分子生物学第四章习题.doc
- 格式:doc
- 大小:46.00 KB
- 文档页数:6
分子生物学第四章一、名词解释1.translation(转录)2.ORF开放阅读框架3.SD序列4.无义突变5.错义突变6.同义密码子7.同工tRNA8.分子伴侣9.NEDDylation二、填空1.tRNA的二级结构是________,三级结构是________。
2.tRNA分为________、________、________、________。
3.核糖体的三个tRNA结合位点分别是________、________、________。
4.核糖体的小亚基负责________________,大亚基负责________________。
5.蛋白质的生物合成包括________、________、________、_________、_______。
6.肽链延伸由许多循环组成,每加一个氨基酸就是一个循环,每个循环包括________、________、________。
三、选择题1.在肽链延伸中,下列不属于原核生物所需的延伸因子是()A、EF-TuB、EF-TsC、EF-GD、EF-12.催化氨基酸与tRNA结合的特异性酶是()A、肽酰-tRNA合成酶B、转肽酶C、AA-tRNA合成酶D、RNA聚合酶3.下列是SD序列的是()A、5’-AGGAGGU-3’B、3’-AGGAGGU-5’C、5’-AGGCGGU-3’D、3’-AGCAGCU-5’4.氨基酸侧链的修饰作用包括()(多选)A、磷酸化B、羟基化C、氨基化D、糖基化四、判断题对错并改正1.同义密码子减少了变异对生物的影响。
()2.链霉素不能抑制蛋白质的合成。
()3.模板mRNA只能识别特异的tRNA而不是氨基酸。
()4.原核生物的起始tRNA是fMet–tRNA fMet,真核生物是Met–tRNA Met。
()5.在肽链的延伸中,ET-G是移位所必需的蛋白质因子,移位的能量来自另一分子ATP的水解。
()6.氨基酸在没有氨酰-tRNA合成酶的作用下也可以生成活化氨基酸–AA–tRNA。
第4章DNA复制一、填空题1.在DNA合成中负责复制和修复的酶是o2.染色体中参与复制的活性区呈Y开结构,称为o3.在DNA复制和修复过程中,修补DNA螺旋上缺口的酶称为4.在DNA复制过程中,连续合成的子链称为,另一条非连续合成的子链称为。
5.如果DNA聚合酶把一个不正确的核昔酸加到3,端,一个含3,一5,活性的独立催化区会将这个错配碱基切去。
这个催化区称为酶。
6.DNA后随链合成的起始要一段短的,它是由以核糖核昔酸为底物合成的。
7.复制叉上DNA双螺旋的解旋作用由催化的,它利用来源于ATP水解产生的能量沿DNA链单向移动。
8.帮助DNA解旋的与单链DNA结合,使碱基仍可参与模板反应。
9.DNA引发酶分子与DNA解旋酶直接结合形成一个单位,它可在复制又上沿后随链下移,随着后随链的延伸合成RNA引物。
10.如果DNA聚合酶出现错误,会产生一对错配碱基,这种错误可以被一个通过甲基化作用来区别新链和旧链的判别的系统进行校正。
11.对酵母、细菌以及几种生活在真核生物细胞中的病毒来说,都可以在DNA独特序列的处观察到复制泡的形成。
12.可被看成一种可形成暂时单链缺口(I型)或暂时双链缺口(II型)的可逆核酸酶。
13.拓扑异构酶通过在DNA ±形成缺口超螺旋结构。
14.真核生物中有五种DNA聚合酶,它们是A.; B._; C.; D._; E.;15有真核DNA聚合酶和显示3*->5,外切核酸酶活性。
二、选择题(单选或多选)1.DNA的复制()。
A.包括一个双螺旋中两条子链的合成B.遵循新的子链与其亲本链相配对的原则C.依赖于物种特异的遗传密码D.是碱基错配最主要的来源E.是一个描述基因表达的过程2.一个复制子是()。
A.细胞分裂期间复制产物被分离之后的DNA片段B.复制的DNA片段和在此过程中所需的酶和蛋白质C.任何自发复制的DNA序列(它与复制起点相连)D.任何给定的复制机制的产物(如单环)E.复制起点和复制叉之间的DNA片段3.真核生物复制了有下列特征,它们()。
假定你从一新发现的病毒中提取了核苷酸,请用最简单的方法确定:(1)它是DNA还是RNA?(2)它是单链还是双链?--类型:分析题答:确定碱基比率。
如果有胸腺嘧啶,为DNA,如果有尿嘧啶,则为RNA。
如果为双链分子,那么A与T(或U)的量以及G与C的量应相等。
RNA 是由核糖核酸通过()键连接而成的一种()。
几乎所有的RNA都是由()DNA ()而来,因此,序列和其中一条链()。
--类型:填空题--答案:磷酸二酯;多聚体;模板;转录;互补多数类型的RNA是由加工()产生的,真核生物前体tRNA的()包括()的切除和()的拼接。
随着()和()端的序列切除,3’端加上了序列()。
在四膜虫中,前体TRNA的切除和()的拼接是通过()机制进行的。
--类型:填空题--答案:前体分子;加工;内含子;外显子;5’;3’;CCA;内含子;外显子;自动催化Rnase P 是一种(),含有()作为它的活性部位,这种酶在()序列的()切割()。
--类型:填空题--答案:内切核酸酶;RNA;tRNA;5’端;前体RNA C0t1/2实验测定的是()。
--类型:填空题--答案:41 RNA的复性程度假定摆动假说是正确的,那么最少需要()种TRNA来翻译61种氨基酸密码子。
