职高数学知识点汇总
- 格式:doc
- 大小:183.50 KB
- 文档页数:2
职高生数学必考知识点总结一、函数及其图像1. 定义:函数是一个对应关系,每个自变量对应唯一的因变量。
2. 函数的性质:- 定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。
- 奇偶性:若对任意x∈D,有f(-x) = f(x),则称函数是偶函数;若对任意x∈D,有f(-x) = -f(x),则称函数是奇函数。
- 增减性:若对任意x1<x2,有f(x1)<f(x2),则称函数在区间(x1,x2)上是增函数;若对任意x1<x2,有f(x1)>f(x2),则称函数在区间(x1,x2)上是减函数。
3. 常见函数:- 线性函数:f(x) = kx + b,其中k为斜率,b为截距。
- 幂函数:f(x) = x^n,其中n为自然数。
- 指数函数:f(x) = a^x,其中a>0且a≠1。
- 对数函数:f(x) = loga(x),其中a>0且a≠1。
4. 图像与性质:- 函数的图像可以用坐标系中的曲线表示,例如线性函数的图像是一条直线。
- 图像的特征包括对称性、间断点、渐近线等。
二、三角函数1. 基本概念:- 弧度制:以单位圆上圆心角所对的弧长为一单位。
- 正弦、余弦、正切等三角函数。
2. 三角函数的性质:- 周期性:sin(x+2π) = sinx, cos(x+2π) = cosx, tan(x+π) = tanx。
- 奇偶性:sin(-x) = -sinx, cos(-x) = cosx, tan(-x) = -tanx。
- 上下界:-1 ≤ sinx ≤ 1, -1 ≤ cosx ≤ 1, tanx的定义域是全体实数。
3. 常用三角函数的图像:- sinx和cosx的图像是正弦曲线和余弦曲线,它们的周期为2π。
- tanx的图像是一条无穷长的曲线,它的周期是π。
三、导数与微分1. 导数的定义:- 函数f(x)在x0处的导数定义为f'(x0) = lim(h→0)[f(x0+h)-f(x0)]/h。
职高新高一数学知识点一、函数与导数1. 函数的概念及表示方法2. 函数图像的基本性质3. 导数的概念及计算方法4. 导数的几何意义与应用二、一元二次函数1. 一元二次函数的概念及表示方法2. 一元二次函数的图像和性质3. 一元二次函数的最值及其应用4. 解一元二次方程的方法与步骤三、直线与平面几何1. 直线的方程及其不同形式2. 直线的特殊情况与相关概念3. 平面的方程及其特征4. 直线与平面的位置关系与相交情况四、立体几何1. 空间几何体的定义与特征2. 立体几何体的表面积与体积计算3. 球体的性质及相关定理4. 空间几何体的投影与旋转五、概率与统计1. 概率的基本概念与计算方法2. 事件的排列与组合问题3. 统计相关概念及统计图表的制作4. 概率与统计在实际生活中的应用六、三角函数1. 三角函数的定义与基本关系2. 三角函数的性质与计算方法3. 三角函数在几何中的应用4. 解三角函数方程的方法与步骤七、数列与数学归纳法1. 数列的概念及基本性质2. 等差数列与等比数列的特点与求和公式3. 数学归纳法的原理与应用4. 数列与数学归纳法在实际问题中的应用八、平面向量与坐标系1. 平面向量的定义与表示2. 平面向量的线性运算3. 平面向量应用于平面几何问题4. 坐标系的概念与性质以上是职高新高一数学课程的主要知识点概述。
在学习和掌握这些知识点的过程中,应注重理论与实践结合,注重基本概念的理解和应用能力的培养。
通过不断的练习和实践,掌握数学知识,提高数学思维能力,为今后的数学学习打下坚实的基础。
同时,也要意识到数学知识在实际生活中的重要性和应用价值,努力培养数学素养,将数学知识应用于解决实际问题中。
相信通过努力学习与实践,你一定能够在数学学习中取得优异的成绩!。
职高数学知识点总结及公式大全一、数学知识点总结1. 数列与数列的概念数列是由一系列有序数按照一定排列顺序组成的数集合。
常见的数列有等差数列、等比数列等。
2. 几何图形的性质几何图形的性质包括平行四边形的性质、三角形的性质、圆的性质等。
