析】根据三角形的三边关系即可求解.【详解】∵ABC ∆的三边长分别为a b c 、、∴a b c ++>0,a b c +->0,a b c --<0∴()()()M a b c a b c a b c =+++---<0故选D.【点睛】此题主要考查三角形的三边关系的应用,解题的关键是熟知两边之和大于第三边.5.已知一次函数y kx b =+,y 随着x 的增大而减小,且0kb <,则它的大致图象是( ) A . B .C .D .【答案】B【分析】根据y 随着x 的增大而减小可知k 0<,一次函数从左往右为下降趋势,由0kb <可得0b >,一次函数与y 轴交于正半轴,综合即可得出答案.【详解】解:∵y 随着x 的增大而减小,∴k 0<,一次函数从左往右为下降趋势,又∵0kb <∴0b >∴一次函数与y 轴交于正半轴,可知它的大致图象是B 选项故答案为:B .【点睛】本题考查了一次函数图象,掌握k ,b 对一次函数的影响是解题的关键.6.计算12a 2b 4•(﹣332a b )÷(﹣22a b )的结果等于( ) A .﹣9aB .9aC .﹣36aD .36a【答案】D 【分析】通过约分化简进行计算即可.【详解】原式=12a 2b 4•(﹣332a b )·(﹣22a b ) =36a.故选D.【点睛】本题考点:分式的化简.7.在1x ,13,21x +,2x x+中分式的个数有( ) A .2个B .3个C .4个D .5个 【答案】B【分析】由题意根据分式的概念:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式进行分析即可. 【详解】解:1x ,13,21x +,2x x +中分式有1x ,21x +,2x x+共计3个. 故选:B.【点睛】 本题主要考查分式的定义,解题的关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.8.如图,ABC 为等边三角形,D 为BC 延长线上一点,CE=BD ,CE 平分ACD ∠,下列结论:(1)BAC DAE ∠=∠;(2) AE AD =;(3)ADE 是等边三角形,其中正确的个数为( )A .0个B .1个C .2个D .3个【答案】D 【分析】根据等边三角形的性质得出AB AC =,60BAC B ACB ∠=∠=∠=︒,求出ACE B ∠=∠,根据SAS 可证明ABD ACE ≅即可证明BAC DAE ∠=∠与 AE AD =;根据全等三角形的性质得出AD AE =,CAE BAD ∠=∠,求出60DAE BAC ︒∠=∠=,即可判断出ADE 是等边三角形.【详解】ABC 是等边三角形,AB AC ∴=,60BAC B ACB ∠=∠=∠=︒,120ACD ∴∠=︒, CE 平分ACD ∠,1602ACE ACD ∴∠=∠=︒, ACE B ∴∠=∠,在ABD △和ACE △中AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩()ABD ACE SAS ∴≅,AD AE ∴=,故(2)正确;∴CAE BAD ∠=∠∴=60DAE BAC ∠=∠︒,故(1)正确;∴ADE 是等边三角形,故(3)正确.∴正确有结论有3个.故选:D .【点睛】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,要灵活运用等边三角形的三边相等、三个角相等的性质.9.如图,已知点A 的坐标为()2,2,点B 的坐标为()0,1-,点C 在直线y x =-上运动,当CA CB +最小时,点C 的坐标为( )A.22 ,55⎛⎫-⎪⎝⎭B.()1,1-C.22,55⎛⎫-⎪⎝⎭D.()1,1-【答案】A【分析】连接AB,与直线y x=-的交点就是点C,此时CA CB+最小,先求出直线AB的解析式,然后求出点C的坐标即可【详解】解:根据题意,如图,连接AB,与直线y x=-的交点就是点C,则此时CA CB+最小,设点A、B所在的直线为y kx b=+,则221k bb+=⎧⎨=-⎩,解得:321kb⎧=⎪⎨⎪=-⎩,∴312y x=-,∴312y xy x=-⎧⎪⎨=-⎪⎩,解得:2525xy⎧=⎪⎪⎨⎪=-⎪⎩,∴点C的坐标为:22,55⎛⎫-⎪⎝⎭;故选:A.【点睛】本题考查了一次函数的图形和性质,以及最短路径问题,解题的关键是正确确定点C的位置,求出直线AB 的解析式,进而求出点C.10.下列长度的三条线段,不能组成三角形的是( )A .3,8,4B .4,9,6C .15,20,8D .9,15,8 【答案】A【解析】A ,∵3+4<8∴不能构成三角形;B ,∵4+6>9∴能构成三角形;C ,∵8+15>20∴能构成三角形;D ,∵8+9>15∴能构成三角形.故选A .二、填空题11.把多项式29am a -分解因式的结果是___________________ .【答案】(3)(3)a m m +-【分析】先提取公因式,然后按照平方差公式22()()a b a b a b -=+- 分解因式即可.【详解】原式=2(9)(3)(3)a m a m m -=+-故答案为:(3)(3)a m m +-.【点睛】本题主要考查因式分解,掌握提取公因式法和平方差公式是解题的关键.12.关于x 的一次函数(2)21y k x k =+-+,其中k 为常数且2k ≠-.①当0k =时,此函数为正比例函数.②无论k 取何值,此函数图象必经过(2,5).③若函数图象经过()2,m a ,()23,2m a +-(m ,a 为常数),则83k =-. ④无论k 取何值,此函数图象都不可能同时经过第二、三、四象限.上述结论中正确的序号有________.【答案】②③④【分析】根据一次函数知识依次判断各项即可.【详解】①当k=0时,则21y x =+,为一次函数,故①错误;②整理得:=(2)21-++y x k x ,∴x=2时,y=5,∴此函数图象必经过(2,5),故②正确;③把()2,m a ,()23,2m a +-代入(2)21y k x k =+-+中,得:()22(2)212(2)321①②⎧=+-+⎪⎨-=++-+⎪⎩a k m k a k m k ,②-①得:23(2)-=+k , 解得:83k =-,故③正确;④当k+2<0时,即k <-2,则-2k+1>5,∴此函数图象都不可能同时经过第二、三、四象限,故④正确;故答案为:②③④.【点睛】本题是对一次函数知识的考查,熟练掌握一次函数的性质定理是解决本题的关键.13.在ABC 中,AB AC = ,若128A ∠=︒,则B ∠=________________度【答案】1【分析】根据等腰三角形的性质和三角形内角和定理即可求出答案.【详解】∵AB AC =∴B C ∠=∠∵128A ∠=︒∴(180)2(180128)226B A ∠=︒-∠÷=︒-︒÷=︒故答案为:1.【点睛】本题主要考查等腰三角形的性质和三角形内角和定理,掌握等腰三角形的性质和三角形内角和定理是解题的关键.14.已知数据12,6-, 1.2-,π,0,其中正数出现的频率是_________. 【答案】0.4【分析】上面五个数中,共有2个正数,故可以求得正数出现的频率.【详解】解:∵共五个数中,共有2个正数,∴正数出现的频率为:2÷5=0.4故答案为:0.4【点睛】考查频率的计算.熟记公式是解决本题的关键.15.如图,在Rt △ABC ,∠C=90°,AC=12,BC=6,一条线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP= ______ .【答案】6或1【分析】本题要分情况讨论:①Rt △APQ ≌Rt △CBA ,此时AP=BC=6,可据此求出P 点的位置.②Rt △QAP ≌Rt △BCA ,此时AP=AC=1,P 、C 重合.【详解】解:①当AP=CB 时,∵∠C=∠QAP=90°,在Rt △ABC 与Rt △QPA 中,AP CB AB QP=⎧⎨=⎩, ∴Rt △ABC ≌Rt △QPA (HL ),即AP BC 6==;②当P 运动到与C 点重合时,AP=AC ,在Rt △ABC 与Rt △QPA 中,AP AC QP AB =⎧⎨=⎩, ∴Rt △QAP ≌Rt △BCA (HL ),即AP AC 12==,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等.综上所述,AP=6或1.故答案为6或1.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.16.在△ABC 中,AB =AC ,与∠BAC 相邻的外角为80°,则∠B =________.【答案】40°【分析】根据等边对等角可得∠B=∠C ,然后根据三角形外角的性质可得∠B +∠C=80°,从而求出∠B .【详解】∵AB =AC ,∴∠B=∠C∵与∠BAC 相邻的外角为80°,∴∠B +∠C=80°即2∠B=80°∴∠B=40°故答案为:40°.【点睛】此题考查的是等腰三角形的性质和三角形外角的性质,掌握等边对等角和三角形外角的性质是解决此题的关键.17.节能减排,让天更蓝、水更清.已知某企业2015年单位GDP 的能耗约为2.5万吨标煤,2017年的能耗降为1.6万吨标煤.如果这两年该企业单位GDP 的能耗每年较上一年下降的百分比相同,那么这个相同的百分比是____________.【答案】20%【分析】2017年单位GDP 的能耗=2015年单位GDP 的能耗×(1-年下降的百分比)2,把相关数值代入即可.【详解】解:设每年比上一年下降的百分比为x ,依题意得即所列的方程为2.5(1-x )2=1.1. 解,得1120%5x == ,254x =(不合题意,舍去) 故答案为:20%【点睛】本题考查了从实际问题中抽出一元二次方程,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.三、解答题18.如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,连接AP ,交CD 于点M ,若∠ACD =110°,求∠CMA 的度数______.【答案】∠CMA =35°.【解析】根据两直线平行,同旁内角互补得出70CAB ∠=︒,再根据AM 是CAB ∠的平分线,即可得出MAB ∠的度数,再由两直线平行,内错角相等即可得出结论.【详解】∵AB ∥CD ,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,AM 是CAB ∠的平分线,∴1352MAB CAB ∠=∠=︒. 又∵AB ∥CD ,∴∠CMA=∠BAM=35°.【点睛】 本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.19.用分式方程解决问题:元旦假期有两个小组去攀登- -座高h 米的山,第二组的攀登速度是第- -组的a 倍.(1)若450, 1.2h a ==,两小组同时开始攀登,结果第二组比第一组早15min 到达顶峰.求两个小组的攀登速度.(2)若第二组比第一组晚出发30min ,结果两组同时到达顶峰,求第二组的攀登速度比第一组快多少? (用含,a h 的代数式表示)【答案】(1)第一组5/m min ,第二组6/m min ;(2)()21/30h a m min a -.【分析】(1)设第一组的速度为/xm min ,则第二组的速度为1.2/xm min ,根据两个小组同时开始攀登,第二组比第一组早15min ,列方程求解.(2)设第一组的速度为/ym min ,则第二组的速度为/aym min ,根据两个小组去攀登另一座hm 高的山,第二组比第一组晚出发30min ,结果两组同时到达顶峰,列方程求解.【详解】解:(1)设第一组的速度为/xm min ,则第二组的速度为1.2/xm min , 由题意得,450450151.2x x-=, 解得:5x =,经检验:5x =是原分式方程的解,且符合题意,则1.26x =.答:第一组的攀登速度5/m min ,第二组的攀登速度6/m min ;(2)设第一组的平均速度为/ym min ,则第二组的平均速度为/aym min , 由题意得,30h h y ay -=, 解得:30ah h y a-=, 经检验:30ah h y a-=是原分式方程的解,且符合题意, 则22303030ah h ah h a h ah h ay y a a ---+-=-=()2130h a a-=, 答:第二组的平均攀登速度比第一组快()21/30h a m min a -. 【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列分式方程求解,注意检验.20.解方程: (1) 32322x x x +=+- ; (2)242111x x x ++=--- . 【答案】 (1) x =4; (2) x =13. 【解析】试题分析:(1)方程两边都乘以公因式(x+2)(x-2),化为整式方程后求解,注意验根;(2)方程两边都乘以公因式(x+1)(x-1),化为整式方程后求解,注意验根;试题解析:(1)方程两边乘(x +2)(x -2),得3x(x -2)+2(x +2)=3(x +2)(x -2).化简得-4x =-16,解得x =4.经检验,x =4是原方程的解.所以原方程的解是x =4;(2)方程两边都乘以(x +1)(x -1),去分母,得4-(x +1)(x +2)=-(x +1)(x -1).解得x =13. 经检验,x =13是原方程的解. 所以原方程的解是x =13. 21.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法). (2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG ∠=∠,180ABC HOG ∠+∠=,∴EOD EOG DOG EOG EOH HOG ∠=∠+∠=∠+∠=∠,∴180ABC EOD ∠+∠=,∵△BEF 的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF 和△OGF 中,OE OD EF FD OF OF =⎧⎪=⎨⎪=⎩, ∴OEF OGF ∆≅∆,∴EOF DOF ∠=∠,∴2EOD EOF ∠=∠,∴2180ABC EOF ∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力. 22.计算:(12132412362-. (2232425353⎛⎫-- ⎪⎝⎭. 【答案】(1)33(2)15. 【分析】(1)先去括号,并化简,然后合并同类二次根式即可;(2)先逐项化简,再算加减即可【详解】(1)原式13362=-⨯⨯=+=.(2)原式32425353=-+- 910121015151515=-+- 121515=+ 15=. 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍. 23.根据记录,从地面向上11km 以内,每升高1km ,气温降低6℃;又知在距离地面11km 以上高空,气温几乎不变.若地面气温为m (℃),设距地面的高度为x (km )处的气温为y (℃)(1)写出距地面的高度在11km 以内的y 与x 之间的函数表达式;(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12km 的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12km 时,飞机外的气温.【答案】 (1)y =m -6x ;(2)当时飞机距地面12km 时,飞机外的气温为-50℃【分析】(1)根据从地面向上11km 以内,每升高1km ,气温降低6℃即可写出函数表达式;(2)将x =7,y =-26代入(1)中的解析式可求得当时地面的气温;根据地面气温以及飞机的高度利用(1)中的解析式即可求得飞机距离地面12km 时,飞机外的气温.【详解】(1) ∵从地面向上11km 以内,每升高1km ,气温降低6℃,地面气温为m(℃),距地面的高度为x(km)处的气温为y(℃),∴y 与x 之间的函数表达式为:y =m -6x(0≤x ≤11);(2)将x =7,y =-26代入y =m -6x ,得-26=m -42,∴m =16,∴当时地面气温为16℃;∵x =12>11,∴y =16-6×11=-50(℃),假如当时飞机距地面12km 时,飞机外的气温为-50℃.【点睛】本题考查了一次函数的应用,弄清题意,正确分析各量间的关系是解题的关键.24.如图,平面直角坐标系中,()()()2,1,3,4,1,3A B C ---.(1)作出ABC ∆关于y 轴的对称图形111A B C ∆;作出ABC ∆向右平移六个单位长度的图形222A B C ∆; (2)111A B C ∆和222A B C ∆关于直线l 对称,画出直线l .(3)(,)P a b 为ABC ∆内一点,写出图形变换后12,P P 的坐标;(4)求ABC ∆的面积【答案】(1)见解析;(2)见解析;(3)12(,),(6,)P a b P a b -+;(4)2.5 【分析】(1)由轴对称的性质,平移的性质,分别作出图形即可;(2)根据轴对称的性质,作出对称轴即可;(3)由轴对称的性质和平移的性质,即可求出点的坐标;(4)利用矩形面积减去三个小三角形的面积,即可得到答案.【详解】解:如图:(1)111A B C ∆,222A B C ∆为所求;(2)直线l 为所求;(3)由轴对称的性质,则点(,)P a b 关于y 轴对称的点1(,)P a b -;由平移的性质,则点(,)P a b 关于y 轴对称的点2(6,)P a b +;(4)根据题意,结合网格问题,则11123121213 2.5222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=; 【点睛】本题考查了轴对称的性质,平移的性质,以及求三角形的面积,解题的关键是熟练掌握轴对称的性质和平移的性质,正确的作出图形.25.某次歌唱比赛,三名选手的成绩如下:(1)若按三项的平均值取第一名,谁是第一名;(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?【答案】(1)甲将得第一名;(2)乙将得第一名.【分析】(1)先根据平均数计算各人的平均分,再比较即可;(2)按照权重为3:6:1的比例计算各人的测试成绩,再进行比较.【详解】解:(1)甲的平均成绩为13(72+62+88)=74分 乙的平均成绩为13(85+77+45)=69分 丙的平均成绩为13(67+76+67)=70分 因此甲将得第一名.(2)甲的平均成绩为723626881361⨯+⨯+⨯++=67.6分 乙的平均成绩为853*********⨯+⨯+⨯++=76.2分 丙的平均成绩为673766671361⨯+⨯+⨯++=72.4分 因此乙将得第一名.【点睛】本题考查了算术平均数和加权平均数的计算,掌握公式正确计算是解题关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.2.下列运算正确的是()A.3a•4a=12a B.(a3)2=a6C.(﹣2a)3=﹣2a3D.a12÷a3=a4【答案】B【解析】直接利用单项式乘以单项式以及幂的乘方运算法则分别化简得出答案.【详解】解:A、3a•4a=12a2,故此选项错误;B、(a3)2=a6,正确;C、(﹣2a)3=﹣8a3,故此选项错误;D、a12÷a3=a9,故此选项错误;故选:B.【点睛】此题主要考查了单项式乘以单项式以及幂的乘方运算,正确掌握相关运算法则是解题关键.3.有理数81的算术平方根是()A.3B.3±C.9D.9±【答案】C【解析】直接利用算术平方根的定义得出答案.【详解】819=.故选:C.【点睛】本题主要考查了算术平方根的定义,正确把握算术平方根的定义是解题关键.4.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x套,由题意列方程正确的是()A.60080040=-x xB.60080040=-x xC.60080040=+x xD.60080040=+x x【答案】C【分析】根据第一次进书的总钱数÷第一次购进套数=第二次进书的总钱数÷第二次购进套数列方程可得.【详解】解:若设书店第一次购进该科幻小说x套,由题意列方程正确的是60080040=+x x,故选:C.【点睛】本题考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系.5.等腰三角形的一个内角为50°,它的顶角的度数是()A.40°B.50°C.50°或40°D.50°或80°【答案】D【分析】根据50°是顶角的度数或底角的度数分类讨论,然后结合三角形的内角和定理即可得出结论.【详解】解:①若顶角的度数为50°时,此时符合题意;②若底角的度数为50°时,则等腰三角形的顶角为:180°-50°-50°=80°综上所述:它的顶角的度数是50°或80°故选D.【点睛】此题考查的是等腰三角形的性质和三角形的内角和定理,掌握等边对等角和分类讨论的数学思想是解决此题的关键.6.如图,△ABC 的面积计算方法是( )A .AC •BDB .12BC •EC C .12AC •BD D .12AD •BD 【答案】C 【分析】根据三角形的高线及面积可直接进行排除选项.【详解】解:由图可得:线段BD 是△ABC 底边AC 的高线,EC 不是△ABC 的高线, 所以△ABC 的面积为12AC BD ⋅, 故选C .【点睛】本题主要考查三角形的高线及面积,正确理解三角形的高线是解题的关键.7.在2a b -,5x π+,a b a b +-,2a ,3x x +中,是分式的有 ( ) A .1个B .2个C .3个D . 4个 【答案】C【分析】根据分式的定义逐一判断即可. 【详解】解:分式:形如A B ,其中,A B 都为整式,且B 中含有字母.根据定义得:a b a b +-,2a ,3x x +是分式,2a b -,5x π+是多项式,是整式. 故选C .【点睛】本题考查的是分式的定义,掌握分式的定义是解题的关键,特别要注意π是一个常数. 8.若分式13x -有意义,则x 的取值范围是( ) A .3x ≠B .3x ≠-C .3x <D .3x > 【答案】A【分析】根据分式有意义的条件,得到关于x 的不等式,进而即可求解. 【详解】∵分式13x -有意义, ∴30x -≠,即:3x ≠,故选A .【点睛】本题主要考查分式有意义的条件,掌握分式的分母不等于零,是解题的关键. 9.抛一枚硬币10次,有6次出现正面,4次出现反面,则出现正面的频率是( )A.6 B.4 C.60%D.40%【答案】C【分析】根据频率的公式:频率=频数÷总数,即可求解.【详解】由题意,得出现正面的频率是6100%=60% 10,故选:C.【点睛】此题主要考查对频率的理解,熟练掌握,即可解题.10.