--类型:填空题--答案:32写出两种合成后不被切割或拼接的RNA:()和()。
--类型:填空题--答案:.真核生物中的5SrRNA;原核生物中的mRNA原核细胞信使RNA含有几个其功能所必需的特征区段,它们是:( ) --类型:选择题--选择: (a)启动子,SD序列,起始密码子,终止密码子,茎环结构(b)启动子,转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和ORF 尾部序列,茎环结构(c)转录起始位点,尾部序列,由顺反子间区序列隔开的SD序列和0RF,茎环结构(d)转录起始位点,前导序列,由顺反子间区序列隔开的SD序列和0RF,局部序列--答案: dtRNA参与的反应有:( ) --类型:选择题--选择:(a)转录(b)反转录(c)翻译(d)前体mRNA 的剪接(e)复制--答案: a氨酰tRNA的作用由( )决定.--类型:选择题--选择:(a)其氨基酸(b)其反密码子(c)其固定的碱基区(d)氨基酸与反密码子的距离,越近越好(e)氨酰tRNA合成酶的活性--答案:c,dI型内含子能利用多种形式的鸟嘌吟,如:( ) --类型:选择题--选择:(a)GMP (b)GDP (c)GTP (d)dGDP (e)ddGMP(2’,3’–双脱氧GMP)--答案:c,dI型内含子折叠成的复杂二级结构:( ) --类型:选择题--选择:(a)有长9bp的核苦酸配对(b)对突变有很大的耐受性(c)形成可结合外来G和金属离子的―口袋‖ (d)使内含子的所有末端都在一起(e)在剪接过程中发生构象重组(f)利用P1和P9螺旋产生催化中心--答案:a,c,eRNase P:( ) --类型:选择题--选择:(a) 其外切核酸酶活性催化产生tRNA成熟的5’末端(b)含有RNA和蛋白组分(c)体内切割需要两个组分(d)体外切割需要两个组分(e)采用复杂的二级与三级结构形成催化位点--答案:a,b,c,e 列出真核生物mRNA与原核生物mRNA的区别。
第4章DNA复制一、填空题1.在DNA合成中负责复制和修复的酶是。
2.染色体中参与复制的活性区呈Y开结构,称为。
3.在DNA复制和修复过程中,修补DNA螺旋上缺口的酶称为4.在DNA复制过程中,连续合成的子链称为,另一条非连续合成的子链称为。
5.如果DNA聚合酶把一个不正确的核苷酸加到3′端,一个含3′→5′活性的独立催化区会将这个错配碱基切去。
这个催化区称为酶。
6.DNA后随链合成的起始要一段短的,它是由以核糖核苷酸为底物合成的。
7.复制叉上DNA双螺旋的解旋作用由催化的,它利用来源于ATP水解产生的能量沿DNA链单向移动。
8.帮助DNA解旋的与单链DNA结合,使碱基仍可参与模板反应。
9.DNA引发酶分子与DNA解旋酶直接结合形成一个单位,它可在复制叉上沿后随链下移,随着后随链的延伸合成RNA引物。
10.如果DNA聚合酶出现错误,会产生一对错配碱基,这种错误可以被一个通过甲基化作用来区别新链和旧链的判别的系统进行校正。
11.对酵母、细菌以及几种生活在真核生物细胞中的病毒来说,都可以在DNA独特序列的处观察到复制泡的形成。
12.可被看成一种可形成暂时单链缺口(I型)或暂时双链缺口(II型)的可逆核酸酶。
13.拓扑异构酶通过在DNA上形成缺口超螺旋结构。
14.真核生物中有五种DNA聚合酶,它们是A. ;B. ;C. ;D. ;E. ;15有真核DNA聚合酶和显示3'→5'外切核酸酶活性。
二、选择题(单选或多选)1.DNA的复制()。
A.包括一个双螺旋中两条子链的合成B.遵循新的子链与其亲本链相配对的原则C.依赖于物种特异的遗传密码D.是碱基错配最主要的来源E.是一个描述基因表达的过程2.一个复制子是()。
A.细胞分裂期间复制产物被分离之后的DNA片段B.复制的DNA片段和在此过程中所需的酶和蛋白质C.任何自发复制的DNA序列(它与复制起点相连)D.任何给定的复制机制的产物(如单环)E.复制起点和复制叉之间的DNA片段3.真核生物复制子有下列特征,它们()。
分子生物学第四章习题作业芮世杭222009317011027 09级一班1,遗传密码具有哪些特性?答:(1)遗传密码子的连续性,(2).密码子有简并性;级一种以上密码子编码同意种氨基酸。
(3).共有64个密码子,其中有1个起始密码子和3个终止密码子;(4).密码子有通用性与特殊性,即不管是病毒、原核生物还是真核生物密码子的含义都是相同的,但在各位生物中也有例外(5)密码子与反密码子存在相互作用。
2,有几种终止密码子?他们的序列别名是设么?答:终止密码子有三种终止密码子(UAG、UGA、UAA),他们并不代表氨基酸,不能与tRNA 反密码子配对,但能被终止因子和释放因子识别,终止肽链合成。
其中终止密码子UAG叫注石(ochre)密码UGA叫琥珀(amber)密码UAA叫蛋白石(opal)密码3,简述摆动学说?答:1996年,由Crick根据立体化学原理提出,解释了反向密码子中某些稀有成的配对,以及许多氨基酸有两个以上密码子的问题。
假说中提出:在密码子与反密码子配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以摆动因而使某些tRNA可以识别1个以上的密码子一个tRNA能识别的密码子是由反密码子第一个碱基决定的。
反密码子第一位为A或C则只能识别一个密码子,若为G或者U则可识别两个密码子。