3. 概率与统计概率与统计是数学中重要的分支,包括事件的概率、随机变量、概率分布、统计参数估计等内容。
4. 三角函数三角函数是用来描述角度与边长之间关系的函数,包括正弦函数、余弦函数、正切函数等。
5. 导数与微分导数是描述函数变化率的概念,微分是导数的一种形式化表达。
6. 积分积分是导数的逆运算,用来求函数与坐标轴之间的面积。
二、常见公式大全1. 等差数列求和公式等差数列的前n项和公式为:Sn = n * (a1 + an) / 2,其中n为项数,a1为首项,an为末项。
2. 二项式定理(a + b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... +C(n,k)*a^(n-k)*b^k + ... + C(n,n)*a^0*b^n。
3. 正弦定理在三角形ABC中,有a/sinA = b/sinB = c/sinC。
4. 求导法则常用的求导法则包括幂函数的导数、指数函数的导数、对数函数的导数等。
5. 积分表积分表包括基本积分表、换元法、分部积分法等。
6. 概率公式常用的概率公式包括加法法则、乘法法则、独立事件的概率计算等。
三、数学知识点的应用1. 在工程中的应用数学知识在工程领域中有着广泛的应用,包括力学、材料力学、电路原理、数值计算等方面。
2. 在金融中的应用金融数学是数学在金融领域的应用,包括利率计算、复利计算、金融衍生品定价等。
3. 在科学研究中的应用科学研究中常常需要运用数学方法进行建模、分析数据、进行实验设计等。
4. 在日常生活中的应用数学知识在日常生活中有着广泛的应用,比如计算购物折扣、理财规划、家庭预算等。
职高数学知识点的掌握对于学生的学习和未来的发展都具有重要意义。
职高高中数学知识点全总结一、数学基础1. 数的基本概念- 自然数、整数、有理数和无理数的定义与性质- 实数的分类与运算法则- 复数的基本概念及四则运算2. 代数表达式- 单项式与多项式的构成及运算- 因式分解的基本方法- 分式与分式方程的解法3. 初等函数- 线性函数、二次函数的图像与性质- 指数函数、对数函数和幂函数的基本概念与运算- 三角函数的定义、基本关系式及图像4. 初等代数方程- 一元一次方程、一元二次方程的解法- 不等式的基本性质与解集表示- 系统方程组的解法,包括代入法、消元法二、几何知识1. 平面几何- 点、线、面的基本性质- 三角形、四边形的基本性质与计算- 圆的基本性质与相关公式2. 空间几何- 空间直线与平面的方程及其关系- 柱、锥、台、球的体积与表面积计算- 空间向量的概念及其在几何中的应用3. 解析几何- 平面直角坐标系与曲线方程- 空间直角坐标系与空间图形- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程三、概率与统计1. 概率基础- 随机事件的概率定义与计算- 条件概率与独立事件的概念- 随机变量及其分布类型2. 统计初步- 数据的收集、整理与描述- 样本及其分布特征(均值、方差、标准差)- 总体参数的估计与假设检验四、数学应用1. 生活中的数学应用- 利率、复利与折现- 比例、百分数与利率的实际应用- 统计图表的解读与制作2. 职业领域的数学应用- 工程图纸的阅读与计算- 生产流程中的优化问题- 经济活动中的成本与收益分析五、数学思维与方法1. 逻辑思维与证明- 演绎推理与归纳推理- 数学证明的基本方法- 反证法与数学归纳法2. 解题策略- 问题转化与化归- 分类讨论与数形结合- 函数思想与方程思想3. 数学软件应用- 常用数学软件的基本操作- 数据处理与图形绘制- 数值计算与符号计算总结职高高中数学课程旨在培养学生的数学基础知识和应用能力,同时注重数学思维的培养。
通过对上述知识点的系统学习,学生能够掌握数学的基本理论和方法,为未来的职业生涯和终身学习打下坚实的基础。