在△ABC中,∠A=20°,∠B=60°,则△ABC的形状是()A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形【答案】D【解析】试题分析:根据三角形的内角和定理求出∠C,即可判定△ABC的形状.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣20°﹣60°=100°,∴△ABC是钝角三角形.故选D.点评:本题考查了三角形的内角和定理,比较简单,求出∠C的度数是解题的关键.二、填空题11的平方根是_____.,再求出2的平方根即可.2的平方根是故答案为.点睛:此题主要考查了平方根,正确把握平方根的定义是解题关键.12.如图,顺次连接边长为1的正方形ABCD四边的中点,得到四边形A1B1C1D1,然后顺次连接四边形A1B1C1D1的中点,得到四边形A2B2C2D2,再顺次连接四边形A2B2C2D2四边的中点,得到四边形A3B3C3D3,…,按此方法得到的四边形A8B8C8D8的周长为.【答案】1 4【分析】【详解】顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即12,则周长是原来的22;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即14,则周长是原来的12;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即182…故第n 1 2n以此类推:正方形A8B8C8D8周长是原来的1 16,∵正方形ABCD的边长为1,∴周长为4,∴按此方法得到的四边形A8B8C8D8的周长为14,故答案为14.13.在平面直角坐标系中,将点P(2,0)向下平移1个单位得到P',则P'的坐标为__________.【答案】(2,-1)【分析】根据点的平移规律即可得出答案.【详解】根据点的平移规律,向下平移1个单位,纵坐标-1,从而可得到P'的坐标∴P'的坐标为(2,-1)故答案为:(2,-1).【点睛】本题主要考查点的平移,掌握点的平移规律是解题的关键.14.如图,直线483y x=+与x轴,y轴分别交于点A,点B,P是OB上的一点,若将PAB∆沿AP折叠,使点B 恰好落在x 轴上的点B '处,则直线AP 的表达式是_________.【答案】y=12x+3. 【分析】由直线483y x =+即可得到A(-6,0),B(0,8),再根据勾股定理即可得到P(0,3),利用待定系数法即可得到直线AP 的表达式.【详解】令0x =,则8y =,令0y =,则6x =-, 由直线483y x =+与x 轴,y 轴交点坐标为:A(-6,0),B(0,8), ∴AO=6,BO=8, ∴22226810AB AO BO ++=,由折叠可得AB'=AB=10,B'P=BP ,∴OB'= AB'- AO 1064=-=,设P(0,y ),则OP=y ,B'P=BP=8y -,∵Rt △POB'中,PO 2+B'O 2=B'P 2,∴y 2+42=(8y -)2,解得:3y =,∴P(0,3),设直线AP 的表达式为y kx b =+,则603k b b -+=⎧⎨=⎩, 123k b ⎧=⎪⎨⎪=⎩, ∴直线AP 的表达式是132y x =+. 故答案为:132y x =+. 【点睛】本题是一次函数与几何的综合题,考查了待定系数法求解析式及折叠问题.解题时,常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.15.已知:如图,,AB AD BC DC == ,点P 在AC 上,则本题中全等三角形有___________对.【答案】1【分析】由AB=AD ,BC=DC ,AC 为公共边可以证明△ABC ≌△ADC ,再由全等三角形的性质可得∠BAC=∠DAC ,∠BCA=∠DCA ,进而可推得△ABP ≌△ADP ,△CBP ≌△CDP .【详解】在△ABC 和△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩,∴△ABC ≌△ADC ;∴∠BAC=∠DAC ,∠BCA=∠DCA ,在△ABP 和△ADP 中,AB AD BAP DAP AP AP =⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△ADP ,在△CBP 和△CDP 中,BC DC BCP DCP CP CP =⎧⎪∠=∠⎨⎪=⎩,△CBP ≌△CDP .综上,共有1对全等三角形.故答案为:1.【点睛】本题考查了三角形全等的判定定理和性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.【答案】如果两个角是同一个角的余角,那么这两个角相等【分析】根据“如果”后面接的部分是题设,“那么”后面解的部分是结论,即可解决问题.【详解】命题“同角的余角相等”,可以改写成:如果两个角是同一个角的余角,那么这两个角相等. 故答案为:如果两个角是同一个角的余角,那么这两个角相等.【点睛】本题考查命题与定理,解题的关键是掌握“如果”后面接的部分是题设,“那么”后面解的部分是结论. 17.如图,平面直角坐标系中有点()()0,1,3,0A B .连接AB ,以A 为圆心,以AB 为半径画弧,交y 轴于点P ,连接BP ,以B 为圆心,以1BP 为半径画弧,交x 轴于点2BP ,连接12PP ,以1P 为圆心,以12PP 为半径画弧,交y 轴于点3P ,按照这样的方式不断在坐标轴上确定点6P 的位置,那么点6P 的坐标是__________.【答案】()6273,0P【分析】利用勾股定理和坐标轴上点的坐标的特征和变化规律,逐步求出1P 至6P 的坐标.【详解】解: ())0,1,3,0A B∴1,3OA OB ==∴()22221132AB AP OA OB ==+=+=, ∴()10,3P , ∴()22221213323BP BP OP OB ==+=+=∴()233,0P ,∴13126PP PP ====∴()30,9P ,……根据变化规律可得()4P ,()50,27P ,∴()6P .【点睛】本题主要考查勾股定理与平面直角坐标系里点的坐标的规律变化,理解题意,找到变化规律是解答关键.三、解答题18.一群女生住x 间宿舍,每间住4人,剩下18人无房住,每间住6人,有一间宿舍住不满,但有学生住.(1)用含x 的代数式表示女生人数.(2)根据题意,列出关于x 的不等式组,并求不等式组的解集.(3)根据(2)的结论,问一共可能有多少间宿舍,多少名女生?【答案】(1)()418+x 人;(2)912x <<;(3)可能有10间宿舍,女生58人,或者11间宿舍女生62人【分析】(1)根据题意直接列代数式,用含x 的代数式表示女生人数即可;(2)根据题意列出关于x 的不等式组,并根据解一元一次不等式组的方法求解即可;(3)根据(2)的结论可以得出10x =或11x =,并代入女生人数418x +即可求出答案.【详解】解:(1)由题意可得女生人数为:(418x +)人. (2)依题意可得41864186(1)x x x x +<⎧⎨+>-⎩,解得:912x <<. (3)由(2)知912x <<,∵x 为正整数,∴10x =或11x =,10x =时,女生人数为41858x +=(人), 11x =时,女生人数为41862x +=(人), ∴可能有10间宿舍,女生58人,或者11间宿舍,女生62人.【点睛】本题考查列代数式以及解一元一次不等式组,根据题意列出代数式以及一元一次不等式组是解题的关键. 19.如图,ABC ∆中,AB BC =,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE CF =,若25CAE ∠=︒,求ACF ∠的度数.。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.某青少年篮球队有12名队员,队员的年龄情况统计如下表,则这12名队员年龄的众数和中位数分别是()年龄(岁)1213141516人数31251A.15岁和14岁B.15岁和15岁C.15岁和14.5岁D.14岁和15岁【答案】C【分析】根据众数和中位数的定义判断即可.【详解】解:该组数据中数量最多的是15,所以众数为15;将该组数据从小到大排列:12,12,12,13,14,14,15,15,15,15,15,16其中位数为1415=14.52.故选:C.【点睛】本题主要考查数据统计中众数与中位数的定义,理解掌握定义是解答关键.2.下列交通标志中,是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,分析即可.【详解】解:A、不是轴对称图形,故选项A不正确;B、不是轴对称图形,故选项B不正确;C、是轴对称图形,故选项C正确;D、不是轴对称图形,故选项D不正确;故选:C.【点睛】本题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两侧折叠后能够重叠.3.如图,在△ABC中.∠ACB=90°,AC=4,2BC=,点D在AB上,将△ACD沿CD折叠,点A落在点A1处,A1C与AB相交于点E,若A1D∥BC,则A1E的长为()A.22B.83C.523D.3242-【答案】B【解析】利用平行线的性质以及折叠的性质,即可得到∠A1+∠A1DB=90°,即AB⊥CE,再根据勾股定理可得223 2.AB AC BC+=最后利用面积法得出1122AB CE BC AC⨯=⨯,可得4,3BC ACCEAB⨯==进而依据A1C=AC=4,即可得到18 3A E=.【详解】∵A1D∥BC,∴∠B=∠A1DB,由折叠可得,∠A1=∠A,又∵∠A+∠B=90°,∴∠A1+∠A1DB=90°,∴AB⊥CE,∵∠ACB=90°,AC=4,2,BC=∴223 2.AB AC BC=+=∵1122AB CE BC AC⨯=⨯,∴4,3BC ACCEAB⨯==又∵A1C=AC=4,∴148 433A E=-=,故选B.【点睛】本题主要考查了折叠问题以及勾股定理的运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决问题的关键是得到CE ⊥AB 以及面积法的运用.4.一个三角形的三边长分别为2222,,2a b a b ab +-,则这个三角形的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .形状不能确定 【答案】B【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:∵()22422242b =+++a b a a b ,()4224222--2b =+a b a a b ,()2222=4ab a b ∴44442222222b -2b 4++=++a a b a a b a b∴()()()2222222-+2+=a b a b ab ∴这个三角形一定是直角三角形,故选:B .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.已知实数x ,y ,z 满足1x y ++1y z ++1z x +=76,且z x y x y y z z x+++++=11,则x+y+z 的值为( ) A .12B .14C .727D .9 【答案】A 【分析】把11z x y x y y z z x ++=+++两边加上3,变形可得14x y z x y z x y z x y y z z x++++++++=+++,两边除以()x y z ++得到11114x y y z z x x y z ++=+++++,则1476x y z =++,从而得到x y z ++的值.【详解】解:11z x y x y y z z x ++=+++, 11114z x y x y y z z x∴+++++=+++, 即14x y z x y z x y z x y y z z x++++++++=+++, 11114x y y z z x x y z ∴++=+++++, 而11176x y y z z x ++=+++, 1476x y z ∴=++, 12x y z ∴++=.故选:A .【点睛】本题考查了分式的加减法:同分母的分式相加减,分母不变,把分子相加减.经过通分,异分母分式的加减就转化为同分母分式的加减.解决问题的关键是从后面的式子变形出x y z ++.6.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°【答案】A 【解析】试题分析:先根据等腰三角形的性质求得∠C 的度数,再根据三角形的内角和定理求解即可. ∵AB =AC ,∠A =36°∴∠C =72°∵BD 是AC 边上的高∴∠DBC =180°-90°-72°=18°故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.7.如图,△ABC ≌△AEF 且点F 在BC 上,若AB=AE ,∠B=∠E ,则下列结论错误的是( )A .AC=AFB .∠AFE=∠BFEC .EF=BCD .∠EAB=∠FAC【答案】B 【分析】全等三角形的对应边相等,对应角相等,△ABC ≌△AEF ,可推出AB =AE ,∠B =∠E ,AC =AF ,EF =BC .【详解】∵△ABC ≌△AEF∴AB =AE ,∠B =∠E ,AC =AF ,EF =BC故A ,C 选项正确.∵△ABC ≌△AEF∴∠EAF =∠BAC∴∠EAB =∠FAC故D 答案也正确.∠AFE 和∠BFE 找不到对应关系,故不一定相等.故选:B .【点睛】本题考查全等三角形的性质,全等三角形对应边相等,对应角相等.8.在关于x 的函数,2y x =+ 中,自变量x 的取值范围是( ) A .2x ≥B .2x <-C .2x ≥-D .2x ≤ 【答案】C【分析】根据二次根式的被开方数是非负数的特点解答即可.【详解】由题意得: 20x +≥,∴2x ≥-,故选:C.【点睛】此题考查二次根式的非负性,能够根据式子的要求列出不等式是解题的关键.9.已知(43•a=b ,若b 是整数,则a 的值可能是( )A 3B .43C .43D .23【答案】C【解析】找出括号中式子的有理化因式即可得.【详解】解:(4+3)×(4-3)=42-(3)2=16-3=13,是整数,所以a 的值可能为4-3,故选C【点睛】本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.10.下列计算中正确的是( )A .235)x x =(B .()239239x y x y -=C .623x x x ÷=D .23x x x -⋅=-【答案】D【分析】每一个选项根据对应的运算法则计算即可 【详解】A 选项,根据幂的乘方法则得623)x x =(,故A 错误; B 选项,根据积的乘方法则得()236239x y x y -=,故B 错误;C 选项,根据同底数幂的除法法则得624x x x ÷=,故C 错误;D 选项,根据同底数幂的乘法法则得23x x x -⋅=-,故D 正确;故本题答案:D【点睛】本题综合考察幂的乘方、积的乘方、同底数幂的除法、同底数幂的乘法的运算法则,熟记对应的法则是解题的关键二、填空题11.把长方形AB CD '沿对角线AC 折叠,得到如图所示的图形.若∠BAO =34°,则∠BAC 的大小为_______.【答案】62°【分析】先利用AAS 证明△AOB ≌△COD ,得出∠BAO=∠DCO=34°,∠B′CO=68°,结合折叠的性质得出∠B′CA=∠BCA=34°,则∠BAC=∠B′AC=56°.【详解】由题意,得△B′CA ≌△BCA ,∴AB′=AB ,∠B′CA=∠BCA ,∠B′AC=∠BAC .∵长方形AB′CD 中,AB′=CD ,∴AB=CD .在△AOB 与△COD 中,90B D AOB COD AB CD ∠∠︒⎧⎪∠∠⎨⎪⎩==== , ∴△AOB ≌△COD (AAS ),∴∠BAO=∠DCO=34°,∴∠B′CO=90°-∠DCO=56°,∴∠B′CA=∠BCA=28°,∴∠B′AC=90°-∠B′CA=62°,∴∠BAC=∠B′AC=62°.【点睛】考查了折叠的性质、矩形的性质和全等三角形的判定与性质,解题关键是证明△AOB ≌△COD ,得出∠BAO=∠DCO=34°是解题的关键.12.已知(a-2)2,则3a-2b 的值是______.【答案】1【分析】根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】∵(a -2)2,∴a -2=2,b+2=2,解得:a =2,b=-2,则3a -2b=3×2-2×(-2)=6+4=1,故答案为:1.【点睛】本题考查了非负数的性质:几个非负数的和为2时,这几个非负数都为2.13.当m =______时,分式22956m m m --+的值为1. 【答案】3-【解析】根据分式的值为零的条件即可求出答案.【详解】由题意可知:2m 902m 5m 60-=⎧⎪-+≠⎨⎪⎩解得:m 3=-,故答案为3-【点睛】本题考查了分式的值,解题的关键是熟练运用分式的值为零的条件,本题属于基础题型.14.因式分解:29x -=_____.【答案】()()33x x +-【分析】根据公式法进行因式分解即可.【详解】解:()()2229333x x x x -=-=+-, 故答案为:()()33x x +-.【点睛】本题考查用公式法因式分解,熟练掌握公式法并灵活应用是解题的关键.15.如图7,已知P 、Q 是△ABC 的边BC 上的两点,且BP=QC=PQ=AP=AQ ,则∠BAC=________【答案】120°【解析】识记三角形中的角边转换因为 PQ=AP=AQ△APQ 为等边三角形 ∠APQ=60°它互补角∠APB=120°BP="AP"△ APB 为等腰三角形∠PAB=30°同理 ∠CAQ=30°所以 ∠BAC=∠CAQ+∠PAB+∠PAQ=30°+30°+60°=120°16.计算:(x+a)(y-b)=______________________【答案】xy+ay-bx-ab【分析】根据多项式乘以多项式的运算法则进行计算即可得到答案.【详解】(x+a)(y-b)= xy+ay-bx-ab.故答案为:xy+ay-bx-ab.【点睛】本题主要考查了多项式乘以多项式的运算法则,注意不要漏项,有同类项的合并同类项.17.如图,在菱形ABCD 中,若AC=6,BD=8,则菱形ABCD 的面积是____.【答案】1【详解】试题解析:∵菱形ABCD 的对角线AC=6,BD=8,∴菱形的面积S=12AC•BD=12×8×6=1. 考点:菱形的性质.三、解答题18.如图,ABC ∆是等边三角形,点D 是AC 的中点,//AM BC ,过点D 作DE BC ⊥,垂足为E ,DE 的反向延长线交AM 于点F .(1)求证:AF BE AB +=;(2)求证:AC 垂直平分BM .【答案】(1)见解析;(2)见解析【分析】(1)先证明ADF ∆≌CDE ∆得到AF CE =,再根据等边三角形即可求解;(2)根据//AM BC 得到ABM MBC M ∠=∠=∠,得到△ABM 是等腰三角形,根据三线合一即可求解.【详解】证明:(1)∵点D 是AC 的中点∴AD CD =∵//AM BC∴DAF C ∠=∠在ADF ∆和CDE ∆中DAF C AD CDADF CDE ∠=∠⎧⎪=⎨⎪∠=⎩∴ADF ∆≌CDE ∆∴AF CE =∴AF BE CE BE AB +=+=∴AF BE AB +=(2)∵点D 是等边ABC ∆中AC 边的中点∴BD AC ⊥且BD 平分ABC ∠∴AD BM ⊥,30ABD ∠=∵//AM BC∴ABM M ∠=∠∴AB AM =∴ABM ∆是等腰三角形又∵AD BM ⊥∴AD 是ABM ∆中BM 边的中线又AD BM ⊥∴AC 垂直平分BM .【点睛】此题主要考查等边三角形的性质与证明,解题的关键是熟知全等三角形的判定、等边三角形的性质及垂直平分线的判定.19.如图,L 1、L 2分别表示两个一次函数的图象,它们相交于点P .(1)求出两条直线的函数关系式;(2)点P 的坐标可看作是哪个二元一次方程组的解?(3)求出图中△APB 的面积.【答案】(1)L 1:y =33x -+;L 2:y =2x -(2)332y x y x =-+⎧⎨=-⎩(3)258 【分析】(1)利用待定系数法即可求出两条直线的函数关系式;(2)根据两直线的交点坐标与两直线解析式联立的二元一次方程组的关系即可得出结论;(3)先求出点P 的坐标,然后根据三角形的面积公式即可求出结论.【详解】(1)设直线L 1的解析式是y =kx +b ,已知L 1经过点(0,3),(1,0),可得:30b k b =⎧⎨+=⎩, 解得33b k =⎧⎨=-⎩, 则直线L 1的解析式是y =33x -+;同理可得L 2的解析式是:y =2x -(2)点P 的坐标可看作是二元一次方程组332y x y x =-+⎧⎨=-⎩的解. (3)332y x y x =-+⎧⎨=-⎩解得:5434x y ⎧=⎪⎪⎨⎪=-⎪⎩∴点P (54,3-4); ∴S △APB =1152552248p AB x =⨯⨯= 【点睛】此题考查的是求一次函数解析式、求两直线的交点坐标和求三角形的面积,掌握利用待定系数法求一次函数解析式和两直线的交点坐标与两直线解析式联立的二元一次方程组的关系是解决此题的关键. 20.甲、乙两个工程队完成某项工程,首先是甲队单独做了10天,然后乙队加入合作,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系.(1)求甲、乙两队合作完成剩下的全部工程时,工作量y 与天数x 间的函数关系式;(2)求实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少多少天?【答案】(1)y=116x-38;(2)实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天 【分析】(1)根据函数图象可以设出y 与x 的函数解析式,然后根据图象中的数据即可求得工作量y 与天数x 间的函数关系式;(2)将y=1代入(1)中的函数解析式,即可求得实际完成的天数,然后根据函数图象可以求得甲单独完成需要的天数,从而可以解答本题.【详解】(1)设甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式为:y=kx+b,1 10k b41 14k b2⎧+=⎪⎪⎨⎪+=⎪⎩,得1k163b8⎧=⎪⎪⎨⎪=-⎪⎩,即甲、乙两队合作完成剩下的全部工程时,工作量y与天数x间的函数关系式是y=116x-38;(2)令y=1,则1=116x-38,得x=22,甲队单独完成这项工程需要的天数为:1÷(14÷10)=40(天),∵40-22=18,∴实际完成这项工程所用的时间比由甲队单独完成这项工程所需时间少18天.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.21.