为I可识别三个密码子。
如果几个密码子同时编码一个氨基酸凡是第一,第二位碱基不同的密码子都对应于各自独立的Trna.4,tRNA在组成及结构上有哪些特点?答:1、tRNA的三叶草型二级结构受体臂(acceptor arm)主要由链两端序列碱基配对形成的杆状结构和3’端末配对的3-4个碱基所组成,其3’端的最后3个碱基序列永远是CCA,最后一个碱基的3’或2’自由羟基(—OH)可以被氨酰化。
TφC臂是根据3个核苷酸命名的,其中φ表示拟尿嘧啶,是tRNA分子所拥有的不常见核苷酸。
反密码子臂是根据位于套索中央的三联反密码子命名的。
分子生物学(烟台大学)烟台大学智慧树知到答案2024年第一章测试1.细胞内蛋白质的生产场所是A:叶绿体 B:核糖体 C:高尔基体 D:线粒体答案:B2.细胞进行有氧呼吸的主要场是A:核糖体 B:高尔基体 C:叶绿体 D:线粒体答案:D3.细胞内遗传信息的储存、复制和转录的主要场所是A:叶绿体 B:线粒体 C:核糖体 D:细胞核答案:D4.在水环境中,非极性分子倾向于聚集起来以减少暴露给水的表面积。
这种引力被称为A:氢键 B:疏水相互作用 C:亲水相互作用 D:范德华力答案:B5.多糖是单糖以( )共价连接而成的聚合体。
A:酯键 B:醚键 C:氢键 D:糖苷键答案:D6.原核生物可以分为两个亚门,即A:真菌 B:古细菌 C:原生动物 D:真细菌答案:BD7.真核生物可以分为四个门,包括A:原生生物 B:微生物 C:植物 D:真菌E E:动物答案:ACDE8.细胞中的生物大分子主要包括A:脂质 B:糖类 C:核酸 D:蛋白质答案:ABCD第二章测试1.天然氨基酸中的环状亚氨基酸是A:苯丙氨酸 B:丝氨酸 C:酪氨酸 D:脯氨酸答案:D2.下列氨基酸中含巯基的是A:苏氨酸 B:半胱氨酸 C:丝氨酸 D:丙氨酸答案:B3.维持蛋白质一级结构稳定的主要化学键是A:肽键 B:二硫键 C:疏水键 D:氢键答案:A4.维持蛋白质二级结构稳定的主要化学键是A:肽键 B:疏水键 C:二硫键 D:氢键答案:D5.亚基是哪种蛋白质结构的基本单位A:四级结构 B:三级结构 C:二级结构 D:一级结构答案:A6.极性带正电荷(碱性氨基酸)包括A:E组氨酸 B:赖氨酸 C:半胱氨酸 D:天冬氨酸 E:精氨酸答案:ABE7.属于芳香族氨基酸的是A:E赖氨酸 B:脯氨酸 C:苯丙氨酸 D:色氨酸 E:酪氨酸答案:CDE8.蛋白质二级结构中存在的构象有A:α-折叠B:β-折叠C:β-螺旋D:α-螺旋答案:BD第三章测试1.核酸的基本组成单位是A:戊糖、碱基和磷酸 B:核苷酸 C:戊糖和磷酸 D:戊糖和碱基答案:B2.下列哪种DNA的Tm值最低A:G+C=65% B:G+C=56% C:A+T=65% D:A+T=56%答案:C3.维持核酸一级结构稳定的主要化学键是A:磷酸二酯键 B:疏水键 C:氢键 D:二硫键答案:A4.DNA的二级结构是A:核小体结构 B:双螺旋结构 C:无规则卷曲结构 D:超螺旋结构答案:B5.DNA是生物遗传物质,而RNA不是。
现代分子生物学第四章作业(5-13题)7011128 牛旭毅,比较原核与真核的核糖体组成答:相同点:核糖体是一个致密的核糖核蛋白颗粒,可以解离为两个亚基,每个亚基都含有一个相对分子质量较大的rRNA和许多不同的蛋白质分子。
不同点:(1)原核生物核糖体由约2/3的RNA及1/3的蛋白质组成。
真核生物核糖体中RNA占3/5,蛋白质占2/5。
(2)大肠杆菌核糖体小亚基由21种蛋白质组成,分别用S1……S21表示,大亚基由33种蛋白质组成,分别用L1……L33表示。
真核生物细胞核糖体大亚基含有49种蛋白质,小亚基有33种蛋白质。
6,什么是SD序列其功能是什么答:定义:因澳大利亚学者夏因(Shine)和达尔加诺(Dalgarno)两人发现该序列的功能而得名。
信使核糖核酸(mRNA)翻译起点上游与原核16S 核糖体RNA或真核18S rRNA 3′端富含嘧啶的7核苷酸序列互补的富含嘌呤的3~7个核苷酸序列(AGGAGG),是核糖体小亚基与mRNA结合并形成正确的前起始复合体的一段序列。
功能:此序列富含A-G,恰与16SRNA3’端富含T-C的序列互补,因此mRNA与核蛋白体sRNA容易配对结合。
因此SD序列对mRNA的翻译起重要作用。
7,核糖体有哪些活性中心答:核糖体有多个活性中心,即mRNA结合部位、结合或接受AA- tRNA部位(A位)、结合或接受肽酰-tRNA的部位(P位)、肽基转移部位及形成肽键的部位(转肽酶中心),此外还应有负责肽链延伸的各种延伸因子的结合位点。
8,真核生物与原核生物在翻译起始过程中有什么区别答:原核生物的起始tRNA是fMet-tRNA(fMet上角标),30s小亚基首先与mRNA模板相结合,再与fMet-tRNA(fMet上角标)结合,最后与50s大亚基结合。
真核生物的起始tRNA是 Met-tRNA(Met上角标),40s小亚基首先与Met-tRNA(Met 上角标)相结合,再与模板mRNA结合,最后与60s大亚基结合生成起始复合物。
一、名词解释:转录:是指以DNA为模板,在依赖于DNA的RNA聚和酶催化下,以4中NTP(ATP、CTP、GTP和UTP)为原料,合成RNA的过程。
转录单位 (transcription unit):从启动子到终止子的序列 (转录起始点)。