职高数学各章节知识点汇总一. 第一章概率统计基础1. 概率的概念及其计算2. 随机事件与样本空间3. 古典概型、几何概型及其应用4. 条件概率、独立性及其应用5. 贝叶斯公式的应用6. 随机变量及其概率分布7. 数学期望、方差及其应用8. 离散型和连续型随机变量及其性质9. 正态分布及其应用二. 第二章数据的搜集1. 调查与抽样2. 问卷设计及其质量评估3. 采样方法及其应用4. 质量控制及其应用5. 数据质量评估三. 第三章数据的表示和分析1. 描述统计学基本概念及其应用2. 基本统计量及其计算方法3. 频率分布表与图的绘制4. 偏态与峰态的概念及其计算5. 相关系数及其应用6. 线性回归分析及其应用7. 方差分析及其应用四. 第四章指数与对数函数1. 指数函数及其性质2. 对数函数及其性质3. 指数与对数的运算法则4. 指数函数、对数函数的图像与性质5. 带底数的指数函数、对数函数及其运算法则6. 指数函数、对数函数的应用五. 第五章三角函数1. 角度与弧度的转换2. 常用角度的三角函数及其图像3. 三角函数的周期性及其应用4. 三角函数的基本公式及其应用5. 立体角与球面三角学的基本概念六. 第六章数列和数学归纳法1. 数列的概念及其性质2. 等差数列与等比数列的求和公式3. 递推与递归数列及其应用4. 数学归纳法的基本思想及其应用七. 第七章函数的基本概念1. 函数的定义及其性质2. 常用函数的图像与性质3. 函数的分类及其应用4. 复合函数的定义与应用5. 反函数的定义与应用八. 第八章一次函数与二次函数1. 一次函数的定义、图像、性质及其应用2. 二次函数的定义、图像、性质及其应用3. 一次函数、二次函数的解析式及其应用4. 一次函数、二次函数的应用九. 第九章不等式与方程1. 不等式的基本概念及其性质2. 一次不等式的求解方法及其应用3. 二次不等式的求解方法及其应用4. 绝对值不等式的求解方法及其应用5. 方程的基本概念及其性质6. 一次方程的解法及其应用7. 二次方程的解法及其应用十. 第十章平面向量1. 平面向量的基本概念及其表示方法2. 平面向量的数量积、向量积及其性质3. 向量共线、垂直的判定及其应用4. 平面向量的应用,如平移、旋转等十一. 第十一章平面几何图形的性质1. 基本特征及其图形的分类2. 三角形的基本性质3. 四边形、多边形的基本性质4. 圆的基本性质5. 圆锥、圆柱、球体的基本概念及其应用。
职高数学归纳总结知识点数学是一门抽象而又实用的学科,它在职业高中的学习中占据着重要的地位。
为了帮助职高学生更好地掌握数学知识,下面将对职高数学的重要知识点进行归纳总结,以便学生们更好地理解和应用。
一、整数与有理数1. 整数的概念及性质:- 正整数、零和负整数的概念;- 整数的加法、减法和乘法运算规律;- 整数的相反数及其性质。
2. 有理数的概念与运算:- 有理数的概念及其表示;- 有理数的加法、减法、乘法和除法运算;- 有理数的大小比较和性质。
二、代数式与多项式1. 代数式的概念与性质:- 代数式的基本概念;- 代数式的加减乘除运算法则。
2. 多项式及其运算:- 多项式的概念及分类;- 多项式的加减法和乘法运算;- 多项式的因式分解和最简形式。
三、函数与方程1. 函数的概念与性质:- 函数的基本概念;- 函数的自变量、因变量和定义域、值域的关系;- 常见函数及其图像。
2. 方程的概念与解法:- 一元一次方程的定义与解法;- 一元二次方程的定义与解法;- 两个未知数的线性方程组的解法。
四、几何1. 图形的基本概念:- 点、线、面、角的概念与性质;- 垂直、平行、相交线的关系;- 正多边形及其性质。
2. 相似与全等:- 全等三角形及判定方法;- 相似三角形及判定方法;- 相似三角形的性质与应用。
3. 三角函数:- 三角函数的概念与性质;- 基本三角函数的计算与图像;- 三角函数在实际问题中的应用。
五、统计与概率1. 数据的收集与整理:- 数据的分类及表示方法;- 数据的频数分布表和统计图表。
2. 概率的基本概念与计算:- 概率的定义及性质;- 事件的概率计算;- 抽样与概率应用。
六、解题方法与技巧1. 数学解题方法:- 反证法、归纳法、递归法等常用解题方法;- 数学建模与解题思路。
2. 数学问题的解题技巧:- 空间想象能力训练;- 抽象思维能力培养;- 推理与证明能力提升。
本文对职高数学的重要知识点进行了归纳总结,帮助学生们更好地掌握数学知识。