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?【答案】(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,1.5小时的人数有:50010020080120---=补全的条形统计图如下图所示,(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:120802000800500+⨯=120802000800500+⨯=(人), 即该校每天户外活动时间超过1小时的学生有800人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.22.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,点D 、F 分别为AB 、AC 中点,ED AB ⊥,GF AC ⊥,若15BC cm =,求EG 的长.【答案】EG=5cm .【分析】连接AE 、AG ,根据线段垂直平分线上的点到线段两端点的距离相等可得EB=EA ,再根据等腰三角形两底角相等求出∠B ,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AEG=60°,同理求出∠AGE=60°,从而判断出,△AEG 为等边三角形,再根据等边三角形三边都相等列式求解即可.【详解】如图,连接AE 、AG ,∵D 为AB 中点,ED ⊥AB ,∴EB=EA ,∴△ABE 为等腰三角形,又∵∠B=1801202︒-︒=30°, ∴∠BAE=30°,∴∠AEG=60°,同理可证:∠AGE=60°,∴△AEG 为等边三角形,∴AE=EG=AG ,又∵AE=BE ,AG=GC ,∴BE=EG=GC ,又BE+EG+GC=BC=15(cm ),∴EG=5(cm ).【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线构造出等腰三角形与等边三角形是解题的关键.23.(1)如图1,在ABC 中,C B ∠∠>,AD BC?⊥于点 D ,AE?平分BAC?∠,你能找出EAD ∠与B ∠,C?∠之间的数量关系吗?并说明理由.(2)如图2,在ABC ,C B ∠∠>,AE?平分BAC ∠,F? 为 AE 上一点,FM BC? ⊥于点 M ,这时EFM?∠与 B ∠,C?∠之间又有何数量关系?请你直接写出它们的关系,不需要证明.【答案】(1)能,()12EAD C B ∠=∠-∠,见解析;(2)()12EFM C B ∠=∠-∠ 【分析】(1)由角平分线的性质及三角形内角和180°性质解题;(2)根据平行线的判断与两直线平行,同位角相等性质解题.【详解】解:(1)AE ∵平分BAC ∠,11(180)22EAC BAC B C ∴∠=∠=︒-∠-∠ AD BC ⊥90DAC C ∴∠=︒-∠1(180)2EAD EAC DAC B C ∴∠=∠-∠=︒-∠-∠ 即()12EAD C B ∠=∠-∠; (2)过A 作AD BC ⊥于DFM BC ⊥//AD FM ∴ 1()2EFM EAD C B ∴∠=∠=∠-∠ 【点睛】本题考查角平分线的性质、三角形内角和定理、平行线的性质等知识,是重要考点,难度较易,作出正确辅助线,掌握相关知识是解题关键.24.每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图. 治理杨絮一一您选哪一项?(单选)A .减少杨树新增面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【答案】(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A 选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?【答案】(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;【分析】(1)求直方图中各组人数和即可求得跳绳得学生人数,利用百分比的意义求得m即可;(2)利用平均数、众数、中位数的定义求解即可;(3)利用总人数乘以对应的百分比即可求得;【详解】(1)本次抽取到的学生人数为:4+5+11+14+16=50(人);m%=14÷50x100%=28%,∴m=28;故答案为:①50;②28;(2)观察条形统计图得,本次调查获取的样本数据的平均数849510111114121610.6650x⨯+⨯+⨯+⨯+⨯==,∴本次调查获取的样本数据的平均数为10.66,∵在这组样本数据中,12出现了16次,∴众数为12,∵将这组数据按从小到大排列后,其中处于中间位置的两个数都为11,∴中位数为:11+11=11 2,(3)800×32%=256人;答:我校八年级模拟体测中得12分的学生约有256人;【点睛】本题主要考查了中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图,掌握中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图①是一直角三角形纸片,∠A=30°,BC =4 cm ,将其折叠,使点C 落在斜边上的点C′处,折痕为BD ,如图②,再将图②沿DE 折叠,使点A 落在DC′的延长线上的点A′处,如图③,则折痕DE 的长为()A .83cmB .23C .22D .3 cm【答案】A【解析】因为在直角三角形中, ∠A=30°,BC=4,故∠CBA=60°,根据折叠的性质得: 90,?30,DC B ACB DBA CBD ∠∠∠∠︒'====︒故C BD 60,CDB ∠∠'==︒得: DB=83603BC sin ︒==, 60ADC ∠='︒,根据折叠的性质得: 1 302C DE ADE ADC ∠∠∠===''︒, 90,EDB EDC BDC ∠∠∠=+='︒' 故△EDB 为直角三角形,又因为30DBA ∠=︒,故DE=DBtan30°83383=cm, 故答案选A.2.式子:62xy -,85x +,12x x +,3x y 中,分式的个数是( ) A .1个B .2个C .3个D .4个 【答案】B【分析】根据分式的定义进行解答即可. 【详解】四个式子中分母含有未知数的有:85x +,12x x +共2个. 故选:B .【点睛】 本题考查了分式的概念,判断一个有理式是否是分式,不要只看是不是A B的形式,关键是根据分式的定义看分母中是否含有字母,分母中含有字母则是分式,分母中不含字母,则不是分式.3.要使(﹣6x 3)(x 2+ax ﹣3)的展开式中不含x 4项,则a =( )A .1B .0C .﹣1D .16【答案】B【分析】原式利用单项式乘多项式的法则计算,根据结果不含x 4项求出a 的值即可.【详解】解:原式=−6x 5−6ax 4+18x 3,由展开式不含x 4项,得到a =0,故选:B .【点睛】本题考查了单项式乘多项式的法则,根据不含哪一项则该系数为零是解题的关键.4.如图,等边ABC ∆的边长为6,AD 是BC 边上的中线,M 是AD 上的动点,E 是边AC 上一点,若3AE =,则EM CM +的最小值为( )A .226B .33C .23D .92【答案】B 【分析】连接BE ,与AD 交于点M ,BE 就是EM CM +的最小值,根据等边三角形的性质求解即可.【详解】解:连接BE ,与AD 交于点M ,AD 是BC 边上的中线,AD BC ∴⊥,AD ∴是BC 的垂直平分线,B ∴、C 关于AD 对称,BE ∴就是EM CM +的最小值,等边ABC 的边长为6,∴3BD =,6AB =,2233AD AB BD ∴-=,3AE =,633CE AC AE ∴=-=-=,BE ∴是AC 的垂直平分线,∵ABC 是等边三角形,易得 33BE AD ==,EM CM BE +=,EM CM ∴+的最小值为33,故选:B .【点睛】本题考查等边三角形的性质、轴对称-路径最短等内容,明确当B ,M ,E 三点共线时EM CM +最短是解题的关键.5.边长为a,b 的长方形,它的周长为14,面积为10,则a 2b+ab 2的值为( )A .35B .70C .140D .280【答案】B【解析】∵长方形的面积为10,∴ab=10,∵长方形的周长为14,∴2(a+b)=14,∴a+b=7.对待求值的整式进行因式分解,得a 2b+ab 2=ab(a+b),代入相应的数值,得 ()2210770ab a a b ab b ==⨯=++.故本题应选B.6.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【答案】C 【解析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b 的图象经过一、二、四象限,∴k <0,b >0,故选C .【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当k <0,b >0时图象在一、二、四象限.7.如图,是用4个相同的小长方形与1个小正方形镶嵌而成的正方形图案,已知图案的面积为25,小正方形的面积为9,若用x,y 长示小长方形的两边长(x>y)请观察图案,以下关系式中不正确的是( )A .x 2+y 2=16B .x-y=3C .4xy+9=25D .x+y=5【答案】A 【分析】分析已知条件,逐一对选项进行判断即可.【详解】通过已知条件可知,大正方形的边长为5,小正方形的边长为3,通过图中可以看出,大正方形的边长可以用5x y +=来表示,所以D 选项正确,小正方形的边长可以用3x y -=来表示,所以B 选项正确。
一、选择题(每题5分,共30分)1. 下列各组数中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...2. 若函数f(x) = 2x + 1,则f(-1)的值为()A. -1B. 0C. 1D. 33. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°4. 下列图形中,不是正多边形的是()A. 正方形B. 正三角形C. 正五边形D. 正六边形5. 若a, b, c是等差数列,且a + b + c = 12,则b的值为()A. 3C. 5D. 6二、填空题(每题5分,共25分)6. 若方程2x - 5 = 3的解为x = 4,则x + 2的值为______。
7. 若等差数列的首项为2,公差为3,则第10项的值为______。
8. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为______。
9. 若函数f(x) = x^2 - 4x + 3,则f(1)的值为______。
10. 在△ABC中,若∠A = 50°,∠B = 60°,则∠C的度数是______。
三、解答题(每题15分,共45分)11. (15分)已知数列{an}是等比数列,且a1 = 3,公比为q,求:(1)数列{an}的通项公式;(2)数列{an}的前n项和公式。
12. (15分)已知函数f(x) = 2x^2 - 3x + 1,求:(1)函数f(x)的对称轴;(2)函数f(x)的极值点。
13. (15分)在△ABC中,AB = 5cm,BC = 8cm,AC = 10cm,求△ABC的面积。
四、附加题(每题20分,共40分)14. (20分)已知函数f(x) = ax^2 + bx + c,且f(1) = 4,f(-1) = 0,求函数f(x)的解析式。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若正比例函数y =kx 的图象经过点A (k ,9),且经过第一、三象限,则k 的值是( ) A .﹣9B .﹣3C .3D .﹣3或3 【答案】C【解析】根据正比例函数的性质得k >0,再把(k ,9)代入y =kx 得到关于k 的一元二次方程,解此方程确定满足条件的k 的值.【详解】解:∵正比例函数y =kx (k ≠0)的图象经过第一、三象限∴k >0,把(k ,9)代入y =kx 得k 2=9,解得k 1=﹣3,k 2=3,∴k =3,故选C .【点睛】本题考查了一次函数图象上点点坐标特征及正比例函数的性质,较为简单,容易掌握.2.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0 【答案】D【解析】∵(x ﹣z )2﹣4(x ﹣y )(y ﹣z )=1,∴x 2+z 2﹣2xz ﹣4xy+4xz+4y 2﹣4yz=1,∴x 2+z 2+2xz ﹣4xy+4y 2﹣4yz=1,∴(x+z )2﹣4y (x+z )+4y 2=1,∴(x+z ﹣2y )2=1,∴z+x ﹣2y=1.故选D .3.已知实数a 满足2006a a -=,那么22006a -的值是( )A .2005B .2006C .2007D .2008 【答案】C【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-1≥0,∴a ≥1,∴2006a a -=可化为a 2006a -+=,2006=,∴a-1=20062,∴22006a -=1.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.4.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3【答案】A 【解析】>-3 ,≥-1,大大取大,所以选A5.如图是一个三级台阶,它的每一级的长、宽和高分别是50 cm ,30 cm ,10 cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只壁虎,它想到B 点去吃可口的食物,请你想一想,这只壁虎从A 点出发,沿着台阶面爬到B 点,至少需爬( )A .13 cmB .40 cmC .130 cmD .169 cm【答案】C 【解析】将台阶展开,如图所示,因为BC=3×10+3×30=120,AC=50, 由勾股定理得:2222250120130AB AC BC =+=+=cm,故正确选项是C.6.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( ) A .3B .6C .9D .12【答案】D【分析】先求出另一组数据的平均数,然后再利用方差公式2222121[()()()]n s x x x x x x n =-+-++-求出方差,找到与给定的一组数据的方差之间的关系,则答案可解.【详解】设数据x 1,x 2,…,x n 的平均数为x ,方差为2s ,则12n x x x x n +++=,2222121[()()()]n s x x x x x x n =-+-++-,则另一组数据的平均数为122222n x x x x n+++= ,方差为: 2222222121214[(22)(22)(22)][()()()]412n n x x x x x x x x x x x x s nn -+-++-=-+-++-==故选:D .【点睛】 本题主要考查平均数和方差的求法,掌握平均数和方差的求法是解题的关键.7.下列说法正确的是( )A .对角线互相垂直且相等的四边形是菱形B .对角线相等的四边形是矩形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形【答案】D【分析】利用菱形的判定、矩形的判定定理、平行四边形的判定定理分别判断后即可确定正确的选项.【详解】A 、对角线互相垂直且相等的四边形可能是等腰梯形,故错误;B 、对角线相等的平行四边形才是矩形,故错误;C 、对角线互相垂直的四边形不一定是平行四边形,故错误;D 、对角线相等且互相平分的四边形是矩形,正确.故选:D .【点睛】此题考查菱形的判定、矩形的判定定理、平行四边形的判定,了解各个图形的判定定理是解题的关键,难度不大.8.等式(x+4)0=1成立的条件是( )A .x 为有理数B .x ≠0C .x ≠4D .x ≠-4【答案】D【解析】试题分析:0指数次幂的性质:. 由题意得,x≠-4,故选D. 考点:0指数次幂的性质点评:本题属于基础应用题,只需学生熟练掌握0指数次幂的性质,即可完成.9.2011年3月11日,里氏9.0级的日本大地震导致当天地球的自转时间较少了0.000 001 6秒,将0.000 001 6用科学记数法表示为 ( )A .71610-⨯B .61.610-⨯C .51.610-⨯D .51610-⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000016=1.6×10-6.故选B.【点睛】科学计数法:绝对值大于10的数记成a×10n 的形式,其中1≤|a|<10,n 是正整数.10.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为( )A .3B .10C .6.5D .3或6.5 【答案】C【分析】分腰长为3和底边长为3两种情况,注意用三角形三边关系验证.【详解】若腰长为3,则底边长为163310--=此时三边长为3,3,10∵3310+< ,不能组成三角形∴腰长为3不成立,舍去若底边长为3,则腰长为(163)2 6.5-÷=此时三角形三边长为6.5,6.5,3,满足三角形三边关系所以等腰三角形的腰长为6.5故选:C .【点睛】本题主要考查等腰三角形的定义及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.二、填空题11.计算:1=________.【答案】-2【分析】按照二次根式运算法则进行计算即可.【详解】1312=-+=-故答案为:-2.【点睛】此题主要考查二次根式的运算,熟练掌握,即可解题.12.如图,已知//AB CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分BEF ∠,若150∠=,则2∠的度数为__________.【答案】65︒【分析】先由AB ∥CD 得出∠1+∠BEF=180°,∠2=∠BEG ,再根据角平分线及∠1的度数求出∠BEG 的度数即可.【详解】解:∵AB ∥CD ,∴∠1+∠BEF=180°,∠2=∠BEG又∵∠1=50°,∴∠BEF=130°,又∵EG 平分∠BEF ,∴∠FEG=∠BEG=65°,∴∠2=∠BEG=65°故答案为:65°.【点睛】本题考查了角平分线的定义、平行线的性质,解题的关键是求出∠BEF 的度数.13.如图,直线//AB CD ,EF 交AB 于M ,MN EF ⊥,MN 交CD 于N ,若110BME ∠=︒,则MND ∠=_________.【答案】20°【分析】根据平行线的性质和对顶角相等,即可得到答案.【详解】∵110BME ∠=︒,∴∠AMF=110°,∵MN EF ⊥,∴∠FMN=90°,∴∠AMN=110°-90°=20°,∵//AB CD ,∴MND ∠=∠AMN=20°,故答案是:20°.【点睛】本题主要考查平行线的性质、对顶角相等以及垂直的意义,掌握平行线的性质,是解题的关键. 14.已知一个正数的两个平方根分别为26m -和3m +,则()1820m -的值为__________. 【答案】1【分析】根据可列式2630m m -++=,求解到m 的值,再代入即可得到最后答案. 【详解】解:26m -和3m +为一个正数的平方根,2630m m ∴-++=解得1m =20182018()(1)1m ∴-=-=故答案为:1.【点睛】本题考查了平方根的知识,要注意到正数的平方根有两个,一正一负,互为相反数.15.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1. 【解析】设大量角器的左端点是A ,小量角器的圆心是B ,连接AP ,BP ,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB 所对的圆心角是1°,因而P 在大量角器上对应的度数为1°.故答案为1.16.若分式方程x a 2x 4x 4=+--的解为正数,则a 的取值范围是______________. 【答案】a <8,且a≠1【解析】分式方程去分母得:x=2x-8+a ,解得:x=8- a ,根据题意得:8- a >2,8- a≠1,解得:a <8,且a≠1.故答案为:a <8,且a≠1.【点睛】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,根据分式方程解为正数求出a 的范围即可.此题考查了分式方程的解,需注意在任何时候都要考虑分母不为2.17.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.【答案】()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律.三、解答题18.如图,已知AD=BC ,AC=BD .(1)求证:△ADB ≌△BCA ;(2)OA 与OB 相等吗?若相等,请说明理由.【答案】(1)详见解析;(2)OA=OB ,理由详见解析.【解析】试题分析:(1)根据SSS 定理推出全等即可;(2)根据全等得出∠OAB=∠OBA ,根据等角对等边即可得出OA=OB .试题解析:(1)证明:∵在△ADB 和△BCA 中,AD=BC,AB=BA,BD=AC ,∴△ADB ≌△BCA (SSS );(2)解:OA=OB ,理由是:∵△ADB ≌△BCA ,∴∠ABD=∠BAC ,∴OA=OB .考点:全等三角形的判定与性质;等腰三角形的判定19.如图,在ABC ∆中,AB AC =,120BAC ∠=︒,点D 、F 分别为AB 、AC 中点,ED AB ⊥,GF AC ⊥,若15BC cm =,求EG 的长.【答案】EG=5cm .【分析】连接AE 、AG ,根据线段垂直平分线上的点到线段两端点的距离相等可得EB=EA ,再根据等腰三角形两底角相等求出∠B ,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠AEG=60°,同理求出∠AGE=60°,从而判断出,△AEG 为等边三角形,再根据等边三角形三边都相等列式求解即可.【详解】如图,连接AE 、AG ,∵D 为AB 中点,ED ⊥AB ,∴EB=EA ,∴△ABE 为等腰三角形,又∵∠B=1801202︒-︒=30°, ∴∠BAE=30°,∴∠AEG=60°,同理可证:∠AGE=60°,∴△AEG 为等边三角形,∴AE=EG=AG , 又∵AE=BE ,AG=GC ,∴BE=EG=GC ,又BE+EG+GC=BC=15(cm ),∴EG=5(cm ).【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,作辅助线构造出等腰三角形与等边三角形是解题的关键.20.如图,直线1l :24y x =-+交x 轴于点A ,直线2l 交y 轴于点()0,1B -,1l 与2l 的交点P 的横坐标为1,连结AB .