模板链(template strand):又称反义链, 指与转录物互补的DNA链(极性方向3’→5’)。
编码链:又称有义链, 指不作模板的DNA单链(极性方向5’→3’)。
hnRNA:核内不均一RNA,是存在于真核细胞核中的不稳定,大小不均一的一组高分子RNA的总称。
转录的极性:转录的效率与转录单位的位置有关。
转录起始:RNA聚合酶与DNA转录启动子结合形成有功能的转录起始复合物的过程。
启动子(Promoters):指DNA分子上被RNA聚合酶、转录调节因子等识别并结合形成转录起始复合物的区域。
核心启动子:RNA聚合酶能够直接识别并结合的启动子。
RNA聚合酶:是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。
C端结构域(CTD):RNApolⅡ的大亚基中有 C 末端结构域。
CTD中含一保守氨基酸序列的多个重复Tyr-Ser p-Pro-Thr p-Ser p-Pro-Ser p C端重复七肽。
沉默子(silencer):沉默子能够同反式因子结合从而阻断增强子及反式激活因子作用并最终抑制该基因的转录活性的真核基因中的一种特殊的序列。
增强子(enhancer):是一类正调控元件,能够从转录起始位点的上游或下游数千个碱基处来激活转录。
绝缘子(insulater):阻断增强子或沉默子的DNA序列。
上游:转录起点上游的序列,是调控区,与转录的方向相反。
下游:转录起点下游的区域,是编码区,与转录的方向一致。
转录起点:+1位点,RNA聚合酶的转录起始位点,起始NTP多为ATP或GTP。
转录泡:在转录时RNA聚合酶Ⅱ(RNAPⅡ)与DNA模板结合,会形成一个泡状结构,成为转录泡。
一、写出英文缩写的全称IF:起始因子EF:伸长因子RF:释放因子ORF:开放读码框架(开放阅读框)open reading frameNLS:核定位序列(Nudear Iocalization signal)二、选择题1.外源基因在大肠杆菌中的高效表达受到很多因素的影响,其中SD序列的作用是( B )A.提供一个mRNA转录终止位点B.提供一个mRNA转录起始子C.提供一个核糖体结合位点D.提供翻译的终点2.与tRNA中的反密码子为GCU相配对的mRNA中的密码子是( B )A. UGAB. CGAC. AGCD. AGI3. 稀有碱基常出现于(C )A. rRNAB. mRNAC. tRNAD. hnRNA4. 下列表述不正确的是(A )A. 共有20个不同的密码子代表遗传密码B. 每个核苷酸三联子编码一个氨基酸C. 不同的密码子可能编码同一个氨基酸D.密码子的第三位具有可变性5. ( B )的密码子可以作为起始密码子。
A. 酪氨酸B.甲硫氨酸C.色氨酸D. 苏氨酸6. 核糖体的E位点是(B )A.真核mRNA的加工位点B. tRNA离开原核生物核糖体的位点C. 核糖体中受EcoRI限制的位点D.真核mRNA起始结合位点7. 关于蛋白质合成描述正确的是( B )A. 转录转录起始位点+1处是蛋白质翻译的起始部位B. 所谓翻译就是把mRNA上携带的碱基序列转变成氨基酸的过程C. 翻译时mRNA上必须有SD序列D. 翻译起始后携带氨基酸的氨酰tRNA首先进入核糖体的A位点8. tRNA在发挥其功能时的两个重要部位是(D )A. 反密码子臂和氨基酸臂B.氨基酸臂和D环C. TψC环与可变环D. TψC环与反密码子臂9. 反密码子的化学性质属于(A )A. tRNAB. mRNAC. rRNAD. DNA三、填空题1. 核糖体上存在三个位点,A位点是新的氨酰tRNA进入的位点,是肽酰tRNA 的结合位点,E位点是空的tRNA释放位点。
分子生物学试题第四章一、名词解释1、translation:将mRNA链上的核苷酸以一个特定的起始位点开始按每3个核苷酸代表一个氨基酸的原则,依次合成一个多肽链的过程2、codon synonymous:对应于同一氨基酸的密码子称为同义密码子3、degeneracy:指密码子的第三个碱基上的变化不会改变它所代表的氨基酸4、wobble hypothesis:摆动假说,在密码子与反密码子配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以摆动,因而使某些tRNA 可以识别1个以上的密码子5、signal hypothesis:信号假说,指分泌蛋白质N-端序列新生肽链连接到膜上的作用,即mRNA和核糖体通过正在合成的蛋白质N-端序列新生肽链连接到膜上的作用6、elongation factors:延伸因子,原核中为EF真核中为eEF,在每一个氨基酸加入多肽链的过程中,周期性作用于核糖体的蛋白质。
7、nuclear localization sequence :在绝大部分细胞真核生物宗,每当细胞发生分裂时,核膜被破坏,等到细胞分裂完成后,核膜被重新建成,分散在细胞内的核蛋白必须被重新运入核内,因此,为了核蛋白重新定位,这些蛋白质中的信号肽。