职高数学笔记整理一、代数运算1.1整数的四则运算整数的加减法:对于任意整数a和b,有以下性质:-加法交换律:a + b = b + a-加法结合律:(a + b) + c = a + (b + c)-零元素:a + 0 = a-负元素:a + (-a) = 0整数的乘法:对于任意整数a和b,有以下性质:-乘法交换律:a * b = b * a-乘法结合律:(a * b) * c = a * (b * c)-单位元素:a * 1 = a-乘0得0:a * 0 = 01.2分数的四则运算分数的加减法:对于任意分数a/b和c/d,有以下性质:-加法结合律:(a/b + c/d) + e/f = a/b + (c/d + e/f) -零元素:a/b + 0 = a/b-乘-1得相反数:a/b + -a/b = 0分数的乘法:对于任意分数a/b和c/d,有以下性质:-乘法结合律:(a/b * c/d) * e/f = a/b * (c/d * e/f) -单位元素:a/b * 1 = a/b-乘以倒数:a/b * b/a = 1分数的除法:对于任意分数a/b和c/d,有以下性质:-除法即乘以倒数:a/b ÷ c/d = a/b * d/c = ad/bc1.3幂运算对于任意实数a和正整数n,有以下幂运算的性质:-幂的乘法:aⁿ * aᵐ = aⁿ⁺ᵐ-幂的乘方:(aⁿ)ᵐ = aⁿᵐ-幂的除法:aⁿ ÷ aᵐ = aⁿ⁻ᵐ1.4开方运算对于任意非负实数a和正整数n,有以下开方运算的性质:- n次方根的乘法:√(aⁿ) = a^(1/n) = aⁿ⁄ₙ- n次方根的除法:aⁿ⁄ₙ ÷ aᵐ⁄ₙ = aⁿ⁄ₙ⁻ᵐ⁄ₙ二、函数与方程2.1二次函数二次函数的一般形式为y = ax² + bx + c,其中a、b、c为实数且a≠0。
-顶点坐标:二次函数的顶点坐标为(-b/2a, f(-b/2a))-对称轴:二次函数的对称轴为x = -b/2a-开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。
职高数学各章节知识点汇总第一章:集合与函数集合•概念与表示方法•集合的运算•常见集合:空集、全集、单一集合、补集、交集、并集函数•概念与表示方法•函数的性质与判定•常见函数:一次函数、二次函数、反比例函数、指数函数和对数函数第二章:数与式整数•概念和表示方法•整数的运算法则和性质:加法、减法、乘法、除法、整数幂的计算法则有理数•概念和表示方法•有理数的运算法则和性质:加法、减法、乘法、除法、有理数幂的计算法则代数式•概念和表示方法•代数式的加减乘除•代数式的化简和因式分解•代数式的公因式、因式分解和左右展开分式•概念和表示方法•分式的加减乘除•分式的化简和通分•分式的大小比较和约分第三章:方程与不等式一元二次方程•概念和表示方法•一元二次方程的解法:配方法、公式法、图像法和因式分解法一元二次不等式•概念和表示方法•一元二次不等式的解法:图像法和分式法线性方程组•概念和表示方法•线性方程组的解法:消元法和矩阵法绝对值不等式•概念和表示方法•绝对值不等式的解法:图像法和分析法含有根式的方程和不等式•概念和表示方法•根号的加减法和乘除法•含有根式的方程和不等式的解法第四章:函数及其应用一次函数•概念和表示方法•一次函数的性质与图像•一次函数的应用二次函数•概念和表示方法•二次函数的性质与图像•二次函数的应用反比例函数•概念和表示方法•反比例函数的性质与图像•反比例函数的应用指数函数和对数函数•概念和表示方法•指数函数和对数函数的性质与图像•指数函数和对数函数的应用第五章:平面几何基本概念点线面•概念和表示方法•点线面的性质和关系角•角的定义和表示方法•角的分类与性质:锐角、直角、钝角、对顶角、同位角、内错角和补角、余角直线与平面•直线与平面的定义和表示方法•相关概念:角度、直线的位置关系、平面的位置关系、三角形的性质和构造第六章:三角函数三角函数的基本概念和关系•角的正弦、余弦、正切、余切的定义和表示方法•三角函数的初等关系式和辅助角公式三角函数的应用•三角函数的解析式和图像•三角函数的周期性及其性质•三角函数在几何问题和物理问题中的应用三角恒等式•基本三角恒等式•倍角、半角、和角、差角公式•卷积模式以上为职高数学各章节的知识点汇总,希望本文能够对学习职高数学的同学们有所帮助。