(1)求直线2l 的函数表达式;(2)求PAB ∆的面积.【答案】(1)31y x =-;(2)52. 【分析】(1)先求出点P 坐标,再利用待定系数法即可求解直线2l 的函数表达式;(2)求出点C 坐标,再根据PAB ACB ACP S S S ∆∆∆=+即可求解.【详解】(1)将1x =代入1l :24y x =-+得()1,2P设直线2l :y kx b =+将()1,2P ,()0,1B -代入得:31k b =⎧⎨=-⎩∴直线2l :31y x =-,(2)1l :24y x =-+与x 轴的交点()2,0A设直线2l :31y x =-与x 轴的交点C :1,03⎛⎫ ⎪⎝⎭∴()()11152212232PAB ACB ACP P B S S S AC y y ∆∆∆⎛⎫=+=⋅-=⋅-⋅+= ⎪⎝⎭【点睛】此题主要考查一次函数与几何综合,解题的关键是熟知一次函数的图像与性质.21.如图,在ABC ∆中,90BAC ∠=,AB AC =,点D 是BC 上一动点,连结AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连结CE .(1)求证:ABD ACE ∆≅∆;(2)若AF 平分DAE ∠交BC 于F ,探究线段BD DF FC ,,之间的数量关系,并证明.【答案】(1)见解析;(2)222BD FC DF +=,见解析【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:222BD FC DF +=.连接FE ,想办法证明∠ECF=90°,EF=DF ,利用勾股定理即可解决问题.【详解】(1)∵AE AD ⊥,∴290DAE DAC ︒∠=∠+∠= ,又∵190BAC DAC ︒∠=∠+∠=,∴12∠=∠,在△ABD 和△ACE 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE ;(2)222BD FC DF +=,理由如下:连接FE ,∵90,BAC AB AC ︒∠==,∴345B ︒∠=∠=,由(1)知△ABD ≌△ACE ,∴445B ︒∠=∠=,BD CE = ,∴34454590FCE ∠=∠+∠=+=,∴222CE FC FE +=,∴222BD FC FE +=,∵AF 平分DAE ∠,∴DAF EAF ∠=∠,在△DAF 和△EAF 中, AF AF DAF EAF AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△DAF ≌△EAF ,∴DF FE =.∴222BD FC FE +=.【点睛】本题是三角形综合题,主要考查了等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.22.计算:(1)4(x ﹣1)2﹣(2x+5)(2x ﹣5);(2)2214a a b b a b b ⎛⎫-÷ ⎪-⎝⎭. 【答案】 (1)﹣8x+29;(2)()4a b a b - 【分析】(1)根据整式的乘除进行去括号,然后合并同类项,即可得出答案. (2)根据积的乘方进行去括号,然后根据分式的混合运算进行化简,即可得出答案.【详解】解:(1)原式=4x 2﹣8x+4﹣4x 2+25=﹣8x+29;(2)原式=22222224a 1a 44a 4a 4a 4a (a b )4a ===a b b b b (a-b )b b (a b )b b (a-b )------ 【点睛】本题主要考察了整式的乘除、积的乘方以及分式的混合运算,正确运用法则进行运算是解题的关键. 23.已知:如图,在矩形ABCD 中,AB =6,BC =8,E 为直线BC 上一点.(1)如图1,当E 在线段BC 上,且DE =AD 时,求BE 的长;(2)如图2,点E 为BC 延长长线上一点,若BD =BE ,连接DE ,M 为ED 的中点,连接AM ,CM ,求证:AM ⊥CM ;(3)如图3,在(2)条件下,P ,Q 为AD 边上的两个动点,且PQ =5,连接PB 、MQ 、BM ,求四边形PBMQ 的周长的最小值.【答案】(1)BE=8﹣7;(2)证明见解析;(397 10.【分析】(1)先求出DE =AD =4,最后用勾股定理即可得出结论;(2)先判断出∠BMD =90°,再判断出△ADM ≌△BCM 得出∠AMD =∠BMC ,即可得出结论;(3)由于BM 和PQ 是定值,只要BP+QM 最小,利用对称确定出MG'就是BP+QM 的最小值,最后利用勾股定理即可得出结论.【详解】解:(1)如图1中,∵四边形ABCD 是矩形,∴∠C =90°,CD =AB =6,AD =BC =8,∴DE =AD =8,在Rt △CDE 中,CE 22228627DE CD --=∴BE =BC ﹣CE =8﹣27;(2)如图2,连接BM ,∵点M 是DE 的中点,∴DM =EM ,∵BD =BE ,∴BM ⊥DE , ∴∠BMD =90°,∵点M 是Rt △CDE 的斜边的中点,∴DM =CM ,∴∠CDM =∠DCM ,∴∠ADM =∠BCM在△ADM 和△BCM 中,AD BC ADM BCM DM CM =⎧⎪∠=∠⎨⎪=⎩, ∴△ADM ≌△BCM (SAS ),∴∠AMD =∠BMC ,∴∠AMC =∠AMB+∠BMC =∠AMB+∠AMD =∠BMD =90°,∴AM ⊥CM ;(3)如图3中,过点Q 作QG ∥BP 交BC 于G ,作点G 关于AD 的对称点G',连接QG',当点G',Q ,M 在同一条线上时,QM+BP 最小,而PQ 和BM 是定值,∴此时,四边形PBMQ 周长最小,∵QG ∥PB ,PQ ∥BG ,∴四边形BPQG 是平行四边形,∴QG =BP ,BG =PQ =5,∴CG =3,如图2,在Rt △BCD 中,CD =6,BC =8,∴BD =10,∴BE =10,∴BG =BE ﹣BG =5,CE =BE ﹣BC =2,∴HM =1+3=4,HG =CD =3,在Rt △MHG'中,HG'=6+3=9,HM =4,∴MG'()2`2229497HG HM +=+=在Rt△CDE中,DE=2222+=+=,CD CE62210∴ME=10,在Rt△BME中,BM=2222-=-=310,BE NE10(10)∴四边形PBMQ周长最小值为BP+PQ+MQ+BM=QG+PQ+QM+BM=MG'+PQ+PM=97+5+310,【点睛】本题是一道四边形综合题,主要考查了矩形的性质、勾股定理、全等三角形的判定和性质、等腰三角形的性质,确定BP+QM的最小值是解答本题的关键.24.如图,,求证:.【答案】见解析.【解析】先证明CB=FE,再加上条件AB=DE,AC=DF,可利用SSS判定△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,∠ACB=∠F,再根据同位角相等,两直线平行可得结论.【详解】证明:∵,∴∴,∵在△ABC和△DEF中,∴, ∴, , ∴. 【点睛】 考查了全等三角形的判定与性质,关键是熟练掌握三角形的判定定理:SSS 、SAS 、ASA 、AAS .证明三角形全等必须有边相等的条件.25.如图,在△ABC 中,AC =6,BC =8,DE 是△ABD 的边AB 上的高,且DE =4,AD =25,BD =45.求证:△ABC 是直角三角形.【答案】详见解析【分析】先根据勾股定理求出AE 和BE ,求出AB ,根据勾股逆定理的逆定理可证△ABC 是直角三角形.【详解】证明:DE 是AB 边上的高,∴∠AED =∠BED =90°,在Rt △ADE 中,()2222254=2AE AD DE =-=- 在Rt △BDE 中,()2222=4548BE BD DE =--=∴AB =2+8=1.在△ABC 中,由AB =1,AC =6,BC =8,∵2221068=+∴222AB AC BC =+∴△ABC 是直角三角形.【点睛】本题考查了勾股定理和勾股定理的逆定理,正确理解定理的内容是关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:【详解】分析:∵AD=AD,A、当BD=DC,AB=AC时,利用SSS证明△ABD≌△ACD,正确;B、当∠ADB=∠ADC,BD=DC时,利用SAS证明△ABD≌△ACD,正确;C、当∠B=∠C,∠BAD=∠CAD时,利用AAS证明△ABD≌△ACD,正确;D、当∠B=∠C,BD=DC时,符合SSA的位置关系,不能证明△ABD≌△ACD,错误.故选D.【点睛】本题考查全等三角形的判定,熟练掌握判定定理是关键.2.若分式23xx+有意义,则x的取值范围是()A.x≠3B.x≠-3 C.x>3 D.x>-3 【答案】B【分析】直接利用分式有意义的条件分析得出答案.【详解】分式23xx+有意义,∴x的取值范围为:3x≠-.故选B.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键. 3.下列各组数值是二元一次方程x﹣3y=4的解的是()A.11xy=⎧⎨=-⎩B.21xy=⎧⎨=⎩C.12xy=-⎧⎨=-⎩D.41xy=⎧⎨=-⎩【答案】A【解析】试题分析:A 、将x=1,y=-1代入方程左边得:x-3y=1+3=4,右边为4,本选项正确; B 、将x=2,y=1代入方程左边得:x-3y=2-3=-1,右边为4,本选项错误;C 、将x=-1,y=-2代入方程左边得:x-3y=-1+6=5,右边为4,本选项错误;D 、将x=4,y=-1代入方程左边得:x-3y=4+3=7,右边为4,本选项错误.故选A考点:二元一次方程的解.4.如图,在△ABC 中,AD 是高,AE 是角平分线,AF 是中线,则下列说法中错误的是( )A .BF =CFB .∠C +∠CAD =90° C .∠BAF =∠CAF D .ABC ABF S 2S【答案】C 【分析】根据三角形的角平分线、中线和高的概念判断.【详解】解:∵AF 是△ABC 的中线,∴BF=CF ,A 说法正确,不符合题意;∵AD 是高,∴∠ADC=90°,∴∠C+∠CAD=90°,B 说法正确,不符合题意;∵AE 是角平分线,∴∠BAE=∠CAE ,C 说法错误,符合题意;∵BF=CF ,∴S △ABC =2S △ABF ,D 说法正确,不符合题意;故选:C .【点睛】本题考查的是三角形的角平分线、中线和高,掌握它们的概念是解题的关键.5.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)【答案】D【解析】因为∠DAM 和∠CBM 是直线AD 和BC 被直线AB 的同位角,因为∠DAM =∠CBM 根据同位角相等,两直线平行可得AD ∥BC ,所以D 选项错误,故选D.6.在函数y =中,自变量x 的取值范围是( ) A .3x >B .3x ≥C .4x >D .3x ≥且4x ≠ 【答案】D【分析】二次根号下的数为非负数,二次根式有意义;分式的分母不为0,分式有意义.【详解】解:由题意得3040x x -≥⎧⎨-≠⎩,解得34x x ≥⎧⎨≠⎩故选D .【点睛】本题考查二次根式、分式有意义的条件,本题属于基础应用题,只需学生熟练掌握二次根式、分式有意义的条件,即可完成.7.下列说法正确的是( )A .计算两个班同学数学成绩的平均分,可以用两个班的平均分除以2即可;B .10,9,10,12,11,12这组数据的众数是10;C .若1x ,2x ,3x ,…,n x 的平均数是a ,那么()()()120n x a x a x a -+-+⋅⋅⋅+-=D .若1x ,2x ,3x ,…,n x 的方差是2S ,那么1x a -,2x a -,3x a -,…n x a -方差是2S a -.【答案】C【分析】根据平均数,众数,方差的定义和意义,逐一判断选项,即可求解.【详解】∵两个班同学数学成绩的平均分=两个班总成绩÷两个班级总人数,∴A 错误,∵10,9,10,12,11,12这组数据的众数是10和12,∴B 错误,∵1x ,2x ,3x ,…,n x 的平均数是a ,那么()()()12n x a x a x a -+-+⋅⋅⋅+-=120n na x a na x x n ++-=-⋅⋅⋅=+,∴C 正确,∵若1x ,2x ,3x ,…,n x 的方差是2S ,那么1x a -,2x a -,3x a -,…n x a -方差是2S , ∴D 错误,故选C .【点睛】本题主要考查平均数,众数,方差的定义和意义,掌握众数的定义,平均数,方差的定义和公式,是解题的关键.8.如图,已知AB =AC ,AF =AE ,∠EAF=∠BAC,点C 、D 、E 、F 共线.则下列结论,其中正确的是( ) ①△AFB≌△AEC;②BF=CE ;③∠BFC=∠EAF;④AB=BC .A .①②③B .①②④C .①②D .①②③④【答案】A 【分析】根据题意结合图形证明△AFB ≌△AEC ;利用四点共圆及全等三角形的性质问题即可解决.【详解】如图,∵∠EAF=∠BAC ,∴∠BAF=∠CAE ;在△AFB 与△AEC 中,AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△AFB ≌△AEC (SAS ),∴BF=CE ;∠ABF=∠ACE ,∴A 、F 、B 、C 四点共圆,∴∠BFC=∠BAC=∠EAF ;故①、②、③正确,④错误.故选A..【点睛】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.9.如图,在Rt △ABC 中, ∠BCA =90°,∠A =30°,CD ⊥AB ,垂足为点D ,则AD 与BD 之比为( )A .2∶1B .3∶1C .4∶1D .5∶1【答案】B 【分析】根据含30度角的直角三角形的性质得到BD =12BC ,BC =12AB ,得到答案. 【详解】解:∵∠ACB =90°,CD ⊥AB ,∴∠BCD =∠A =30°, ∴BD =12BC , ∴BC =12AB , BD=12BC=14AB AD=AB-BD= AB-14AB =34AB , ∴AD :BD =3∶1,故选B.【点睛】本题考查的是直角三角形的性质,在直角三角形中,30°角所对的直角边等于斜边的一半.10.若22(3)16x m x +-+是完全平方式,则m 的值等于( )A .1或5B .5C .7D .7或1-【答案】D【分析】根据完全平方公式,首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【详解】解:∵多项式22(3)16x m x +-+是完全平方式,∴222(3)16(4)x m x =x +-+±,∴2(3)8m =-± 34m =-±解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.二、填空题11.如图,在ABC ∆中,已知AD BC ⊥于点D ,BD DC =,20BAD ∠=︒,则C ∠的度数为______.【答案】70︒【分析】根据线段垂直平分线的性质可得AB=AC ,根据等腰三角形的性质和三角形的内角和即可得到结论.【详解】解:∵AD ⊥BC 于点D ,BD=DC ,∴AB=AC ,∴∠CAD=∠BAD=20°,∵AD ⊥BC ,∴∠ADC=90°,∴∠C=70°,故答案为:70°.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌等腰三角形的性质是解题的关键.12.若实数x ,y 满足y 55x x --,则x+y =_____.【答案】1.【分析】根据被开方数大于等于0列式求出x 的值,再求出y 的值,然后相加即可得解.【详解】解:根据题意得,5﹣x ≥0且x ﹣5≥0,解得x ≤5且x ≥5,∴x =5,y =3,∴x+y =5+3=1.故答案为:1.【点睛】本题考查了二次根式有意义的条件,掌握二次根式的被开方数大于等零时有意义是解题的关键. 13.观察下列各式: 2(1)(1)1x x x -+=-; 23(1)(1)1x x x x -++=-;324(1)(1)1x x x x x -+++=-; 4325(1)(1)1x x x x x x -++++=-则2019201820172222...221++++++=_______________________.【答案】202021-【分析】由所给式子可知,(1x -)(122...1n n n x x x x x --++++++)=11n x +-,根据此规律解答即可.【详解】由题意知(21-)(2019201820172222...221++++++)=202021-,∴20192018201722020222...22121++++++=-.故答案为202021-.【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.医学研究发现一种新病毒的直径约为0.000043毫米,这个数0.000043用科学记数法表为 ______________.【答案】4.3× 10-5【解析】解:0.000043=54.310-⨯.故答案为54.310-⨯.15.小明用加减消元法解二元一次方程组236223x y x y +=⎧⎨-=⎩①②.由①-②得到的方程是________. 【答案】53y =【分析】直接利用两式相减进而得出消去x 后得到的方程. 【详解】236223x y x y +=⎧⎨-=⎩①②, ①-②得:53y =.故答案为:53y =.【点睛】此题主要考查了解二元一次方程组,正确掌握加减运算法则是解题关键.16.如图,AB BC ⊥,AD DC ⊥,70C ∠=,在BC CD 、上分别找一点M N 、,当AMN ∆的周长最小时,AMN ANM ∠+∠的度数是_______.【答案】140°【分析】作点A 关于CD 、BC 的对称点E 、F ,连接EF 交CD 、BC 于点N 、M ,连接AN 、MN 、AM ,此时AMN ∆的周长最小,先利用70C ∠=求出∠E+∠F=70︒,根据轴对称关系及三角形外角的性质即可求出∠AMN+∠ANM=2(∠E+∠F).【详解】如图,作点A 关于CD 、BC 的对称点E 、F ,连接EF 交CD 、BC 于点N 、M ,连接AN 、MN 、AM ,此时AMN ∆的周长最小,∵AB BC ⊥,AD DC ⊥,∴∠ABC=∠ADC=90︒,∵70C ∠=,∴∠BAD=110︒,∴∠E+∠F=70︒,∵∠AMN=∠F+∠FAM,∠F=∠FAM,∠ANM=∠E+∠EAN,∠E=∠EAN,∴∠AMN+∠ANM=2(∠E+∠F)=140︒,故答案为:140︒.【点睛】此题考查最短路径问题,轴对称的性质,三角形外角性质,四边形的内角和,正确理解将三角形的最短周长转化为最短路径问题来解决是解题的关键.17.如图,点P 、M 、N 分别在等边△ABC 的各边上,且MP ⊥AB 于点P ,MN ⊥BC 于点M ,PV ⊥AC 于点N ,若AB =12cm ,求CM 的长为______cm.【答案】4【分析】根据等边三角形的性质得出∠A =∠B =∠C ,进而得出∠MPB =∠NMC =∠PNA =90°,根据平角的义即可得出∠NPM =∠PMN =∠MNP ,即可证△PMN 是等边三角形:根据全等三角形的性质得到PA =BM =CN ,PB =MC =AN ,从而求得MC+NC =AC =12cm ,再根据直角三角形30°角所对的直角边等于斜边的一半得出2MC =NC ,即司得MC 的长.【详解】∵△ABC 是等边三角形,∴∠A =∠B =∠C.∵MP ⊥AB ,MN ⊥BC ,PN ⊥AC ,∴∠MPB =∠NMC =∠PNA =90°,∴∠PMB =∠MNC =∠APN ,∠NPM =∠PMN =∠MNP ,∴△PMN 是等边三角形∴PN=PM=MN ,∴△PBM ≌△MCN ≌△NAP(AAS),∴PA =BM =CN ,PB=MC=AN ,MC+NC =AC =12cm ,∵∠C =60°,∴∠MNC=30°,∴NC=2CM ,∴MC+NC=3CM=12cm,∴CM=4cm.故答案为:4cm【点睛】本题考查了等边三角形的判定和性质,平角的意义,三角形全等的性质等,得出∠NPM =∠PMN =∠MNP 是本题的关键.三、解答题18.如图,在ABC ∆中,AB AC =,36A ∠=,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)【答案】(1)详见解析;(2)a+b【分析】(1)首先由等腰三角形ABC 得出∠B ,然后由线段垂直平分线的性质得出∠CDB ,即可判定; (2)由等腰三角形BCD ,得出AB ,然后即可得出其周长.【详解】(1)∵AB AC =,36A ∠= ∴180722A B ACB -∠∠=∠==∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形;(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+.【点睛】此题主要考查线段垂直平分线的性质以及等腰三角形的判定与性质,熟练掌握,即可解题.19.已知ABC ∆的三边长a 、b 、c 满足条件()4422220a b b c a c-+-=,试判断ABC ∆的形状.【答案】直角三角形或等腰三角形,理由见解析【分析】利用平方差公式和提公因式法将等式左边的式子进行因式分解,得到两式的乘积等于零的形式,则两因式中至少有一个因式等于零转化为两个等式;根据等腰三角形的判定以及勾股定理的逆定理即可得出结论.【详解】解:ABC ∆是直角三角形或等腰三角形,理由如下:∵()4422220a b b c a c-+-=, ∴2222222)()(()0+-=+-a b c b a a b , 因式分解得22222)(0)(+=--a b a b c ,∴2220a b c +-=或220a b -=,当2220a b c +-=时,222+=a b c ,则ABC ∆是直角三角形,当220a b -=时,a b =,则ABC ∆是等腰三角形,∴ABC ∆是直角三角形或等腰三角形.【点睛】本题考查了因式分解的实际应用、勾股定理的逆定理和等腰三角形的判定,解题的关键是掌握平方差公式和提公因式法.20.张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑 6 千米再休息,李强的跑步速度是张明跑步速度的m 倍,两人在同起点,同时出发,结果李强先到目的地n 分钟.①当m =12,n =5时,求李强跑了多少分钟?②张明的跑步速度为 米/分(直接用含m ,n 的式子表示).【答案】(1)李强的速度为80米/分,张明的速度为1米/分.(2)()60001m mn +【分析】(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分,根据等量关系:张明和李强所用时间相同,列出方程求解即可;(2)①根据路程一定,时间与速度成反比,可求李强跑了多少分钟;②先根据路程一定,时间与速度成反比,可求李强跑了多少分钟,进一步得到张明跑了多少分钟,再根据速度=路程÷时间求解即可.