8、tripletode:mRNA上每三个核苷酸翻译成蛋白质多肽链上的一个氨基酸,这三个核苷酸就称为三联密码子9、无义突变:在蛋白质的结构基因中,一个核苷酸的改变可能使代表某个氨基酸的密码子变成终止密码子,使蛋白质合成提前终止,合成无功能的或无意义的多肽,这种突变称为无义突变11、错义突变:由于结构基因中某个核苷酸的变化使一种氨基酸的密码变成另一种氨基酸的密码12、信号序列:在起始密码子后,有一段编码的疏水性氨基酸序列的RNA区域,这个氨基酸序列就被称为信号序列13、简并:由一种以上密码子编码同一个氨基酸的现象14、initator tRNA:一类能够特异的识别mRNA模板起始密码子的tRNA15、氨酰-tRNA合成酶:一类催化氨基酸与tRNA结合的特异性酶16、翻译运转同步机制:若某个蛋白质的合成和运转是同时发生的,则称翻译运转同步机制17、翻译后运转机制:若蛋白质从核糖体上释放后才发生运转,则称为翻译后运转机制二、判断1、tRNA的三级结构主要由在二级结构中未配对的碱基间形成氢键而引发的(T)2、新生的多肽链大多数是没有功能的,必须经过加工修饰才能转变为有活性的(T)3、分泌蛋白质大多是以翻译-运转同步机制运输的(T)4、通过线粒体膜的蛋白质是合成和运转同时发生的(T)5、无义密码子同等于终止密码子(T)6、三种RNA必须相互作用以起始及维持蛋白质的合成(T)7、体外连接两个核糖体亚基需游离Mg2+存在(T)8、延伸因子EF-Iα促进氨基酰-tRNA进入A位点,经此过程能量由A TP中高能磷酸键断裂提供(F)9、移框校正被认为是一种自然的翻译控制机制(T)10、三种类型的RNA合成酶包括一系列同系核苷酸和结合氨基酸的酶(T)11、核糖体的E位点是原核核糖体上tRNA退出的位点(T)12、模板和反义DNA链可被描述为:模板链可被RNA聚合酶阅读而合成互补的核苷酸-mRNA,这是核糖体蛋白质合成中的有义莲(T)13、The genetic code is the collection of base-sequences that corresponds to each amino acid and to translation signals(T)14、Polypeptide synthesis can be divided into three stages:Initiation、Elongation and termination(T)15、The kind of tRNA:Initiator and Elongation tRNA, same functioned tRNA and proofreading RNA (T)16、UAA、UAG、UGA were Initial genetic codes(F)17、The end genetic code was UAA(F)18、Protein synthesis is taken place in Ribosome(T)19、The process of protein synthesis can be divided into five stages:Amino acyl-tRNA acting initiation of translation. Elongtation of translation and post-translation processing(T)20、Five activate sites in ribosome are mRNA binding site. AA-tRNA binding site. P-site peptide bond formed site and basic peptide site(T)21、许多氨基酸:有多个密码子,除了氨基酸只有一个密码子外,其他氨基酸都有一个以上密码子(F)22、Proper selection of the amino acids for assembly is determined by the positioning of the tRNA molecules, which in turn is determined by hydrogen-bonding between the anticodon of each tRNA molecule and the corresponding codon of the mRNA (T)23、核糖体是蛋白质合成的场所,tRNA是蛋白质合成的模板,mRNA是模板与氨基酸之间的接合体(F)24、一个tRNA究竟能识别多少个密码子不是由反密码子的第一个碱基的性质决定的(T)25、在真核生物中蛋白质的降解依赖于泛素(T)26、因为AUG是蛋白质合成的起始密码子,所以甲硫氨酸只存在于蛋白质的N端()27、无义密码子同等于终止密码子()28、嘌呤霉素是AA-tRNA的结构类似物,能结合在核糖体的A位上,抑制AA-tRNA的进入()29、核糖体使蛋白质的合成场所,mRNA是蛋白质的合成模板,Trna是模板与氨基酸之间的接合体(T)30、遗传密码的性质包括简并性、特殊性、普遍性(T)31、错义突变的校正tRNA通过密码子区的改变把正确的氨基酸添加到肽链上,合成正常的蛋白质(F)32、细菌细胞内存在3种不同的终止因子:RF1、RF2、RF33、原核生物起始tRNA携带fMet,真核生物起始Trna携带Met(T)34、同工tRNA有不同的反密码子以识别该氨基酸的各种同义密码子,但因结构上的差异,不能被AA-Trna合成酶识别(F)35、一个基因错义突变的校正也可能使另一个基因错误翻译(T)36、tRNA与相应氨基酸的结合是蛋白质合成中的关键步骤(T)37、一般说来,相互补的核苷酸越少,30S亚基与mRNA起始位点结合的效率越高(F)38、无义突变是由于结构基因中某个核苷酸的变化使一种氨基酸密码变成另一种氨基酸密码(F)39、5.8SrRNA是原核生物核糖体大亚基特有的Rrna(F)40、肽链延伸由许多循环组成,每加一个氨基酸就是一个循环(T)41、mRNA中存在胱氨酸的密码子,不少蛋白质都含有二硫键(F)42、在生理Mg2+条件下,没有起始密码子的多苷酸不能用作多肽合成的模板(T)43、AA-tRNA合成酶只能识别Trna不能识别氨基酸(F)44、真核生物中,任何一个多肽合成都是从生成甲硫氨酰-tRNAfMet开始的(T)45、三种RNA必须相互作用以起始及维持蛋白质的合成(T)46、在细菌细胞的终止因子中,RF1能识别UGA和UAA,RF2 