高职数学知识点归纳
1.函数:包括函数的定义、函数的性质、函数的图像等。
2.极限:包括极限的定义、极限的性质、极限的运算等。
3.连续:包括连续的定义、连续的性质、连续的运算等,
4.导数:包括导数的定义、导数的性质、导数的运算等。
5.微分:包括微分的定义、微分的性质、微分的运算等。
6.定积分:包括定积分的定义、定积分的性质、定积分的运算等。
7.概率论:包括概率论的基本概念、概率的运算、概率分布等。
8.统计学:包括统计学的概念、统计方法的运用、统计图表等。
9.线性代数:包括矩阵的定义、矩阵的运算、线性方程组的解法等。
10.微积分:包括微积分的基本概念、微积分的运算、微积分的应用等,。
职高数学重要知识点总结一、代数1. 一元一次方程及其应用(1) 一次方程的概念与性质(2) 一元一次方程的解(3) 实际问题的一元一次方程建立与解决(4) 一元一次方程的应用题2. 一元二次方程及其应用(1) 一元二次方程的一般形式及其性质(2) 一元二次方程的求解(3) 一元二次方程的判别式与根的关系(4) 一元二次方程的应用题3. 不等式及其应用(1) 不等式的性质(2) 一元一次不等式与一元一次方程的关系(3) 一元二次不等式与一元二次方程的关系(4) 不等式的应用题4. 描述函数关系的方法(1) 函数的概念及函数的表示(2) 函数的性质(3) 直线函数与一次函数(4) 二次函数的图像、性质及应用(5) 一次函数与二次函数的实际问题5. 二元一次方程组的解法(1) 二元一次方程组的概念和性质(2) 二元一次方程组的解法及其应用(3) 实际问题的二元一次方程组建立与解决6. 一元一次不等式组的解法(1) 一元一次不等式组的概念和性质(2) 一元一次不等式组的解法及其应用(3) 实际问题的一元一次不等式组建立与解决7. 分式方程(1) 分式方程的概念及性质(2) 分式方程的解法(3) 实际问题的分式方程建立与解决8. 根据实际问题建立方程或不等式(1) 问题的解析和设方程、不等式(2) 实际问题建立方程或不等式的基本方法二、几何1. 平面直角坐标系(1) 平面直角坐标系(2) 点和点的坐标(3) 线段、直线和线段的长度(4) 点和线段的中点(5) 角的概念与性质(6) 用坐标表示角2. 平面图形的认识与计算(1) 三角形① 三角形的基本性质② 三角形的分类③ 三角形的全等、相似④ 三角形的中线、角平分线、垂心、外心、内心和重心(2) 四边形① 四边形的分类② 四边形的性质(3) 多边形① 多边形的分类② 多边形的性质(4) 圆① 圆的性质② 圆的图形(5) 平行四边形和梯形① 平行四边形的性质② 梯形的性质3. 空间图形的认识与计算(1) 三棱锥、四棱锥、棱柱的认识及性质(2) 三棱锥、四棱锥、棱柱的计算(3) 圆柱、圆锥与球的认识及性质(4) 圆柱、圆锥与球的计算4. 空间图形的展开与网格(1) 空间图形在展开时的性质(2) 制作空间图形的展开图(3) 网格纸和图形的展开与叠合5. 三视图(1) 三视图(2) 空间图形的三视图及其绘图6. 地图与比例(1) 地图的制图和使用(2) 比例尺(3) 直接与反比例关系三、概率统计1. 概率(1) 随机事件与概率(2) 概率的性质(3) 概率的计算与应用2. 统计(1) 统计调查(2) 统计图形(3) 统计参数以上是职业高中数学课程中的一些重要知识点,希望同学们在学习数学时认真学习,掌握这些知识点,为日后的学习和生活打下坚实的基础。
中职高中数学知识点全总结有例题一、代数基础1. 有理数- 定义:整数和分数统称为有理数。
- 运算:加法、减法、乘法、除法,以及它们的混合运算。
2. 整式与分式- 整式:由数和字母的有限次加、减、乘、除、乘方运算组成的代数式。
- 分式:分子和分母都是整式的有理式,分子不为零。
3. 一元一次方程与不等式- 方程:含有未知数的等式。
- 解方程:求出使方程成立的未知数的值。
- 不等式:表示不等关系的式子。
4. 二元一次方程组- 定义:含有两个未知数的一次方程组。
- 解法:代入法、消元法。
5. 一元二次方程- 定义:形如 \(ax^2 + bx + c = 0\) 的方程,其中 \(a \neq 0\)。