【详解】(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分, 根据题意得:12004500220x x =+, 解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①∵m=12,n=5,∴5÷(12-1)=511(分钟). 故李强跑了511分钟; ②李强跑了的时间:1n m -分钟, 张明跑了的时间:11n mn n m m +=--分钟, 张明的跑步速度为:6000÷6000(1)1mn m m mn -=-米/分. 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.21.如图,在△ABC 中,AB=AC ,AB 的垂直平分线交AB 于N ,交AC 于M .(1)若∠B=65°,求∠NMA 的度数;(2)连接MB ,若AC =12 cm ,BC= 8 cm .①求△MBC 的周长;②在直线MN 上是否存在点P ,使PB+CP 的值最小,若存在,标出点P 的位置并求PB+CP 的最小值,若不存在,说明理由;③设D 为BC 的中点.求证:MD BN <.【答案】(1)40NMA ∠=︒;(2)①△MBC 的周长为20cm ;②点P 位置见解析,最小值为12cm ;理由见解析;③证明见解析.【分析】(1)先根据等腰三角形的性质和三角形的内角和定理求出∠A 的度数,再根据直角三角形的性质求解即可;(2)①根据线段垂直平分线的性质可得AM=BM ,再根据三角形的周长和线段间的等量关系解答即可; ②由于点B 、A 关于直线MN 对称,所以AC 与MN 的交点即为所求的点P ,于是PB+CP 的最小值即为AC 的长,据此解答即可;③方法一:如图1,取AC 中点G ,连接GD ,根据三角形的中位线定理可得GD ∥AB ,GD=BN ,进而可得∠A=∠DGC ,在△GDM 中,根据等腰三角形的性质和角的代换可得∠GMD >∠DGM ,进一步即可证得结论;方法二:如图2,延长MD 至H ,使DH=DM ,连接BH ,根据SAS 可证△MDC ≌△HDB ,可得BH=MC ,然后根据三角形的三边关系和线段间的等量关系可得AC >2DM ,进一步即可证得结论.。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知在△ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【答案】C【解析】解:∵AB=AC,∴∠ABC=∠ACB.∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠BAC=∠EBC.故选C.点睛:本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.∆的六个元素,其中a、b、c表示三角形三边的长,则下面甲、乙、丙、丁四个三2.如图,已知ABC∆不一定相似的图形是()角形中与ABCA.甲B.乙C.丙D.丁【答案】A【分析】根据相似三角形的判定方法对逐一进行判断.∆不一定相似,故选项正确;【详解】解:A.满足两组边成比例夹角不一定相等,与ABC∆相似的图形相似,故选项错误;B. 满足两组边成比例且夹角相等,与ABC∆相似的图形相似,故选项错误;C. 满足两组角分别相等,与ABC∆相似的图形相似,故选项错误.D. 满足两组角分别相等,与ABC故选A .【点睛】本题考查了相似三角形的判定方法,关键是灵活运用这些判定解决问题.3.如图,对一个正方形进行了分割,通过面积恒等,能够验证下列哪个等式( )A .()()22x y x y x y -=-+B .()2222x y x xy y -=-+C .()2222x y x xy y +=++D .()()224x y xy x y -+=+ 【答案】C 【分析】观察图形的面积,从整体看怎么表示,再从分部分来看怎么表示,两者相等,即可得答案.【详解】解:由图可知:正方形面积=两个正方形面积+两个长方形的面积222()2x y x xy y ∴+=++故选:C .【点睛】本题考查了乘法公式的几何背景,明确几何图形面积的表达方式,熟练掌握相关乘法公式,是解题的关键. 4.如图,将木条a ,b 与c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是( )A .10°B .20°C .50°D .70°【答案】B 【分析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数.【详解】解:∵要使木条a 与b 平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a 至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.5.如图,小明从A地出发,沿直线前进15米后向左转18°,再沿直线前进15米,又向左转18°⋯⋯,照这样走下去,他第一次回到出发地A地时,一共走的路程是()A.200米B.250米C.300米D.350米【答案】C【分析】由题意可知小明所走的路线为一个正多边形,根据多边形的外角和进行分析即可求出答案.【详解】解:正多边形的边数为:360°÷18°=20,∴路程为:15×20=300(米).故选:C.【点睛】本题主要考查多边形的外角和定理,熟练掌握任何一个多边形的外角和都是360°是解题的关键.6.如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处、B两内角平分线的交点处C.在AD.在AC、BC两边垂直平分线的交点处【答案】C【解析】试题解析:根据角平分线的性质,集贸市场应建在∠A、∠B两内角平分线的交点处.故选C.考点:角平分线的性质.7.下列各式由左边到右边的变形中,是分解因式的为()A .a (x+y )=ax+ayB .x 2﹣4x+4=x (x ﹣4)+4C .x 2﹣16+3x =(x+4)(x ﹣4)+3xD .10x 2﹣5x =5x (2x ﹣1)【答案】D 【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【详解】A 、是多项式乘法,故A 选项错误;B 、右边不是积的形式,x 2-4x+4=(x-2)2,故B 选项错误;C 、右边不是积的形式,故C 选项错误;D 、符合因式分解的定义,故D 选项正确;故选D .【点睛】本题考查了因式分解的定义,解题的关键是正确理解因式分解的概念,属于基础题型.8.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .4【答案】C 【解析】根据轴对称图形的概念求解.【详解】第1,2,3个图形为轴对称图形,共3个.故选:C .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 9.关于点()1,3P -和点()1,5Q -,下列说法正确的是( )A .关于直线4x =对称B .关于直线2x =对称C .关于直线4y =对称D .关于直线2y =对称 【答案】C【分析】根据点坐标的特征,即可作出判断.【详解】解:∵点()1,3P -,点()1,5Q -,∴点P 、Q 的横坐标相同,故A 、B 选项错误;点P 、Q 的中点的纵坐标为:3542+=, ∴点()1,3P -和点()1,5Q -关于直线4y =对称;故选:C.【点睛】本题考查了轴对称的性质,解题的关键是熟练掌握关于直线对称的点坐标的特征.10.如图,已知直角三角板中90C ∠=︒,30ABC ∠=︒,顶点A ,B 分别在直线m ,n 上,边BC 交线m 于点D .若//m n ,且25CAD ∠=︒,则α∠的度数为( )A .105︒B .115︒C .125︒D .135︒【答案】B 【分析】根据直角三角形的特点、平行线的性质及平角的性质即可求解.【详解】∵直角三角板中90C ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒∵25CAD ∠=︒∴602535BAD ∠=︒-︒=︒∵//m n∴35ABF BAD ∠=∠=︒故α∠=1803511530︒-︒-︒=︒故选B .【点睛】此题主要考查三角形的角度求解,解题的关键是熟知平行线的性质.二、填空题11.在平面直角坐标系中,点P (2,3)关于y 轴对称的点的坐标是_____.【答案】(﹣2,3)【分析】根据点关于坐标轴对称:关于y 轴对称纵坐标不变,横坐标变为原来相反数可得出答案.【详解】解:点(23)P ,关于y 轴对称的点的坐标是(23)-,, 故答案为:(23)-,. 【点睛】本题考查点关于坐标轴对称的问题,解题关键在于关于y轴对称纵坐标不变,横坐标变为原来相反数可得出答案.12.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是.【答案】1【解析】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1.13.若正多边形的每一个内角为135,则这个正多边形的边数是__________.【答案】八(或8)【解析】分析:根据正多边形的每一个内角为135,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为135,正多边形的每一个外角为:18013545,︒-︒=︒多边形的边数为:3608. 45︒=︒故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.14.如图所示,在△ABC中,AD是∠BAC的平分线,G是AD上一点,且AG=DG,连接BG并延长BG交AC于E,又过C作AD的垂线交AD于H,交AB为F,则下列说法:①D是BC的中点;②BE⊥AC;③∠CDA>∠2;④△AFC为等腰三角形;⑤连接DF,若CF=6,AD=8,则四边形ACDF的面积为1.其中正确的是________(填序号).【答案】③④⑤【分析】①中依据已知条件无法判断BD=DC,可判断结论错误;②若BE⊥AC,则∠BAE+∠ABE=90°,结合已知条件可判断;③根据三角形外角的性质可判断;④证明△AHF≌△AHC,即可判断;⑤四边形ACDF 的面积等于△AFC 的面积与△DFC 的面积之和,据此可判断.【详解】解:①根据已知条件无法判断BD=DC ,所以无法判断D 是BC 的中点,故错误;②只有∠BAE 和∠BAC 互余时才成立,故错误;③正确.∵∠ADC=∠1+∠ABD ,∠1=∠2,∴∠ADC >∠2,故②正确;④正确.∵∠1=∠2,AH=AH ,∠AHF=∠AHC=90°,∴△AHF ≌△AHC (ASA ),∴AF=AC ,△AFC 为等腰三角形,故④正确;⑤正确.∵AD ⊥CF , 11682422ACDF S AD CF ∴=⨯⨯=⨯⨯=四边形. 故答案为:③④⑤.【点睛】本题考查三角形的中线、角平分线、高线,全等三角形的性质和判定,对角线垂直的四边形的面积,三角形外角的性质.能依据定理分析符合题述结论的依据是解决此题的关键.15.如图,正方形ABCD 中,8 AB =,E 是BC 的中点.将ABE ∆沿AE 对折至AFE ∆,延长EF 交DC 于点H ,则DH 的长是_______.【答案】83【分析】连接AH ,根据正方形及折叠的性质得到Rt △ADH ≌Rt △AFH ,再设DH =x ,在△CEH 中运用勾股定理解答即可.【详解】解:连接AH ,∵在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ABE 沿AE 对折至△AFE ,∴AB =AF ,BE =EF ,∠B =∠AFE =90°,∴AD =AF ,∠D =∠AFH =90°,又∵AH =AH ,在Rt △ADH 和Rt △AFH 中,AH AH AD AF⎧⎨⎩==, ∴Rt △ADH ≌Rt △AFH (HL )∴DH=FH ,∵E 是边BC 的中点,∴BE=CE=4,设DH =x ,则CH =8−x ,EH =x +4,∴在Rt △CEH 中,222CE CH EH +=即2224(8)(4)x x +-=+ 解得:83x =, 故答案为:83.【点睛】此题主要考查了全等三角形的判定和性质,勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.16.如图,在Rt ABC ∆中,90ABC ∠=︒,6AB =,8BC =,BAC ∠,ACB ∠的平分线相交于点E ,过点E 作//EF BC 交AC 于点F ,则______EF =;【答案】103【解析】过E 作EG ∥AB ,交AC 于G ,易得AG=EG ,EF=CF ,依据△ABC ∽△GEF ,即可得到EG :EF :GF=3:4:5,故设EG=3k=AG ,则EF=4k=CF ,FG=5k ,根据AC=10,可得3k+5k+4k=10,即k=56,进而得出EF=4k=103. 【详解】过E 作EG ∥AB ,交AC 于G ,则∠BAE=∠AEG ,∵AE 平分∠BAC ,∴∠BAE=∠CAE ,∴∠CAE=∠AEG ,∴AG=EG ,同理可得,EF=CF ,∵AB ∥GE ,BC ∥EF ,∴∠BAC=∠EGF ,∠BCA=∠EFG ,∴△ABC ∽△GEF ,∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG :EF :GF=AB :BC :AC=3:4:5,设EG=3k=AG ,则EF=4k=CF ,FG=5k ,∵AC=10,∴3k+5k+4k=10,∴k=56, ∴EF=4k=103.故答案是:103. 【点睛】 考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.17.如图,在一个规格为612⨯(即612⨯个小正方形)的球台上,有两个小球,A B . 若击打小球A ,经过球台边的反弹后,恰好击中小球B ,那么小球A 击出时,应瞄准球台边上的点______________.【答案】P 1【分析】认真读题,作出点A 关于P 1P 1所在直线的对称点A ′,连接A ′B 与P 1P 1的交点即为应瞄准的点.【详解】如图,应瞄准球台边上的点P 1.故答案为:P 1.【点睛】本题考查了生活中的轴对称现象问题;解决本题的关键是理解击球问题属于求最短路线问题.三、解答题18.解方程:211x x x +--=1. 【答案】x=12【解析】分析:根据分式方程的解法,先化为整式方程,然后解整式方程,再检验即可求解. 详解:去分母得x ﹣2=1(x ﹣1),解得x=12, 检验:当x=12时,x ﹣1≠0,则x=12是原方程的解, 所以原方程的解为x=12. 点睛:此题主要考查了分式方程的解法,关键是把方程化为整式方程求解,注意最后应定要进行检验是否为分式方程的解.19.如图,AB 、ED 分别垂直于BD ,点B 、D 是垂足,且AB CD =,AC CE =,求证:ACE ∆是直角三角形.【答案】见解析【分析】利用HL 证出Rt △ABC ≌Rt △CDE ,从而得出∠ACB=∠CED ,然后根据直角三角形的性质和等量代换可得∠ACB +∠ECD=90°,从而求出∠ACE ,最后根据直角三角形的定义即可证明.【详解】证明:∵AB 、ED 分别垂直于BD∴∠ABC=∠CDE=90°在Rt △ABC 和Rt △CDE 中AB CD AC CE =⎧⎨=⎩∴Rt △ABC ≌Rt △CDE∴∠ACB=∠CED∵∠CED +∠ECD=90°∴∠ACB +∠ECD=90°∴∠ACE=180°-(∠ACB +∠ECD )=90°∴△ACE 为直角三角形【点睛】此题考查的是全等三角形的判定及性质和直角三角形的判定,掌握利用HL 判定两个三角形全等、全等三角形的对应角相等和直角三角形的定义是解决此题的关键.20.如图,有一个池塘,要到池塘两侧AB 的距离,可先在平地上取一个点C ,从C 不经过池塘可以到达点A 和B ,连接AC 并延长到点D ,使CD=CA ,连接BC 并延长到点E ,使CE=CB ,连接DE ,那么量出DE 的长就是A ,B 的距离,为什么?【答案】量出DE 的长就等于AB 的长,理由详见解析.【分析】利用“边角边”证明△ABC 和△DEC 全等,再根据全等三角形对应边相等解答.【详解】量出DE 的长就等于AB 的长,理由如下:在△ABC 和△DEC 中,CB CE ACB DCE CA CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEC (SAS ),∴AB=DE .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.21.命题证明.求证:等腰三角形两底角的角平分线相等.已知:________________求证:___________________证明:____________________.【答案】见解析【分析】根据等腰三角形的性质,角平分线的定义,求出,ABC ACB ECB DBC ∠=∠∠=∠,利用全等三角形的判定,证明BCE CBD ∆≅∆,由全等三角形的性质即可证明.【详解】已知:在ABC ∆中,AB AC =,BD 、CE 分别是ABC ∠和ACB ∠的角平分线, 求证:BD CE =.证明:AB AC =,ABC ACB ∴∠=∠,BD 、CE 分别是ABC ∠和ACB ∠的角平分线,11,22CBD ABC BCE ACB ∴∠=∠∠=∠, CBD BCE ∴∠=∠,在BCD ∆和BCE ∆中BCD CBE BC CBCBD BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩()BCE CBD ASA ∴∆≅∆,BD CE ∴=,即等腰三角形两底角的角平分线相等.【点睛】考查了等腰三角形的性质,角平分线的性质,全等三角形的判定与性质,熟记性质和判定定理是解题的关键.22.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (3,3),B (﹣3,﹣3),C (1,﹣3).(1)画出△ABC及关于y轴对称的△A1B1C1;(2)写出点A的对应点A1的坐标是,点B的对应点B1的坐标是,点C的对应点C1的坐标是;(3)请直接写出第四象限内以AB为边且与△ABC全等的三角形的第三个顶点(不与C重合)的坐标___________.【答案】(1)见解析;(2)(-3,3),(3,-3),(-1,-3);(3)(3,-1)【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标即可;(3)根据以AB为公共边且与△ABC全等的三角形的第三个顶点的位置,写出其坐标即可.【详解】(1)如图所示,△A1B1C1即为所求;(2)A1(-3,3),B1(3,-3),C1(-1,-3),故答案为:(-3,3),(3,-3),(-1,-3);(3)如图,△ABC≅△BAC',且点C'在第四象限内,∴C (3,-1);故答案为:(3,-1).【点睛】本题主要考查了运用轴对称变换进行作图、坐标确定位置的运用以及全等三角形的性质,熟练掌握网格结构并准确找出对应点的位置是解题的关键.23.如图1,已知线段AB、CD相交于点O,连接AC、BD,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C=∠B+D;(2)如图2,若∠CAB和∠BDC的平分线AP和DP相交于点P,且与CD、AB分别相交于点M、N.①以线段AC为边的“8字型”有个,以点O为交点的“8字型”有个;②若∠B=100°,∠C=120°,求∠P的度数;③若角平分线中角的关系改为“∠CAP=13∠CAB,∠CDP=13∠CDB”,试探究∠P与∠B、∠C之间存在的数量关系,并证明理由.【答案】(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【解析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP =∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析. 【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.24.解答下列各题:(12810.(2)解方程:22322xx x-=+++.【答案】(1)425-;(2)3x =-【分析】(1)利用二次根式的乘法法则运算;(2)先去分母得到23(2)2x x =++-,然后解整式方程后进行检验确定原方程的解.【详解】解:(1)原式28210=⨯-⨯425=-.(2)23(2)2x x =++-,解得3x =-,经检验,原方程的解为3x =-.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解分式方程.25.如图,已知ABC ∆的顶点都在图中方格的格点上.(1)画出ABC ∆关于x 轴对称的'''A B C ∆,并直接写出'A 、'B 、'C 三点的坐标.(2)求出'''A B C ∆的面积.【答案】(1)作图见解析,()'2, 4A --, ()'4, 1B --,() ' 1,2C ;(2)10.5【分析】(1)根据关于x 轴对称点的性质得出对应点位置,进而得出答案;(2)求'''A B C ∆的面积即可.【详解】:(1)如图所示,△A ′B ′C ′即为所求,A ′(-2,-4)、B ′(-4,-1)、C ′(1,2);(2)'''A B C ∆的面积为:11156363532=10.5222⨯⨯⨯⨯⨯⨯⨯﹣﹣﹣. 【点睛】此题主要考查了轴对称变换,根据题意得出对应点坐标是解题关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等;C.等腰三角形的底角可以是直角;D.直角三角形的两锐角互余.【答案】C【分析】根据平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质分别判断即可. 【详解】解:A. 两直线平行,同旁内角互补,正确;B. 等边三角形的三个内角都相等,正确;C. 由于等腰三角形的两个底角相等,且三角形内角和是180°,故等腰三角形的底角不可以是直角,错误;D. 直角三角形的两锐角互余,正确,故选:C.【点睛】本题考查了平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质,熟练掌握各性质是解题关键.2.直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣3,0),且两直线与y轴围成的三角形面积为12那么b2﹣b1的值为()A.3 B.8 C.﹣6 D.﹣8【答案】D【分析】直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),根据三角形面积公式即可得出结果.