能识别UAG和UAA,RF3 可能与核糖体的解体有关(F)48、核糖体小亚基最基本的功能是连接mRNA与tRNA,大亚基则催化肽键的形成(T)49、核糖体是一种大分子,两亚基的复合物含有50多种不同的蛋白质和一些rRNA(T)50、核糖体的E位点是原核核糖体上Trna退出的位点(T)51、tRNA的三级结构主要由在二级结构中未配对碱基间形成氢键而引发的(F)52、Trna为双链结构(F)53、分泌蛋白质大多是以翻译-转运同步机制运输的(T)54、无义密码子同等于终止密码子(T)55、体外连接两个核糖体亚基需游离Mg2+的存在(T)55、每个tRNA分子至少含有2个稀有碱基,最多19个(T)三、单项选择1、只有一个密码子的氨基酸是(C)A、ThrB、IleC、TrpD、Phe2、tRNA的二级结构(A)A、三叶草型B、“L”型C、“V”型D、“D”型3、多个代表相同氨基酸的tRNA的二级结构称为(C)A、起始tRNAB、延伸tRNAC、同工tRNAD、校正tRNA4、原核生物肽链延伸每次反应需(C)延伸因子A、1B、2C、3D、45、真核起始因子eIF- 3的功能是(B)A、促进亚基形成起始复合物(eIF-3、GTP、Met-tRNA、40s)B、增强亚基起始复合物4OS亚基与mRNA的5’-末端的结合力C、如果eIF-3和4OS亚基结合,阻止4OS和6OS蒂合D、与mRNA5’-末端的帽子结合。
第四章DNA的生物合成一、选择单选:1、中心法则的内容不包括A.DNA→DNAB.DNA→RNAC.RNA→DNAD.RNA→蛋白质E.蛋白质→RNA2、DNA聚合酶催化的反应不包括A. 催化引物的3'-羟基与dNTP的5'-磷酸基反应B. 催化引物的生成C. 切除引物或突变的DNA片段D. 切除复制中错配的核苷酸E. 催化DNA延长中3'-羟基与dNTP的5'-磷酸基反应3、DNA连接酶A. 使DNA形成超螺旋结构B. 使双螺旋DNA链缺口的两个末端连接C. 合成RNA引物D. 将双螺旋解链E. 去除引物,填补空缺4、DNA连接酶在下列哪一个过程中是不需要的?A. DNA修复B. DNA复制C. DNA断裂和修饰D. 基因工程制备重组DNAE. DNA天然重组5、DNA连接酶作用需要A. GTP供能B. ATP供能C. NAD+供能D. NADP供能E. cAMP供能6、DNA复制起始过程,下列酶和蛋白质的作用次序是:1.DNA-pol Ⅲ;2.SSB;3.引物酶;4.解螺旋酶A.l,2,3,4B. 4,2,3,1C. 3,l,2,4D. 1,4,3,2E. 2,3,4,l7、复制中的RNA引物A. 使DNA-pol Ⅲ活化B. 解开 DNA双链C. 提供5’-P合成DNA链D. 提供3’-OH合成DNA链E. 提供5’-P合成RNA链8、复制起始,还未进人延长时,哪组物质已经出现A. 冈崎片段,复制叉,DNA-pol IB. DNA外切酶、DNA内切酶、连接酶C. RNA酶、解螺旋酶、DNA-pol ⅢD. Dna蛋白,RNA聚合酶,SSBE. DNA拓扑异构酶,DNA-pol Ⅱ,连接酶9、冈崎片段产生的原因是A. DNA复制速度太快B. 双向复制C. 有RNA引物就有冈崎片段D. 复制与解连方向不同E. 复制中DNA有缠绕打结现象10、关于突变,错误的说法是A. 颠换是点突变的一种形式B. 插入1个碱基对可引起框移突变C. 重排属于链内重组D. 缺失5个碱基对可引起框移突变E. 转换属于重排的一种形式11、点突变引起的后果是A. DNA降解B. DNA复制停顿C. 转录终止D. 氨基酸读码可改变E. 氨基酸缺失12、嘧啶二聚体的解聚方式靠A. S.O.S修复B. 原核生物的切除修复C. 重组修复D. 真核生物的切除修复E. 光修复酶的作用13、点突变不会导致A.错义突变B.无义突变C.移码突变D.致死突变E.癌基因激活14、损伤的类型不包括A.错配B.插入和缺失C.DNA重排D.形成胸腺嘧啶二聚体E.DNA变性多选:1、中心法则的内容包括A.DNA半保留复制B.DNA逆转录合成C.DNA修复D.RNA复制E.蛋白质合成2、DNA的复制过程需要A.DNA模板B.dNTPC.NTPD.DNA聚合酶E.引物和Mg2+3、原核生物DNA的复制过程需要30多种酶和蛋白质参加,其中主要有A.解旋酶DnaBB.Ⅰ型拓扑异构酶C.引物酶DnaGD.DNA聚合酶ⅡE.DNA连接酶4、真核生物DNA半保留复制需要A. DNA聚合酶αB. 逆转录酶C. 转肽酶D. 端粒酶E. DNA聚合酶γ5、可能造成框移突变的是A. 转换B. 缺失C. 点突变D. 颠换E. 插入6、DNA复制的特点是A.要合成RNA引物B.是NTP聚合C.形成复制叉D.完全不连续E.半保留复制7、关于原核生物DNA聚合酶,以下叙述正确的是A.