- 解法:因式分解、配方法、公式法。
例题:解方程 \(x^2 - 5x + 6 = 0\)。
解:因式分解得 \((x - 2)(x - 3) = 0\),所以 \(x = 2\) 或 \(x= 3\)。
二、平面几何1. 点、线、面- 点:没有大小,只有位置。
- 线:由无数个点组成,有长度,没有宽度。
- 面:由无数条线组成,有长度和宽度。
2. 三角形- 性质:三角形内角和为180度。
- 类型:等边三角形、等腰三角形、直角三角形。
3. 四边形- 性质:四边形内角和为360度。
- 类型:矩形、菱形、正方形、平行四边形。
4. 圆- 定义:平面上所有与给定点(圆心)距离相等的点的集合。
- 性质:圆的周长(C)与直径(D)的关系为 \(C = \pi D\)。
5. 相似与全等- 全等:两个图形大小和形状完全相同。
- 相似:两个图形大小不一定相同,但形状相同,对应角相等,对应边成比例。
例题:证明两个三角形相似。
解:若两个三角形的三组对应角分别相等,则这两个三角形相似。
三、立体几何1. 立体图形- 定义:由平面围成的几何体。
- 类型:棱柱、棱锥、圆柱、圆锥、球等。
2. 体积与表面积- 体积:立体图形所占空间的大小。
- 表面积:立体图形所有面的总面积。
职高数学必考知识点总结一、集合与函数1. 集合的概念集合是由一些确定的对象所构成的整体,可以用大括号{}表示。
例如,集合A={1,2,3,4,5}表示由1,2,3,4,5这些对象组成的集合A。
2. 集合的运算集合的运算包括并集、交集和差集。
- 并集:集合A和集合B的并集,表示为A∪B,是包含了所有属于A或B中的元素的新集合。
- 交集:集合A和集合B的交集,表示为A∩B,是包含了同时属于A和B中的元素的新集合。
- 差集:集合A和集合B的差集,表示为A-B,是包含了属于A但不属于B的元素的新集合。
3. 函数的概念函数是一种对应关系,它把一个集合的每个元素映射到另一个集合的唯一元素上。
常用的表示方法有图像法、集合法和公式法。
4. 函数的图像函数的图像是指函数的输入和输出之间的对应关系所确定的点所构成的集合。
5. 函数的性质函数的性质有定义域、值域、单调性、奇偶性等。
其中,定义域是函数中所有可能的输入值的集合,值域是函数中所有可能的输出值的集合。
单调性是指函数在定义域内的增减关系。
二、代数1. 一元一次方程一元一次方程是指只含有一个未知数的一次方程,通常表示为ax+b=0。
解方程的步骤一般是移项、合并同类项、消元和求解。
2. 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,通常表示为ax+b>0或ax+b<0。
解不等式的步骤一般是移项、合并同类项、消元和求解。
3. 二元一次方程二元一次方程是指含有两个未知数的一次方程,通常表示为ax+by=c。
解方程的步骤一般是消元、求解。
4. 幂的运算幂的运算包括幂的乘法、幂的除法、幂的加法和幂的减法。
5. 分式的运算分式的运算包括分式的乘法、分式的除法、分式的加法和分式的减法。
6. 因式分解因式分解是把一个多项式表示为多个一次式的乘积的过程。
一般采用提公因式法、公式法和分组法进行因式分解。
三、几何1. 直线和角直线是由一系列不同点组成的集合,角是由两条射线共同端点组成的图形。
职业高中数学知识点全总结一、代数基础1. 集合与函数概念集合的含义、表示方法以及基本运算;函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数等)。
2. 代数式的运算整式的加减乘除、因式分解、分式的运算法则、根式的性质和化简。
3. 方程与不等式一元一次方程、一元二次方程的解法;不等式的性质及解集表示;线性不等式的图形表示;多项式方程的解法。
4. 序列与数列等差数列和等比数列的概念、性质、通项公式和求和公式;数列的实际应用问题。
5. 排列组合与概率排列组合的基本概念和公式;概率的定义、性质及计算方法;条件概率和独立事件的概念。
二、几何基础1. 平面几何点、线、面的基本性质;角的概念和分类;三角形、四边形的性质和计算;圆的性质和相关公式。