【详解】解:如图,直线y=k1x+b1与y轴交于B点,则B(0,b1),直线y=k2x+b2与y轴交于C点,则C(0,b2),∵△ABC的面积为12,∴12OA·(OB+OC)=12,即12×3×(b1﹣b2)=12,∴b1﹣b2=8,∴b2﹣b1=﹣8,故选:D.【点睛】本题考查了一次函数的应用,正确理解题意,能够画出简图是解题的关键.3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【答案】B【解析】分析:根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.详解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.点睛:本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4.如图,一只蚂蚁从О点出发,沿着扇形OAB的边缘匀速爬行一周,当蚂蚁运动的时间为t时,蚂蚁与О点的距离为,s则s关于t的函数图像大致是()A.B.C.D.【答案】B【分析】根据蚂蚁在半径OA、AB和半径OB上运动时,判断随着时间的变化s的变化情况,即可得出结论.【详解】解:一只蚂蚁从O点出发,沿着扇形OAB的边缘匀速爬行,在开始时经过半径OA这一段,蚂蚁到O点的距离随运动时间t的增大而增大;到AB这一段,蚂蚁到O点的距离S不变,图象是与x轴平行的线段;走另一条半径OB时,S随t的增大而减小;故选:B.【点睛】本题主要考查动点问题的函数图象,根据随着时间的变化,到AB这一段,蚂蚁到O点的距离S不变,得到图象的特点是解决本题的关键.5.若321___11xx x-=+--,则中的数是()A.﹣1 B.﹣2 C.﹣3 D.任意实数【答案】B【解析】∵321___11xx x-=+--,∴空格中的数应为:3213212(1)2 1111x x xx x x x------===-----.故选B.6.下列代数式中,分式有______个3 x ,3x,1aa-,35y-+,2xx y-,2m n-,32x+,x yπ+,A.5 B.4 C.3 D.2【答案】B【分析】根据判断分式的依据:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,对各选项判断即可.【详解】解:解:根据分式的定义,可知分式有: 3x , 1a a -,35y -+,2x x y -, 共4个, 故选:B .【点睛】本题考查分式的定义,能熟记分式的定义的内容是解题的关键,注意:分式的分母中含有字母. 7.如图,在△ABC 中,CD 平分∠ACB 交AB 于点D ,DE AC ⊥于点E ,DF BC ⊥于点F ,且BC=4,DE=2,则△BCD 的面积是( )A .4B .2C .8D .6【答案】A 【分析】根据角平分线的性质定理可得DF=DE ;最后根据三角形的面积公式求解即可.【详解】:∵CD 平分∠ACB ,DE ⊥AC ,DF ⊥BC ,∴DF=DE=2,∴1•124242BCD S BC DF =⨯=⨯⨯=; 故答案为:A .【点睛】此题主要考查了角平分线的性质和应用,解答此题的关键是要明确:角的平分线上的点到角的两边的距离相等.8.长度分别为3,7,a 的三条线段能组成一个三角形,则a 的值可以是( )A .3B .4C .6D .10【答案】C【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【详解】解:7−3<x <7+3,即4<x <10,只有选项C 符合题意,故选:C .【点睛】此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.9.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A.60°B.55°C.50°D.45°【答案】C【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.10.两个三角形如果具有下列条件:①三条边对应相等;②三个角对应相等;③两条边及它们的夹角对应相等;④两条边和其中一边的对角相等;⑤两个角和一条边对应相等,那么一定能够得到两个三角形全等的是()A.①②③④B.①③④⑤C.①③⑤D.①②③④⑤【答案】C【解析】根据三角形全等的判定定理SSS、SAS、ASA、AAS分别进行分析即可.【详解】①三条边对应相等,可利用SSS定理判定两个三角形全等;②三个角对应相等,不能判定两个三角形全等;③两条边及它们的夹角对应相等,可以利用SAS定理判定两个三角形全等;④两条边和其中一边的对角相等,不能判定两个三角形全等;⑤两个角和一条边对应相等利用AAS定理判定两个三角形全等.故选:C.【点睛】本题考查的是全等三角形的判定,熟练掌握判定定理是解题的关键.二、填空题11.某中学为了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成如图所示的条形图,由此可估计该校2000名学生有______名学生是骑车上学的.【答案】1【分析】根据条形统计图求出骑车上学的学生所占的百分比,再乘以总人数即可解答.【详解】解:根据题意得:2000×62256213++=1(名),答:该校2000名学生有1名学生是骑车上学的.故答案为:1.【点睛】本题考查了用样本估计总体和条形统计图,解题的关键是根据条形统计图求出骑车上学的学生所占的比例.12.在某次数学测验后,王老师统计了全班50名同学的成绩,其中70分以下的占12%,70~80分的占24%,80~90分的占36%,则90分及90分以上的有__________人.【答案】1【分析】先求出90分及90分以上的频率,然后根据“频数=频率×数据总和”求解.【详解】90分及90分以上的频率为:1-12%-24%-36%=28%,∵全班共有50人,∴90分及90分以上的人数为:50×28%=1(人).故答案为:1.【点睛】本题考查了频数和频率的知识,解答本题的关键是掌握频数=频率×数据总和.13.2019年元旦到来之际,某校为丰富学生的课余生活,举行“庆元旦”校园趣味运动会,从商场购买了一定数量的乒乓球拍和羽毛球拍作为奖品.若每副羽毛球拍的价格比乒乓球拍的价格贵6元,且用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同.设每副乒乓球拍的价格为x元,可列方程为______.【答案】4005506x x =+; 【分析】根据“用400元购买乒乓球拍的数量与用550元购买羽毛球拍的数量相同”,列分式方程即可. 【详解】解:根据题意可得4005506x x =+ 故答案为:4005506x x =+. 【点睛】此题考查的是分式方程的应用,掌握实际问题中的等量关系是解决此题的关键.14.直线21y x =-沿x 轴向右平移3个单位长度后与两坐标轴所围成的三角形面积等于______________.【答案】12.25【分析】根据“平移k 不变,b 值加减”可以求得新直线方程;根据新直线方程可以求得它与坐标轴的交点坐标,所以由三角形的面积公式可以求得该直线与两坐标轴围成的三角形的面积.【详解】解:平移后解析式为:2(3)127,y x x =--=-当x=0时,7y =-, 当y=0时,72x =, ∴平移后得到的直线与两坐标轴围成的三角形的面积为:17712.25.22⨯⨯= 故答案是:12.25.【点睛】本题考查了一次函数图象与几何变换.直线平移变换的规律:上下移动,上加下减;左右移动,左加右减,掌握其中变与不变的规律是解决直线平移变换的关键.15.某童装店销售一种童鞋,每双售价80元.后来,童鞋的进价降低了4%,但售价未变,从而使童装店销售这种童鞋的利润提高了5%.这种童鞋原来每双进价是多少元?(利润=售价-进价,利润率=100⨯利润进价)若设这种童鞋原来每双进价是x 元,根据题意,可列方程为_________________________________________. 【答案】()()8014%80100%5%100%14%x x x x---⨯+=⨯- 【分析】由等量关系为利润=售价-进价,利润率=100⨯利润进价%,由题意可知童鞋原先的利润率+5%=进价降价后的利润率.【详解】解:根据题意,得 ()()8014%80100%5%100%14%x x x x---⨯+=⨯-;故答案为:()()8014%80100%5%100%14%x x x x ---⨯+=⨯-. 【点睛】 列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据. 16.如图,AB BC ⊥,AD DC ⊥,垂足分别为B ,D ,添加一个条件____,可得ABC ADC ∆≅∆.【答案】AB=AD 或BC=DC【分析】由题意利用全等直角三角形的判定定理,即一斜边和一直角边相等,两个直角三角形全等进行分析即可.【详解】解:∵AB BC ⊥,AD DC ⊥,AC=AC ,∴当AB=AD 或BC=DC 时,有ABC ADC ∆≅∆(HL ).故答案为:AB=AD 或BC=DC.【点睛】本题考查全等三角形的判定,熟练掌握全等直角三角形的判定定理是解题的关键.17.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC ,分别交AB 、AC 于点E 、F .若5AB =,4AC =,那么AEF ∆的周长为_______.【答案】9【分析】根据角平分线的性质,可得∠EBO 与∠OBC 的关系,∠FCO 与∠OCB 的关系,根据平行线的性质,可得∠DOB 与∠BOC 的关系,∠FOC 与∠OCB 的关系,根据等腰三角形的判定,可得OE 与BE 的关系,OE 与CE 的关系,根据三角形的周长公式,可得答案.【详解】∵∠ABC 与∠ACB 的平分线相交于点O ,∴∠EBO=∠OBC ,∠FCO=∠OCB .∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB ,。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,点A 坐标为(0,1)-,动点B 的坐标为(,1)m m -,则AB OB +的最小值是( ) A .5 B .2102+ C .3 D .12+ 【答案】A【分析】根据题意知()()2222=21++-++-AB OB m m m m ,则AB+OB 的最小值可以看作点(m ,m )与(2,0)、(0,1)两点距离和的最小值,求出(2,0)、(0,1)两点距离即可.【详解】解:由题知点A 坐标为(0,1)-,动点B 的坐标为(,1)m m -,∴()()2222=21++-++-AB OB m m m m , ∴AB+OB 的最小值可以看作点(m ,m )与(2,0)、(0,1)两点距离和的最小值,则最小值为(2,0)、(0,1)两点距离,∴AB OB +的最小值是222+1=5,故选A.【点睛】本题是对坐标系中最短距离的考查,熟练掌握勾股定理是解决本题的关键.2.如图,ABC ∆中,AB ,AC 的垂直平分线分别交BC 于D ,E ,若105BAC ∠=︒,则DAE ∠的度数为( )A .20︒B .25︒C .30D .35︒【答案】C 【分析】根据三角形内角和定理求出∠B +∠C =75°,根据线段垂直平分线的性质得到DA =DB ,EA =EC ,根据等腰三角形的性质得到∠DAB =∠B ,∠EAC =∠C ,结合图形计算即可.【详解】解:∵∠BAC =105°,∴∠B +∠C =75°,∵边AB 和AC 的垂直平分线分别交BC 于D 、E ,∴DA =DB ,EA =EC ,∴∠DAB =∠B ,∠EAC =∠C ,∴∠DAE =∠BAC−(∠BAD +∠EAC )=∠BAC−(∠B +∠C )=105°−75°=30°,故选:C .【点睛】本题考查的是线段垂直平分线的性质,等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.在实数中π,237- ,9 ,38 是无理数的是( ) A .πB .237-C .9D .38【答案】A 【解析】无限不循环小数是无理数,根据定义判断即可.【详解】π是无理数;237-是有理数,不是无理数 ; 9 =3是有理数,不是无理数;38=2是有理数,不是无理数,故选:A.【点睛】此题考查无理数定义,熟记定义并掌握无理数与有理数的区别即可正确解答.4.若多项式1x -与多项式2x a -+的积中不含x 的一次项,则( )A .1a =B .1a =-C .2a =D .2a =-【答案】D【分析】根据题意可列式()()21x a x -+-,然后展开之后只要使含x 的一次项系数为0即可求解.【详解】解:由题意得: ()()()2221=2222x a x x x ax a x a x a -+--++-=-++-;因为多项式1x -与多项式2x a -+的积中不含x 的一次项,所以2=0a +,解得=2-a ;故选D .【点睛】本题主要考查多项式,熟练掌握多项式的概念是解题的关键.5.下列交通标志图案中,是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据中心对称图形的概念,分别判断即可.【详解】解:A、B、D不是中心对称图形,C是中心对称图形.故选C.点睛:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.图1中,每个小正方形的边长为1,ABC的三边a,b,c的大小关系是()A.a<c<b B.a<b<c C.c<a<b D.c<b<a【答案】C【解析】通过小正方形网格,可以看出AB=4,AC、BC分别与三角形外构成直角三角形,再利用勾股定理可分别求出AC、BC,然后比较三边的大小即可.解答:解:∵224117+=,16+252243∴b>a>c,即c<a<b.故选C.7.下列命题是真命题的是()A.如果两角是同位角,那么这两角一定相等B.同角或等角的余角相等C.三角形的一个外角大于任何一个内角D.如果a2=b2,那么a=b【答案】B【分析】根据平行线的性质、余角的概念、三角形的外角性质、有理数的乘方法则判断.【详解】解:A、两直线平行,同位角相等,∴如果两角是同位角,那么这两角一定相等是假命题;B、同角或等角的余角相等,是真命题;C、三角形的一个外角大于任何一个与它不相邻的内角,∴三角形的一个外角大于任何一个内角,是假命题;D、(﹣1)2=12,﹣1≠1,∴如果a2=b2,那么a=b,是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.下列计算正确的是( )A .2(9)-=-9B .25=±5C .33(1)-=-1D .(-2)2=4 【答案】C【分析】分别根据算术平方根的定义和立方根的定义逐项判断即得答案.【详解】解:A 、2(9)-=9,故本选项计算错误,不符合题意;B 、25=5,故本选项计算错误,不符合题意;C 、33(1)-=-1,故本选项计算正确,符合题意;D 、(-2)2=2,故本选项计算错误,不符合题意.故选:C .【点睛】本题考查了算术平方根和立方根的定义,属于基本题目,熟练掌握基本知识是解题的关键.9.平面直角坐标系中,点P 的坐标是(2,-1),则直线OP 经过下列哪个点( )A .()1,2-B .()2,1-C .()1,2-D .14,2⎛⎫- ⎪⎝⎭【答案】B【解析】先求出直线OP 的表达式,再把四个选项带人公式即可.【详解】∵点P 的坐标是(2,-1),∴设直线OP 的表达式为:y=kx , 把(2,-1)代入,解得k=-12,y=-12x . 把(-1,2),(-2,1),(1,-2),(4,-12)代入y=﹣12x ,(-2,1)满足条件. 故选:B .【点睛】本题考查的是平面直角坐标系,熟练掌握一次函数是解题的关键.10.如图所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,则S 阴影等于…( )A .2cm 2B .1cm 2C .12cm 2D .14cm 2【答案】B【分析】根据三角形的中线将三角形面积平分这一结论解答即可.【详解】∵在△ABC 中,点D 是BC 的中点, ∴12ABD ACD ABC S S S ∆∆∆== =2cm 2, ∵在△ABD 和△ACD 中,点E 是AD 的中点,∴12BED ABD S S ∆∆==1 cm 2,12CED ACD S S ∆∆==1 cm 2, ∴BEC S ∆=2 cm 2,∵在△BEC 中,点F 是CE 的中点,∴12BEF BEC S S ∆∆==1 cm 2,即S 阴影=1 cm 2 故选:B .【点睛】本题考查三角形的中线与三角形面积的关系,熟知三角形的中线将三角形面积平分这一结论是解答的关键.二、填空题11.A 、B 、C 三地在同一直线上,甲、乙两车分别从A ,B 两地相向匀速行驶,甲车先出发2小时,甲车到达B 地后立即调头,并将速度提高10%后与乙车同向行驶,乙车到达A 地后,继续保持原速向远离B的方向行驶,经过一段时间后两车同时到达C 地,设两车之间的距离为y (千米),甲行驶的时间x (小时).y 与x 的关系如图所示,则B 、C 两地相距_____千米.【答案】1.【分析】根据题意和函数图象中的数据,可以求得甲乙两车的速度,再根据“路程=速度×时间”,即可解答本题.【详解】解:设甲车的速度为a 千米/小时,乙车的速度为b 千米/小时,(62)()560(62)(96)a b b a -⨯+=⎧⎨-=-⎩,解得8060a b =⎧⎨=⎩, ∴A 、B 两地的距离为:80×9=720千米,设乙车从B 地到C 地用的时间为x 小时,60x =80(1+10%)(x+2﹣9),解得,x =22,则B 、C 两地相距:60×22=1(千米)故答案为:1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12.当x ________时,二次根式62x -有意义.【答案】≤3【解析】根据二次根式有意义的条件:被开方数为非负数即可得答案.【详解】∵二次根式62x -有意义,∴6-2x≥0,解得:x≤3.故答案为:≤3【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数大于等于0;熟记二次根式有意义的条件是解题关键.13.如图,在△PAB 中,PA=PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,AK=BN ,若∠MKN=44°,则∠P 的度数为________.【答案】92°.【分析】根据等腰三角形的性质得到∠A=∠B ,证明△AMK ≌△BKN ,得到∠AMK=∠BKN ,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB ,∴∠A=∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩∴△AMK ≌△BKN ,∴∠AMK=∠BKN ,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK ,∴∠A=∠MKN=44°,∴∠P=180°-∠A-∠B=92°,故答案为92°.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.14.某超市第一次用3000元购进某种干果销售,第二次又调拨9000元购进该种干果,但第二次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市先按每千克9元的价格出售,当大部分干果出售后,最后的600千克按原售价的7折售完,超市两次销售这种干果共盈利________元.【答案】2【分析】设第一次购进干果的单价为x 元/千克,则第二次购进干果的单价为1.2x 元/千克,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,即可得出关于x 的分式方程,解之即可得出x 的值,进而即可求出第一、二次购进干果的数量,再利用利润=销售收入﹣成本即可得出结论.【详解】设第一次购进干果的单价为x 元/千克,则第二次购进干果的单价为1.2x 元/千克,根据题意得: 23000x ⨯+30090001.2x=, 解得:x=5,经检验,x=5是原方程的解.当x=5时,300030005x ==600,900090001.2 1.25x ==⨯1. 1×9+600×9×0.7﹣3000﹣9000=2(元).故超市两次销售这种干果共盈利2元.故答案为:2.【点睛】本题考查了分式方程的应用,根据数量=总价÷单价,结合第二次购进干果数量是第一次的2倍还多300千克,列出关于x 的分式方程是解答本题的关键.15.关于x 的分式方程223242mx x x x +=--+无解,则m 的值为_______. 【答案】1或6或4-【分析】方程两边都乘以()()22x x +-,把方程化为整式方程,再分两种情况讨论即可得到结论. 【详解】解:223242mx x x x +=--+ ()()232222mx x x x x ∴+=-+-+()()2232x mx x ∴++=-()110,m x ∴-=-当1m =时,显然方程无解,又原方程的增根为:2,x =±当2x =时,15,m -=-4,m ∴=-当2x =-时,15,m -=6,m ∴=综上当1m =或4m =-或6m =时,原方程无解.故答案为:1或6或4-.【点睛】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键.16.函数2y x =-中,自变量x 的取值范围是__________. 【答案】x≥0且x≠1【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.已知2249x mxy y -+是完全平方式,则m 的值为_________.【答案】12±【分析】根据完全平方公式:()2222a b a ab b ±=±+,即可求出m 的值【详解】解:∵2249x mxy y -+是完全平方式,∴()()()()()22222224923232123x mxy y x mxy y x y x xy y -+-=+±±+==∴12m =±故答案为:12±此题考查的是根据完全平方式,求一次项中的参数,掌握两个完全平方公式的特征是解决此题的关键.三、解答题18.计算:(1)﹣12019(2)(﹣3x 2y )2•2x 3÷(﹣3x 3y 4)(3)x 2(x+2)﹣(2x ﹣2)(x+3)(4)(12323⨯)2019×(﹣2×311)2018 【答案】(1)0;(2)﹣6x 4y ﹣2;(3)x 3﹣4x+6;(4)116【分析】(1)根据整式的加减法可以解答本题; (2)根据积的乘方和同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式和多项式乘多项式可以解答本题;(4)根据积的乘方和倒数的知识即可解答.