催化dNTP按5'→3'方向合成DNAB.其引物可以是DNAC.DNA聚合酶Ⅱ没有5'→3'外切酶活性D.DNA聚合酶Ⅲ延伸能力最强E.切口平移依赖DNA聚合酶的5'→3'外切酶活性和5'→3'聚合酶活性8、真核生物DNA的复制过程在以下哪些方面与原核生物不同?A.复制速度比原核生物慢B.有许多复制起点C.形成多复制子结构D.复制周期长E.存在端粒合成机制9、关于真核生物DNA 端粒的合成,以下叙述正确的是A.端粒DNA含短串联重复序列B.所有端粒末端均为3'端突出结构C.端粒酶本质上是一种逆转录酶D.端粒DNA合成过程还需要引物E.端粒DNA合成过程是一个连续过程10、哪些因素可以造成DNA损伤?A.复制错误B.自发性损伤C.物理因素D.化学因素E.病毒11、那些成分可以导致DNA损伤?A.碱基类似物B.亚硝酸盐C.烷化剂D.染料E.尼古丁12、DNA损伤修复系统包括:A.错配修复B.直接修复C.切除修复D.重组修复E.易错修复13、逆转录酶具有哪些催化活性A.DNA逆转录合成B.DNA复制合成C.水解双链DNAD.水解双链RNAE.水解RNA-DNA杂交体14、逆转录病毒在合成其双链cDNA之前,需先后经过哪两步反应A. 病毒蛋白质的合成B. 转录C. 逆转录D. RNA链的水解E. DNA大量复制二、填空1.DNA的复制过程需要以下物质:dNTP底物、、DNA聚合酶、和Mg2+。
第四章 RNA的生物合成(转录)一、选择题1.关于DNA复制和转录的叙述,错误的是A.在体内只有一条DNA链转录B.两个过程新链合成方向都是5′→3′C.复制的产物通常大于转录的产物D.两过程均需RNA为引物E.聚合酶都需要Mg2+2.Pribnow box 序列是指A.AATAAAB.AAUAAAC.TAAGGCD.TTGACAE.TATAAT3.原核生物的DNA指导的RNA聚合酶核心酶的组成是A.α2ββ′B.α2ββ′σC.ααβ′D.ααβE.αββ′4.能特异性抑制原核生物RNA聚合酶β亚基的是A.利福平B.鹅膏蕈碱C.假尿嘧啶D.亚硝酸盐E.氯霉素5.真核生物中, RNA聚合酶Ⅱ催化生成的直接转录产物是A.mRNAB.18SrRNAC.28S rRNAD.tRNA%@`���8@s=MsoPlainText style="TEXT-INDENT: 5.25pt; LINE-HEIGHT: 18pt">E.hnRNA6.真核生物的转录特点是A.在细胞质内进行B.需要σ因子辨认起始点C.需RNA聚合酶和多种蛋白质因子D.作模板的mRNA寿命最长,最稳定E.真核生物主要有5种RNA聚合酶7.Rho因子的功能是A.结合DNA模板链B.增加RNA合成速率C.参与转录的终止过程D.释放结合的RNA聚合酶E.允许特定转录的起始8.tRNA的转录后稀有碱基的生成不包括A.脱羧反应B.还原反应C.转位反应D.脱氨反应E.甲基化反应9.不属于转录后修饰的是A.腺苷酸聚合B.外显子切除C.5′端加帽子结构D.内含子切除E.甲基化10.snRNA的功能是A.参与DNA复制B.参与RNA的剪接C.激活RNA聚合酶D.形成核糖体E.是rRNA的前体11.转录启始前复合物的形成是指A.RNA聚合酶与TATAAT结合B.RNA聚合酶与TATA序列结合C.多种转录因子与RNA聚合酶、DNA模板结合D.α因子与RNA聚合酶结合E.阻遏物变构后脱离操纵基因的复合物12. 关于tRNA合成的叙述,正确的是A.RNA聚合酶I参与tRNA前体的生成B.tRNA前体需切除5'和3'末端多余的核苷酸C.tRNA前体中不含内含子D.tRNA3'-末端需加上ACC-OHE.tRNA前体不需化学修饰加工13. 真核生物mRNA剪接作用的叙述,错误的是A.将hnRNA中的内含子剪切掉,最终成为成熟mRNAB.内含子序列起始为GU,终止于AG C.mRNA前体的剪接过程需要进行三次转酯反应D.UsnRNP是构成剪接体的组分E.U2snRNP识别并与内含子的分支点结合14. 大肠杆菌RNA链合成的方向是A.3'→5'B.C→NC.N→CD.5'→3'E.3'→5'或5'→3'15. 哺乳动物经转录作用生成的mRNA是A.内含子B.单顺反子C.多顺反子D.间隔区序列E.插入序列16. 真核生物RNA合成受鹅膏蕈碱影响最大的是A.45S-rRNAB.hnRNAC.S-rRNAD.tRNAE.snRNA17.核酶是指A.DNA酶B.RNA酶C.催化作用在细胞核内的酶D.逆转录酶E.具催化作用的RNA18. 在生物界尚无充足证据过程的是A.DNA→RNAB.RNA→DNAC.DNA→DNAD.RNA→ RNAE.蛋白质→RNA19. DNA分子上可被RNA聚合酶特异识别的部位是A.弱化子B.操纵子C.启动子D.终止子E.沉默子二、名词解释1. 不对称转录(asymmetric transcription)2. 断裂基因(splite gene)3. 外显子和内含子(exon and intron)4. 剪接体(splicesome)三、问答题1.简述原核生物与真核生物中的启动子结构特点及功能。
《分子生物学》习题答案《分子生物学》课后习题第1章绪论1.简述孟德尔、摩尔根和Waston等人对分子生物学发展的主要贡献。
孟德尔是遗传学的奠基人,被誉为现代遗传学之父。
他通过豌豆实验,发现了遗传学三大基本规律中的两个,分别为分离规律及自由组合规律。