2. 空间几何空间图形的基本元素;长方体、正方体、圆柱、圆锥、球等立体图形的性质和表面积、体积的计算方法。
3. 解析几何坐标系的建立和应用;直线、圆的解析表达式;距离公式、斜率概念及其应用。
三、三角学1. 三角比正弦、余弦、正切等三角比的定义和基本关系;三角比的变换和简化。
2. 三角函数三角函数的定义、性质、图像和周期性;三角函数的基本定理和公式。
3. 三角恒等变换三角恒等式的证明和应用;三角函数的和差化积、积化和差等变换公式。
4. 解三角形正弦定理、余弦定理及其在解三角形中的应用;三角形面积的计算公式。
四、微积分基础1. 极限与连续极限的概念、性质和计算;函数的连续性及其判断方法。
2. 导数与微分导数的定义、几何意义和物理意义;常见函数的导数;微分的概念和应用。
3. 导数的应用函数的极值问题、最值问题;曲线的切线和法线;罗尔定理、拉格朗日中值定理、柯西中值定理。
4. 积分学不定积分的概念、性质和基本积分表;定积分的定义、性质和计算;定积分在几何和物理中的应用。
五、统计与概率1. 统计基本概念总体、样本、统计量的概念;数据的集中趋势和离散程度的描述。
职高数学全集知识点总结一、函数与方程组1. 函数的定义与性质(1)定义:函数是集合间的一种对应关系,即每个自变量(x值)对应唯一的因变量(y 值)。
(2)性质:单调性、奇偶性、周期性等。
2. 一元二次方程(1)一元二次方程一般形式为ax^2+bx+c=0,其中a≠0。
(2)求解一元二次方程的方法:因式分解、配方法、公式法等。
3. 线性方程组(1)定义:由线性方程组成的方程组。
(2)解法:代入消元法、矩阵法等。
二、数列与级数1. 数列的概念与性质(1)定义:按照一定规律排列而成的数。
(2)常见数列:等差数列、等比数列等。
2. 数列的通项公式(1)等差数列的通项公式:an=a1+(n-1)d。
(2)等比数列的通项公式:an=a1*q^(n-1)。
三、平面几何1. 直角三角形(1)勾股定理:a^2+b^2=c^2,其中a、b为直角三角形的直角边,c为斜边。
(2)三角函数:sinθ、cosθ、tanθ等。
2. 圆的性质(1)圆的面积与周长:S=πr^2,C=2πr。
(2)弧与弦的关系:弧长公式、弦长公式等。
四、立体几何1. 立体图形的表面积与体积(1)表面积:直接计算法、母线法等。
(2)体积:立方体、长方体、圆柱体、圆锥体、球体的体积计算公式。
2. 空间坐标系(1)三维坐标系:x轴、y轴、z轴。
(2)空间直角坐标系中的点、直线、平面的性质。
五、概率与统计1. 概率(1)概率的基本概念:事件、样本空间、基本事件等。
(2)概率的计算方法:古典概型、几何概型、频率概率等。
2. 统计(1)数据的收集与整理:频数、频率、分组表等。
(2)数据的表示与分析:图表、平均数、中位数、众数等。
以上便是职高数学全集知识点的总结,希望能对你的学习有所帮助。
数学职高知识点总结一、代数基础集合与函数概念:集合的基本概念、表示方法及其运算(并集、交集、差集)。
函数的定义、性质和常见类型(如一次函数、二次函数、指数函数、对数函数、三角函数)。
代数式的运算:整式的加减乘除运算规则。
因式分解的基本方法(提公因式、公式法、分组分解法)。
分式的约分与通分,分式方程的解法。
方程与不等式:一元一次与一元二次方程的解法。
不等式的基本性质,一元一次不等式及其解法,一元二次不等式的解法,不等式组的解集求解。
序列与数列:等差数列和等比数列的定义、性质和求和公式。
数列的极限概念及其计算。
二、几何知识平面几何:点、线、面的基本概念。
直线、线段、射线的定义、性质和表示方法。
角的概念、度量和分类。
三角形的分类及性质。
四边形的分类及性质。
多边形的分类及性质。
圆的基本属性和相关定理。
平行线与平行四边形的性质。
等腰三角形、等边三角形的性质。
相似三角形的性质和判定方法。
立体几何:空间几何体的基本概念。
正方体、长方体、三棱柱的特征及性质。
圆柱、圆锥、球的特征及性质。
空间图形的投影。
空间几何体的表面积和体积计算方法。
空间几何体的展开图和几何体展开式。
三、其他重要知识点三角函数:三角函数的图形与性质,三角恒等变化与解三角形。