【详解】解:(1)−12019=−1+3−2=0;(2)(−3x 2y )2•2x 3÷(−3x 3y 4)=9x 4y 2•2x 3÷(−3x 3y 4)=426--x y =426x y-; (3)x 2(x+2)−(2x −2)(x+3)=x 3+2x 2−2x 2−6x+2x+6=x 3−4x+6;(4)2019201823(3)(122)311⨯⨯-⨯ =20192018116()()31112⨯⨯ =20192018116()()611⨯ =201811611()6116⨯⨯ =20181116⨯ =116.本题考查了实数的混合运算,解题的关键是熟练实数运算的计算方法.19.如图,在长方形ABCD 中,4AB =,5AD =,点E 为BC 上一点,将ABE △沿AE 折叠,使点B 落在长方形内点F 处,连接DF ,且3DF =,求AFD ∠的度数和BE 的长.【答案】902AFD BE ∠=︒=,【分析】根据勾股定理的逆定理即可得证;说明点D 、E 、F 三点共线,再根据勾股定理即可求解.【详解】根据折叠可知:AB=AF=4,∵AD=5,DF=3,31+41=51,即FD 1+AF 1=AD 1,根据勾股定理的逆定理,得△ADF 是直角三角形,∴∠AFD=90°,设BE=x ,则EF=x ,∵根据折叠可知:∠AFE=∠B=90°,∵∠AFD=90°,∴∠DFE=180°,∴D 、F 、E 三点在同一条直线上,∴DE=3+x ,CE=5-x ,DC=AB=4,在Rt △DCE 中,根据勾股定理,得DE 1=DC 1+EC 1,即(3+x)1=41+(5-x)1,解得x=1.答:BE 的长为1.【点睛】本题考查了折叠问题、勾股定理及其逆定理、矩形的性质,解决本题的关键是勾股定理及其逆定理的运用. 20.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.【答案】(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可;(2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG=∠EBH ,由已知易得BE ∥AC ,于是∠E=∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC=∠BCG ,于是可得∠E=∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG=BH ,CG=EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =222AC AD CD -=, ∵2BC AC =,∴BC=4,BD=3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG+∠CBH=90°,∵BE BC ⊥,∴∠EBH+∠CBH=90°,∴∠CBG=∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E=∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC+∠FCG=90°,∠BCG+∠FCG=90°,∴∠EFC=∠BCG ,∴∠E=∠BCG ,在△BCG 和△BEH 中,∵∠CBG=∠EBH ,BC=BE ,∠BCG=∠E ,∴△BCG ≌△BEH (ASA ),∴BG=BH ,CG=EH , ∴222GH BG BH BG =+=, ∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.21.已知直线y =kx+b (k≠0)经过点A (3,0),B (1,2)(1)求直线y =kx+b 的函数表达式;(2)若直线y =x ﹣2与直线y =kx+b 相交于点C ,求点C 的坐标;(3)写出不等式kx+b >x ﹣2的解.【答案】(1)y =﹣x+3;(2)C 点坐标为(52,12);(3)不等式kx+b >x ﹣2的解集为x <52. 【分析】(1)利用待定系数法求直线的解析式;(2)通过解方程组32y x y x =-+⎧⎨=-⎩得C 点坐标; (3)解不等式-x+3>x-2得不等式kx+b >x-2的解集.【详解】解:(1)根据题意得302k b k b +=⎧⎨+=⎩,解得13k b =-⎧⎨=⎩, ∴直线解析式为y =﹣x+3; (2)解方程组32y x y x =-+⎧⎨=-⎩得5212x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴C 点坐标为(52,12); (3)解不等式﹣x+3>x ﹣2得x <52, 即不等式kx+b >x ﹣2的解集为x <52. 【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.22.阅读材料:我们学过一次函数的图象的平移,如:将一次函数2y x =的图象沿x 轴向右平移1个单位长度可得到函数()21y x =-的图象,再沿y 轴向上平移1个单位长度,得到函数()211y x =-+的图象;如果将一次函数2y x =的图象沿x 轴向左平移1个单位长度可得到函数()21y x =+的图象,再沿y 轴向下平移1个单位长度,得到函数()211y x =+-的图象.类似地,形如2y ax bx c =++的函数图象的平移也满足此规律.仿照上述平移的规律,解决下列问题:(1)将一次函数2y x =-的图象沿x 轴向右平移3个单位长度,再沿y 轴向上平移1个单位长度,得到函数________的图象(不用化简);(2)将2y x 的函数图象沿y 轴向下平移3个单位长度,得到函数________________的图象,再沿x 轴向左平移1个单位长度,得到函数_________________的图象(不用化简);(3)函数()2225y x x =+++的图象可看作由22y x x =+的图象经过怎样的平移变换得到? 【答案】(1)2(3)1y x =--+;(2)23y x =-;2(1)3y x =+-;(3)先向左平移2个单位长度,再向上平移1个单位长度.【分析】(1)由于把直线平移k 值不变,利用“左加右减,上加下减”的规律即可求解;(2)由于把抛物线平移k 值不变,利用“左减右加,上加下减”的规律即可求解;(3)利用平移规律写出函数解析式即可.【详解】解:(1)将一次函数2y x =-的图象沿x 轴向右平移3个单位长度,再沿y 轴向上平移1个单位长度后,得到一次函数解析式为:2(3)1y x =--+;故答案为:2(3)1y x =--+;(2)∵2y x 的函数图象沿y 轴向下平移3个单位长度,∴得到函数:23y x =-;再沿x 轴向左平移1个单位长度,得到函数:2(1)3y x =+-;故答案为:23y x =-;2(1)3y x =+-.(3)函数y=x 2+2x 的图象向左平移两个单位得到:y=(x+2)2+2(x+2),然后将其向上平移一个单位得到:y=(x+2)2+2(x+2)+1=(x+2)2+2x+1.∴先向左平移2个单位长度,再向上平移1个单位长度.【点睛】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.23.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元. (1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?【答案】(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.【分析】(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据“打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)根据节省钱数=原价购买所需钱数-打折后购买所需钱数,即可求出节省的钱数.【详解】(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得:63600500.8400.755200x y x y +⎧⎨⨯+⨯⎩==, 解得:40120x y ⎧⎨⎩==. 答:打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)80×40+100×120-80×0.8×40-100×0.75×120=3640(元).答:打折后购买这批粽子比不打折节省了3640元.【点睛】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.24.阅读下列推理过程,在括号中填写理由.如图,点D 、E 分别在线段AB 、BC 上,//AC DE ,//DF AE 交BC 于点F ,AE 平分BAC ∠,求证:DF 平分BDE ∠.证明:∵AE 平分BAC ∠(已知)∴12∠=∠(______)∵//AC DE (已知)∴13∠=∠(______)故23∠∠=(______)∵//DF AE (已知)∴25∠=∠(______)∴34∠=∠(______)∴45∠=∠(等量代换)∴DF 平分BDE ∠(______)【答案】角平分线的定义;两直线平行,内错角相等;等量代换;两直线平行,同位角相等;两直线平行,内错角相等;角平分线的定义【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论;【详解】证明:∵AE 平分BAC ∠(已知),∴12∠=∠(角平分线的定义), ∵//AC DE (已知),∴13∠=∠(两直线平行,内错角相等),故23∠∠=(等量代换),∵//DF AE (已知),∴25∠=∠(两直线平行,同位角相等),∴34∠=∠(两直线平行,内错角相等),∴45∠=∠(等量代换),∴DF 平分BDE ∠(角平分线的定义);【点睛】本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.25.如图,在四边形ABCD 中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD 的长.【答案】CD=2.【分析】先延长AD 、BC 交于E,根据已知证出△CDE 是等边三角形,设CD=x=CE=DE=x,根据AD=4,BC=1和30度角所对的直角边等于斜边的一半,求出x 的值即可.【详解】延长AD 、BC ,两条延长线交于点E,∵∠B=90°,∠A=30°∴∠E=60°∵∠ADC=120°∴∠CDE=60°∴△CDE是等边三角形则CD=CE=DE设CD=x,则CE=DE=x,AE=x+4,BE=x+1∵ 在Rt△ABE中,∠A=30°∴ x+4=2(x+1)解得:x=2∴CD=2.【点睛】此题考查了含30度角的直角三角形,用到的知识点是30度角所对的直角边等于斜边的一半,等边三角形的判定与性质,关键是作出辅助线,构造直角三角形.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1)A.a≠0B.a≥0C.a<0 D.a≤0【答案】B【分析】根据二次根式有意义,被开方数为非负数解答即可.【详解】∵代数式有意义,∴a≥0,故选:B.【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数为非负数.2.下列运算正确的是().A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【答案】C【解析】试题分析:选项A,根据同底数幂的乘法可得a2•a3=a5,故此选项错误;选项B,根据合并同类项法则可得5a﹣2a=3a,故此选项错误;选项C,根据幂的乘方可得(a3)4=a12,正确;选项D,根据完全平方公式可得(x+y)2=x2+y2+2xy,故此选项错误;故答案选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.3.将点A(2,1)向右平移2个单位长度得到点A′,则点A′的坐标是()A.(0,1) B.(2,﹣1) C.(4,1) D.(2,3)【答案】C【分析】把点(2,1)的横坐标加2,纵坐标不变即可得到对应点的坐标.【详解】解:∵将点(2,1)向右平移2个单位长度,∴得到的点的坐标是(2+2,1),即:(4,1),故选:C.【点睛】本题主要考查了坐标系中点的平移规律,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.下列命题中是真命题的是()A.中位数就是一组数据中最中间的一个数B.这组数据0,2,3,3,4,6的方差是2.1C.一组数据的标准差越大,这组数据就越稳定D .如果123n x x x x ⋅⋅⋅,,,,的平均数是x ,那么()()()110n x x x x x x -+-+⋅⋅⋅-= 【答案】D【分析】根据中位数的概念、方差的计算公式、方差的性质判断.【详解】解:A 、中位数是一组数据中最中间的一个数或最中间的两个数的平均数,本选项说法是假命题;B 、16x -=(0+2+3+3+4+6)=3, 216S = [(0-3)2+(2-3)2+(3-3)2+(3-3)2+(4-3)2+(6-3)2]=103,则本选项说法是假命题; C 、一组数据的标准差越大,这组数据就越不稳定,本选项说法是假命题;D 、如果x 1,x 2,x 3,…,x n 的平均数是x -,那么(x 1-x -)+(x 2-x -)+…+(x n -x -)=0,是真命题; 故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,304ADB AB ∠︒=,=,则OC 等于 ( )A .5B .4C .3.5D .3【答案】B 【解析】试题解析:∵四边形ABCD 是矩形,,,90AC BD OA OC BAD ∴==∠=,30ADB ∠=,∴AC=BD=2AB=8, 142OC AC ∴==; 故选B. 点睛:平行四边形的对角线互相平分.6.在同一平面直角坐标系中,直线()2y k x k =-+和直线y kx =的位置可能是( )A .B .C .D .【答案】C【分析】根据一次函数的性质,对k 的取值分三种情况进行讨论,排除错误选项,即可得到结果.【详解】解:由题意知,分三种情况:当k >2时,y=(k-2)x+k 的图象经过第一、二、三象限;y=kx 的图象y 随x 的增大而增大,并且l 2比l 1倾斜程度大,故B 选项错误,C 选项正确;当0<k <2时,y=(k-2)x+k 的图象经过第一、二、四象限;y=kx 的图象y 随x 的增大而增大,A 、D 选项错误;当k <0时,y=(k-2)x+k 的图象经过第二、三、四象限,y=kx 的图象y 随x 的增大而减小,但l 1比l 2倾斜程度大.∴直线()2y k x k =-+和直线y kx =的位置可能是C.故选:C .【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b (k 为常数,k≠0),当k >0,b >0,y=kx+b 的图象在一、二、三象限;当k >0,b <0,y=kx+b 的图象在一、三、四象限;当k <0,b >0,y=kx+b 的图象在一、二、四象限;当k <0,b <0,y=kx+b 的图象在二、三、四象限.7.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD【答案】D 【解析】A .添加∠A=∠D 可利用AAS 判定△ABC ≌△DCB ,故此选项不合题意;B .添加AB=DC 可利用SAS 定理判定△ABC ≌△DCB ,故此选项不合题意;C .添加∠ACB=∠DBC 可利用ASA 定理判定△ABC ≌△DCB ,故此选项不合题意;D .添加AC=BD 不能判定△ABC ≌△DCB ,故此选项符合题意.故选D .8.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,故本选项符合题意;B 、不是轴对称图形,故本选项不符合题意;C 、不是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项不符合题意.故选A .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 9.如图,△ABC 的角平分线BO 、CO 相交于点O ,∠A=120°,则∠BOC=( )A .150°B .140°C .130°D .120°【答案】A 【详解】解:∵∠BAC=120°,∴∠ABC+∠ACB=60°,∵点O 是∠ABC 与∠ACB 的角平分线的交点,∴∠OBC+∠OCB=30°,∴∠BOC=150°.故选A .10.不等式组2312x x -≥-⎧⎨-≥-⎩的解为( ) A .5x ≥B .1x ≤-C .15x -≤≤D .5x ≥或1x ≤-【答案】C【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式2−x≥−3,得:x≤5,解不等式x−1≥−2,得:x≥−1,则不等式组的解集为15x -≤≤.故选C .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.二、填空题11.数:101-的整数部分为_____. 【答案】1 【分析】先确定10在3和4之间,然后101-的整数部分就能确定.【详解】根据9<10<16可得出10的整数部分为3,进而可得出101-的整数部分. 解:∵9<10<16,∴101-的整数部分为1.故答案为:1.【点睛】本题主要考查了无理数的比较大小,熟练掌握有理数与无理数的大小比较是解题的关键.12.如图,小明的父亲在院子的门板上钉了一个加固板,从数学角度看,这样做的原因是______.【答案】三角形的稳定性【详解】钉了一个加固板,即分割成了三角形,故利用了三角形的稳定性故答案为:三角形的稳定性13.分解因式:229m n -=_________.【答案】()()33m n m n +-【分析】先将原式写成平方差公式的形式,然后运用平方差公式因式分解即可.【详解】解:229m n -=()223m n -=()223m n -=()()33m n m n +-.【点睛】本题主要考查了运用平方差公式因式分解,将原式写成平方差公式的形式成为解答本题的关键.14.如图,有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为3和15,则正方形A ,B 的面积之和为_____.【答案】1.【分析】设出正方形的边长,根据正方形的面积公式和已知阴影部分的面积构建一个方程组,可整体求出正方形A 、B 的面积之和为1.【详解】解:如图所示:设正方形A 、B 的边长分别为x ,y ,依题意得:()222222()315x y x y y x y x y ⎧---=⎪⎨+--=⎪⎩, 化简得:2223215x xy y xy ⎧-+=⎨=⎩解得:x 2+y 2=1,∴S A +S B =x 2+y 2=1,故答案为1.【点睛】本题综合考查了完全平方公式的应用,正方形的面积公式,重点掌握完全平方公式的应用,难点是巧用变形求解两个正方形的面积和.15.如图,某会展中心在会展期间准备将高5m ,长13m ,宽2m 的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要____________元钱.【答案】612.【分析】先由勾股定理求出BC 的长为12m ,再用(AC+BC)乘以2乘以18即可得到答案【详解】如图,∵∠C=90︒,AB=13m ,AC=5m ,∴2222135AB AC --,∴()218611252⨯⨯=+(元),故填:612.【点睛】此题考查勾股定理、平移的性质,题中求出地毯的总长度是解题的关键,地毯的长度由平移可等于楼梯的垂直高度和水平距离的和,进而求得地毯的面积.16.如图,在平面直角坐标系中,已知点A (2,-2),在坐标轴上确定一点B ,使得△AOB 是等腰三角形,则符合条件的点B 共有________个.【答案】1【分析】OA 是等腰三角形的一边,确定第三点B ,可以分OA 是腰和底边两种情况进行讨论即可.【详解】(1)若AO 作为腰时,有两种情况,当A 是顶角顶点时,B 是以A 为圆心,以OA 为半径的圆与坐标轴的交点,共有2个(除O 点);当O 是顶角顶点时,B 是以O 为圆心,以OA 为半径的圆与坐标轴的交点,有4个;(2)若OA 是底边时,B 是OA 的中垂线与坐标轴的交点,有2个.以上1个交点没有重合的.故符合条件的点有1个.故答案为:1.【点睛】本题考查了坐标与图形的性质和等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底,哪边是腰时,应在符合三角形三边关系的前提下分类讨论.17.4的平方根是 .【答案】±1.【解析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1.考点:平方根.三、解答题。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,C 为线段AE 上任意一点(不与A 、E 重合),在AE 同侧分别是等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下五个结论:①AD BE =;②PD QE =;③PQAE ;④60AOB ∠=︒;⑤QB AB =.正确的结论有( )A .5个B .4个C .3个D .2个【答案】B【解析】由已知条件可知根据SAS 可证得E ACD BC ∆∆≌,进而可以推导出AD BE =、PD QE =、PQAE 、60AOB ∠=︒等结论.【详解】∵ABC ∆和CDE ∆是等边三角形∴AC BC =,CD CE =,60ACB ECD ∠=∠=︒ ∴60PCQ ∠=︒∴ACB PCQ ECD PCQ ∠+∠=∠+∠即ACD BCE ∠=∠ ∴在ACD ∆和BCE ∆中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩∴()ACD BCE SAS ∆∆≌∴AD BE =,ADC BEC ∠∠=,DAC EBC ∠=∠ ∵60PCD QCE ∠=∠=∠︒,CD CE = ∴在PCD QCE ∆∆≌中PCD QCE CD CEPDC QEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()PCD QCE ASA ∆∆≌ ∴PD QE =,PC QC =∴PCQ ∆是等边三角形 ∴60CPQ ACB ∠=∠=︒ ∴//PQ AE∵60ACB BEC EBC ∠=∠+∠=︒ ∴60AOB BEC DAC ∠=∠+∠=︒∵在BQC ∆中,60BQC ECQ CEQ ∠=∠+∠>︒,60BCQ ∠=︒ ∴QB BC < ∵BC AB = ∴QB AB <∴正确的结论是:AD BE =,PD QE =、PQ AE 、60AOB ∠=︒故选:B 【点睛】本题考查了三角形、等边三角形、全等三角形的相关内容,其结论都是在E ACD BC ∆∆≌的基础上形成的结论,说明证三角形全等是解题的关键,既可以充分揭示数学问题的层次,又可以考查学生的思维层次. 2.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一,7纳米就是0.000000007米,数据0.000000007用科学记数法表示为( ) A .0.7×10-8 B .7×10-8C .7×10-9D .7×10-10【答案】C【分析】绝对值小于1的数也可以用科学计数法表示,一般形式为a×10-n ,其中1≤|a|<10,与较大数的科学计数法不同的是其使用的是负指数幂,n 由原数左边起第一个不为零的数字前面的0的个数决定. 【详解】0.000000007=7×10-9, 故选:C . 【点睛】题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 由原数左边起第一个不为零的数字前面的0的个数决定.3.我市防汛办为解决台风季排涝问题,准备在一定时间内铺设一条长4000米的排水管道,实际施工时,.求原计划每天铺设管道多少米?题目中部分条件被墨汁污染,小明查看了参考答案为:“设原计划每天铺设管道x 米,则可得方程4000400010x x--=20,…”根据答案,题中被墨汁污染条件应补为( )A .每天比原计划多铺设10米,结果延期20天完成B .每天比原计划少铺设10米,结果延期20天完成C .每天比原计划多铺设10米,结果提前20天完成D .每天比原计划少铺设10米,结果提前20天完成 【答案】B【分析】工作时间=工作总量÷工作效率.那么4000÷x 表示原来的工作时间,那么4000÷(x ﹣10)就表示现在的工作时间,20就代表原计划比现在多的时间.【详解】解:原计划每天铺设管道x 米,那么(x ﹣10)就应该是实际每天比原计划少铺了10米, 而用4000400020x 10x-=-则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划少铺设10米,结果延期20天完成. 故选:B . 【点睛】本题考查了由实际问题抽象除法分式方程,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断. 4.如果()2:1:3x x -=,那么x 的值为( ) A .32B .32-C .3D .-3【答案】A【分析】根据比的性质将原式进行变形求解即可. 【详解】∵()2:1:3x x -= ∴3(2)x x =-63x x =-解得,32x =故选:A . 【点睛】本题考查了比例的性质,掌握“内项之积等于外项之积”是解此题的关键.5.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( )A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B【分析】根据轴对称的性质结合图形分析可得.【详解】解:观察原图,有用进行了平移,所以有垂直的一定不正确,A、C是错误的;对应点连线是不可能平行的,D是错误的;找对应点的位置关系可得:对应点连线被对称轴平分.故选B.6.如图,在等边三角形ABC中,点E为AC边上的中点,AD是BC边上的中线,P是AD上的动点,若AD=3,则EP+CP的最小值是为()A.3 B.4 C.6 D.10【答案】A【分析】先连接PB,再根据PB=PC,将EP+CP转化为EP+BP,最后根据两点之间线段最短,求得BE的长,即为EP+CP的最小值.【详解】连接PB,如图所示:∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴PB=PC,当B、P、E三点共线时,EP+CP=EP+PB=BE,∵等边△ABC中,E是AC边的中点,∴AD=BE=3,∴EP+CP的最小值为3,故选:A.【点睛】本题主要考查了等边三角形的轴对称性质,解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论.7.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()甲组12户家庭用水量统计表用水量(吨) 4 5 6 9户数 4 5 2 1A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断【答案】B【解析】根据中位数定义分别求解可得.【详解】由统计表知甲组的中位数为552+=5(吨),乙组的4吨和6吨的有12×90360=3(户),7吨的有12×60360=2户,则5吨的有12-(3+3+2)=4户,∴乙组的中位数为552+=5(吨),则甲组和乙组的中位数相等,故选:B.【点睛】考查中位数和扇形统计图,根据扇形图中各项目的圆心角求得其数量是解题的关键.8.小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:1x -,-a b ,3,21x +,a ,1x +分别对应下列六个字:益,爱,我,数,学,广,现将223(1)3(1)a x b x ---因式分解,结果呈现的密码信息可能是( ) A .我爱学 B .爱广益 C .我爱广益 D .广益数学【答案】C【分析】先运用提公因式法,再运用公式法进行因式分解即可.【详解】因为223(1)3(1)a x b x ---=23(1)()x a b --=3(1)(1)()x x a b +-- 所以结果呈现的密码信息可能是:我爱广益. 故选:C 【点睛】考核知识点:因式分解.掌握提公因式法和套用平方差公式是关键. 9.一个正方形的面积是20,估计它的边长大小在( ) A .2与3之间 B .3与4之间C .4与5之间D .5与6之间【答案】C【解析】试题分析:设正方形的边长等于a , ∵正方形的面积是20,∴∵16<20<25,∴45,即4<a <5,∴它的边长大小在4与5之间. 故选C .考点:估算无理数的大小.10、0.3•、227-中,无理数的个数有( )A .1个B .2个C .3个D .4个【答案】A【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】解:在实数2、•0.3、227-2是无理数; •0.3循环小数,是有理数;227-是分数,是有理数; 38=2,是整数,是有理数;所以无理数共1个. 故选:A . 【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般. 二、填空题11.如图,已知雷达探测器在一次探测中发现了两个目标A ,B ,其中A 的位置可以表示成(60°,6),那么B 可以表示为____________,A 与B 的距离为____________【答案】(150,4)︒ 13【分析】按已知可得,表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.【详解】∵(a ,b )中,b 表示目标与探测器的距离;a 表示以正东为始边,逆时针旋转后的角度, ∴B 可以表示为(150,4)︒.∵A 、B 与雷达中心的连线间的夹角为150°-60°=90°, ∴2264+213故填:(1). (150,4)︒ (2). 13【点睛】本题考查了坐标确定位置,解题时由已知条件正确确定A 、B 的位置及勾股定理的应用是解决本题的关键. 12.若正比例函数y=kx 的图象经过点(2,4),则k=_____. 【答案】2【解析】4=22k k ⇒= 13.已知:1:3a b =,那么a bb-的值是________. 【答案】23-.【分析】根据:1:3a b=得到b=3a,再代入要求的式子进行计算即可.【详解】∵:1:3a b=∴b=3a,∴322 =333a b a a ab a a---==-故答案为:23-.【点睛】此题考查了比例的基本性质,熟练掌握比例的基本性质是解题的关键,本题是一道基础题.14.如图,正方形纸片ABCD中,6AB=,G是BC的中点,将ABG沿AG翻折至AFG,延长GF 交DC于点E,则DE的长等于__________.【答案】1【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.【详解】如图,连接AE,∵AB=AD=AF,∠D=∠AFE=90°,在Rt△AFE和Rt△ADE中,∵AE AEAF AD⎧⎨⎩==,∴Rt△AFE≌Rt△ADE,∴EF=DE,设DE=FE=x,则EC=6-x.∵G为BC中点,BC=6,∴CG=3,在Rt△ECG中,根据勾股定理,得:(6-x)1+9=(x+3)1,解得x=1.则DE=1.故答案为:1. 【点睛】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.15.一组数据1,2,3,x ,5的平均数是3,则该组数据的方差是_____. 【答案】1【分析】先用平均数是3可得x 的值,再结合方差公式计算即可. 【详解】平均数是315=(1+1+3+x+5),解得:x=4, ∴方差是S 115=[(1﹣3)1+(1﹣3)1+(3﹣3)1+(4﹣3)1+(5﹣3)1]15=⨯10=1. 故答案为1. 【点睛】本题考查了平均数和方差的概念,解题的关键是牢记方差的计算公式,难度不大. 16.若2m a =,3n a =,则32m n a -=_____________. 【答案】89【分析】根据幂的乘方以及同底数幂的除法法则的逆运算解答即可. 【详解】解:∵a m =2,a n =3, ∴a 3m-2m =(a m )3÷(a n )2=23÷32=89, 故答案为:89. 【点睛】本题主要考查了幂的乘方以及同底数幂的除法法则的逆运算,熟记幂的运算法则是解答本题的关键. 17.如图,在长方形ABCD 中,按以下步骤作图:①分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE =3,CE =5,则AD 的长为__________.【答案】1【分析】连接AE ,如图,利用基本作图得到MN 垂直平分AC ,则EA=EC=3,然后利用勾股定理计算出AD 即可.【详解】连接AE,如图,由作法得MN垂直平分AC,∴EA=EC=5,在Rt△ADE中,AD=22534-=,故答案为1.【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).三、解答题18.先化简,再求值:22122121x x x xx x x x---⎛⎫-÷⎪+++⎝⎭,其中x满足x2﹣x﹣1=1.【答案】2.【分析】根据分式的运算法则进行计算化简,再将x2=x+2代入即可.【详解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.19.某校为了改善办公条件,计划从厂家购买A、B两种型号电脑.已知每台A种型号电脑价格比每台B 种型号电脑价格多1.1万元,且用11万元购买A种型号电脑的数量与用8万元购买B种型号电脑的数量相同.求A、B两种型号电脑每台价格各为多少万元?【答案】A、B两种型号电脑每台价格分别是1.5万元和1.4万元【分析】设A种型号电脑每台价格为x万元,则B种型号电脑每台价格(x−1.1)万元.根据“用11万元购买A种型号电脑的数量与用8万购买B种型号电脑的数量相同”列出方程并解答.。
上海市崇明区-学年八年级上学期期末考试数学试题————————————————————————————————作者:————————————————————————————————日期:2八年级数学 共6页 第3页崇明县2015学年第一学期教学质量调研测试卷八年级数学(满分100分,考试时间90分钟)一、填空题(本大题共15题,每题2分,满分30分)1.计算:24= .2.方程24x x =的根是 .3.函数2xy x =+的定义域是 .4.如果最简二次根式2x +与3x 是同类二次根式,那么x 的值是 .5.已知2()1f x x =-,则(3)f = .6.在实数范围内因式分解:232x x --= .7.已知关于x 的方程2230x x k -+=没有实数根,则k 的取值范围是 .8.已知1122(,),(,)P x y Q x y 在反比例函数(0)ky k x=>的图像上,若120x x <<,则1y 2y(填“>”“<”或“=”). 9.如果正比例函数的图像经过点(2,1)-,那么这个正比例函数的解析式是 . 10.命题“对顶角相等”的逆命题是 .11.到点(5,0)P -的距离等于4的点的轨迹是 . 12.如图,ABC ∆中,CD AB ⊥于D ,E 是AC 的中点.若6AD =,5DE =,则CD 的长等于.13.如图,在ABC ∆中,56ABC ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则ABE ∠= 度.14.如图,在Rt ABC ∆中,90BAC ∠=︒,30C ∠=︒,以直角顶点A 为圆心,AB 长为半径画弧交BC 于点D ,过D 作DE AC ⊥于点E .若DE a =,则ABC ∆的周长用含a 的代数式表示为 .A D E BC DA BC EF AE CDB (第12题图)(第13题图)(第14题图)八年级数学 共6页 第4页15.如图,在长方形ABCD 中,6AB =,8AD =,把长方形ABCD 沿直线MN 翻折,点B 落在边AD 上的E 点处,若2AE AM =,那么ED 的长等于 .二、选择题(本大题共4题,每题3分,满分12分)16.下列代数式中,1x +的一个有理化因式是……………………………………………( )A .1x +B .1x -C .1x +D .1x -17.关于反比例函数2y x=的图像,下列叙述错误的是 ……………………………………( ) A .y 随x 的增大而减小 B .图像位于一、三象限C .图像关于原点对称D .点(1,2)--在这个图像上18.如图,是一台自动测温记录仪的图像,它反映了某市冬季某天气温T 随时间t 变化而变化的关系,观察图像得到下 列信息,其中错误的是……………………………( )A .凌晨4时气温最低为3-℃B .14时气温最高为8℃C .从0时至14时,气温随时间增长而上升D .从14时至24时,气温随时间增长而下降 19.如图,在平面直角坐标系中,直线AB 与x 轴交于点(2,0)A -,与x 轴夹角为30︒,将ABO ∆沿直线AB翻折,点O 的对应点C 恰好落在双曲线(0)ky k x=≠上,则k 的值为………………………………( )A .4B .2-C .3D .3-三、简答题(本大题共4题,每题6分,满分24分)20.计算:()112748246223+-+-÷-BCDMN A(第15题图)T /℃t /时O41424 8-3(第18题图)OyxBCA(第19题图)八年级数学 共6页 第5页21.解方程:(21)(1)8(9)1x x x +-=--22.已知关于x 的一元二次方程2(41)(41)0ax a x a -++-=有两个实数根. (1)求a 的取值范围;(2)当a 在允许的取值范围内取最小的整数时,请用配方法解此方程.23.如图,在ABC ∆中,AB AC =,作AD AB ⊥交BC 的延长线于点D ,作AE BD ∥,CE AC ⊥,且AE , CE 相交于点E ,求证:AD CE =.A EB CD八年级数学 共6页 第6页四、解答题(本大题共3题,每题8分,满分24分)24.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x 小时之间函数关系如图所示(当410x ≤≤时,y 与x 成反比例).(1)根据图像分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系式;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?25.2013年,某市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)y (微克/毫升)x /小时 8 O 4 10八年级数学 共6页 第7页26.如图,已知在ABC ∆中,90BAC ∠=︒,AB AC =,点D 在边BC 上,作90DAF ∠=︒,且AF AD =,过点F 作EF AD ∥,且EF AF =,联结CF , CE .(1)求证:FC BC ⊥;(2)如果BD AC =,求证:点C 在线段DE 的垂直平分线上.(第26题图)AFED CB八年级数学 共6页 第8页27.(本题满分10分)ABC ∆中,AB AC =,60A ∠=︒,点D 是线段BC 的中点,120EDF ∠=︒,DE 与线段AB 相交于点E ,DF 与线段AC (或AC 的延长线)相交于点F . (1)如图1,若DF AC ⊥,垂足为F ,4AB =,求BE 的长;(2)如图2,将(1)中的EDF ∠绕点D 顺时针旋转一定的角度,仍与线段AC 相交于点F .求证:12BE CF AB +=;(3)如图3,将(2)中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交与点F ,作DN AC ⊥于点N ,若DN FN =,求证:3()BE CF BE CF +=-.A EB FCD (图1)A E BF CD(图2)A EB FC D N (图3)八年级数学 共6页 第9页崇明县2015学年第一学期教学质量调研测试卷八年级数学答案及评分参考2016.1一、填空题:(本大题共15题,每题2分,满分30分)1.62 ; 2. 01=x 42=x ; 3.2-≠x ; 4.1; 5.13+; 6.)217-3)(2173(-+-x x ; 7.31>k ; 8.>; 9.x y 21-=; 10.相等的两个角是对顶角; 11. 以P 为圆心4为半径的圆; 12.8 13. 28度 14.a )326(+ 15.5311-二、选择题:(本大题共4题,每题3分,满分12分)16.D ; 17.A 18.C ; 19.D 三、简答题(本大题共4题,每题6分,满分24分) 20.解:原式= 6)2448(2213332÷-+-++………………… (3分) =2222213332-+-++…………………………………(2分) =22334+…………………………………………………… (1分) 21.解:18721222--=-+-x x x x …………………………………… (1分)072722=-+x x ………………………………… (1分)0)92)(8(=-+x x ……………………………………… (2分) 81-=x 292=x …………………………………………………(2分) 22.(1)∵关于x 的一元二次方程2(41)(41)0ax a x a -++-=有两个实数根;∴△ []0)14(4)14(2≥--+-=a a a ………………………………… (1分)0416181622≥+-++a a a a 112-≥a 121-≥a ………………………………… (1分) 又∵此方程是一元二次方程 ∴0≠a ∴a 的取值范围是0121≠-≥a a 且 ………………………………… (1分)八年级数学 共6页 第10页(2)∵0121≠-≥a a 且 ∴ a 的最小的整数为a=1 ………………………………… (1分) ∴原方程为035x 2=+-x413)25(2=-x ………………………………… (1分)21325±=-x 21351+=x 21352-=x ………………………… (1分)23. 证明:∵ AB=AC∴ ∠ABC=∠ACB ……………………………………………… (1分) ∵ AE ∥BD∴ ∠EAC=∠ACB ……………………………………………… (1分) ∴ ∠ABC=∠EAC ……………………………………………… (1分) ∵AD ⊥AB CE ⊥AC∴ ∠ BAD =∠ACE = 90°………………………………………… (1分) 在△ABD 和△ACE 中⎪⎩⎪⎨⎧∠=∠=∠=∠ACE BAD ACAB CAEABC ∴CAE ABD ∆≅∆ ……………………………………………… (1分) ∴ AD=CE ……………………………………………… (1分)四、解答题(本大题共3题,每题8分,满分24分)24.解:(1)当0≤x≤4时,设直线解析式为:y=kx ,将(4,8)代入得:8=4k ,解得:k=2, …………………………………… (1分) 故直线解析式为:y=2x , …………………………………… (1分)当4≤x≤10时,设反比例函数解析式为:y=,八年级数学 共6页 第11页将(4,8)代入得:8=,解得:a=32, …………………………………… (1分) 故反比例函数解析式为:y=; ………………………………… (1分)(2)当y=4,则4=2x ,解得:x=2, ……………………………… (1分)当y=4,则4=,解得:x=8, ……………………………… (1分)∵8﹣2=6(小时), ………………………………… (1分) ∴ 血液中药物浓度不低于4微克/毫升的持续时间6小时.…… (1分)25. 解:(1)设平均每年下调的百分率为x ……………………………… (1分)根据题意得:6500(1﹣x )2=5265,……………………………… (2分) 解得: 9.01±=-xx 1=0.1=10%, x 2=1.9(舍去), ………………… (1分)答:平均每年下调的百分率为10%; ……………………………… (1分)(2)∵下调的百分率相同,∴2016年的房价为5265×(1﹣10%)=4738.5(元/米2),……… (1分) ∴100平方米的住房总房款为100×4738.5=473850=47.385(万元) (1分) ∵20+30>47.385, ……………………………… (1分)∴张强的愿望可以实现.26. (1)∵∠BAC =∠DAF =90°∴DAC DAF DAC BAC ∠-∠=∠-∠ 即CAF BAD ∠=∠…… (1分)又∵AB =AC ,AD=AF ∴△ABD ≌△ACF ∴∠B=∠ACF ……… (1分)∵∠BAC=90°,AB=AC ∴∠B=∠ACB=45° …………………… (1分)∴∠ACF=∠B=45°,∴∠BCF=90°∴FC ⊥BC ………………………………………………………… (1分)(2) ∵△ABD ≌△ACF ,∴BD =FC又∵BD = AC , ∴AC =FC∴∠CAF =∠CFA …………………………………………………… (1分) ∵∠DAF =90°,EF ∥AD∴∠DAF =∠AFE =90°∴∠DAC=∠EFC …………………………………………………… (1分) ∵AD=AF ,EF=AF∴AD =FE ,∴△AD C ≌△FEC ……………………………………………… (1分)∴CD=CE∴点C 在线段DE 的垂直平分线上。