概率与统计:概率的基本概念,条件概率,全概率公式,贝叶斯定理;离散型随机变量及其分布;统计与统计案例。
逻辑推理与证明:基本的逻辑推理方法,数学证明的技巧和策略。
数学建模与应用:函数模型及其运用,数列的简单应用,数学在实际问题中的应用。
以上只是职高数学知识点的一部分总结,实际学习过程中还会涉及到更多的细节和深入的内容。
在学习数学时,建议注重理论与实践的结合,多做习题,加深对知识点的理解和掌握。
数学职高知识点总结数学是一门基础学科,也是职业教育的重要科目之一。
在数学职高课程学习中,掌握并理解一些核心知识点是非常重要的。
下面是数学职高课程中的常见知识点总结,供参考。
1. 二次函数与一次函数- 二次函数的定义、图像特征及其应用- 一次函数的定义、图像特征及其应用- 二次函数与一次函数之间的关系及区别2. 三角函数- 常用三角函数的定义、图像特征及其应用- 三角函数之间的关系,如正弦函数与余弦函数的关系等- 利用三角函数解决实际问题的方法3. 平面几何- 平面的点、线、面的相关概念及其性质- 常见平面图形的性质,如三角形、四边形、圆等- 平面几何的证明方法与技巧4. 空间几何- 空间的点、线、面、体的相关概念及其性质- 常见空间图形的性质,如球体、圆锥、圆柱等- 利用空间几何解决实际问题的方法5. 统计与概率- 统计的基本概念,如数据收集、整理与分析等- 概率的基本概念,如事件、样本空间、概率分布等- 利用统计与概率解决实际问题的方法6. 导数与微分- 导数的定义、基本性质与应用,如相关速度、变化率等- 微分的基本概念及其应用- 利用导数与微分解决实际问题的方法7. 积分与定积分- 积分的定义、基本性质与应用,如曲线下面积、定积分等- 定积分的定义及其应用,如平均值、面积等- 利用积分与定积分解决实际问题的方法以上只是数学职高课程中的一部分知识点总结,同时也是数学职业教育的基础。
掌握这些知识点对于以后的学习和工作都具有重要意义。
参考内容:1. 《数学(高职高专示范教材)》(舒新华主编,清华大学出版社)2. 《职业数学》(刘洪波主编,中国农业出版社)3. 《高职高专数学全程与全封闭训练》(唐玉红主编,高等教育出版社)4. 《高职高专应用数学教程》(徐吾荣主编,同济大学出版社)5. 《高职高专教育数学基础》(徐吾荣主编,人民教育出版社)。
职高数学基础知识点一、集合:1. 掌握集合的交、并、补运算。
练:已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={1,3,5,9},集合B={2,5,7,9},求A∩B,C,U,(B∪A)。
2. 理解集合的关系符号:∈、∉、⊆、⊇,以及常见数集:R、Q、Z、N。
练:用适当的符号填空:0___Φ,0___{0},a___{a,b,c},{a}___{a,b,c},2____Z,{0}___N,0___Q,{-2,3}___[-2,3],0___{x<5},0___{x/x<5},0___(-2,5),0___[-1,5]。
3. 理解充分与必要条件:p→q 则 p 是 q 的条件;p←q 则p 是 q 的充分条件。
练:1. “集合A∩B=A” 是“集合 A 是 B 的子集” 的条件。
2. “x²-4=0” 是“x=2” 的条件。
二、不等式:1. 掌握不等式的基本性质:a>b,b>c,则 a>c;a>b 等价于 a±c>b±c;{a>b,c>d},则 a+c>b+d;{a>b,c>a},则a+b>c;{a>b>c,c>d},则 a×c>b×d。
2. 掌握解不等式的方法:一元一次不等式及不等式组,一元二次不等式,绝对值不等式。
练:求下列不等式的解:2x-x²<0;x²-9≤0;3x-x²+4>0。
三、函数:1. 理解函数定义域的概念:分母不为零,偶次方根式被开方数非负,对数真数大于零、底数大于零且底数不等于1。
2. 掌握求函数值的方法:代入函数表达式计算。
练:已知f(x)=3-2x-x²,则 f(-1)=4。
(a,a1)定义域R+,值域R,过点P(1,),是指数函数的反函数。
a1时,函数在R+上是增函数;a1时,函数在R+上是减函数。