摩尔根发现了染色体的遗传机制,创立染色体遗传理论,是现代实验生物学奠基人。
于1933年由于发现染色体在遗传中的作用,赢得了诺贝尔生理学或医学奖。
Watson于1953年和克里克发现DNA双螺旋结构_(包括中心法则),获得诺贝尔生理学或医学奖,被誉为“DNA之父”。
2.写出DNA、RNA、mRNA和siRNA的英文全名。
DNA:deoxyribonucleic acid 脱氧核糖核酸RNA:ribonucleic acid 核糖核酸mRNA:messenger RNA 信使RNAtRNA:transfer RNA 转运RNArRNA:ribosomal RNA 核糖体RNAsiRNA:small interfering RNA 干扰小RNA3.试述“有其父必有其子”的生物学本质。
其生物学本质是基因遗传。
子代的性状由基因决定,而基因由于遗传的作用,其基因的一半来自于父方,一般来自于母方。
4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。
1)肺炎链球菌转化实验:外表光滑的S型肺炎链球菌(有荚膜多糖→致病性);外表粗糙R型肺炎链球菌(无荚膜多糖)。
①活的S型→注射→实验小鼠→小鼠死亡②死的S型(经烧煮灭火)→注射→实验小鼠→小鼠存活③活的 R型→注射→实验小鼠→小鼠存活④死的S型+活的R型→实验注射→小鼠死亡⑤分离被杀死的S型菌体的各种组分+活的R型菌体→注射→实验小鼠→小鼠死亡(内只有死的S型菌体的DNA转化R型菌体导致致病菌)*DNA是遗传物质的载体2)噬菌体侵染细菌实验①细菌培养基35S标记的氨基酸+无标记噬菌体→培养1-2代→子代噬菌体几乎不含带有35S标记的蛋白质②细菌培养基32N标记的核苷酸+无标记噬菌体→培养1-2代→子代噬菌体含有30%以上32N标记的核苷酸*噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。
分子生物学第四章习题作业芮世杭222009317011027 09级一班1,遗传密码具有哪些特性?答:(1)遗传密码子的连续性,(2).密码子有简并性;级一种以上密码子编码同意种氨基酸。
(3).共有64个密码子,其中有1个起始密码子和3个终止密码子;(4).密码子有通用性与特殊性,即不管是病毒、原核生物还是真核生物密码子的含义都是相同的,但在各位生物中也有例外(5)密码子与反密码子存在相互作用。
2,有几种终止密码子?他们的序列别名是设么?答:终止密码子有三种终止密码子(UAG、UGA、UAA),他们并不代表氨基酸,不能与tRNA 反密码子配对,但能被终止因子和释放因子识别,终止肽链合成。
其中终止密码子UAG叫注石(ochre)密码UGA叫琥珀(amber)密码UAA叫蛋白石(opal)密码3,简述摆动学说?答:1996年,由Crick根据立体化学原理提出,解释了反向密码子中某些稀有成的配对,以及许多氨基酸有两个以上密码子的问题。
假说中提出:在密码子与反密码子配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以摆动因而使某些tRNA可以识别1个以上的密码子一个tRNA能识别的密码子是由反密码子第一个碱基决定的。
反密码子第一位为A或C则只能识别一个密码子,若为G或者U则可识别两个密码子。
为I可识别三个密码子。
如果几个密码子同时编码一个氨基酸凡是第一,第二位碱基不同的密码子都对应于各自独立的Trna.4,tRNA在组成及结构上有哪些特点?答:1、tRNA的三叶草型二级结构受体臂(acceptor arm)主要由链两端序列碱基配对形成的杆状结构和3’端末配对的3-4个碱基所组成,其3’端的最后3个碱基序列永远是CCA,最后一个碱基的3’或2’自由羟基(—OH)可以被氨酰化。
TφC臂是根据3个核苷酸命名的,其中φ表示拟尿嘧啶,是tRNA分子所拥有的不常见核苷酸。
反密码子臂是根据位于套索中央的三联反密码子命名的。
现代分子生物学第3版【第四章】课后习题答案第4章生物信息的传递(下)——从mRNA到蛋白质一、遗传密码有哪些特性?连续性,简并性,通用性和特殊性,摆动性。
二、有几种终止密码子?它们的序列和别名是什么?有三种终止密码子:UAA(赭石密码),UAG(琥珀密码),UGA(蛋白石密码)。
三、简述摆动学说1、根据摆动学说,在密码子与反密码子的配对中,前两对严格遵守碱基配对原则,第三对碱基有一定的自由度,可以“摆动”,使某些tRNA可以识别1个以上的密码子。
2、一个tRNA可以识别的密码子数量由反密码子的第一位碱基性质决定:反密码子第一位为A或C时可以识别1种密码子,为G或U时可以识别2种密码子,为I时可以识别3种密码子。
3、如果几个密码子同时编码一个氨基酸,凡是第一、二位碱基不同的密码子都对应于各自独立的tRNA。
四、tRNA在组成和结构上有哪些特点?1、所有tRNA的共同特征:①存在经过特殊修饰的碱基,②tRNA的3’端都以CCA-OH结束,该位点连接相应的氨基酸。
2、稀有碱基含量非常丰富,约有70余种。
3、二级结构为三叶草形,由4条手臂组成:受体臂,TψC臂,反密码子臂,D臂。
4、三级结构为L形:受体臂位于其中一个端点,反密码子臂位于另一个端点,即两个不同的功能基团处于最大程度的分离状态。
五、比较原核与真核的核糖体组成。
原核与真核的核糖体均由大小两个亚基组成。
核糖体大亚基小亚基蛋白质:RNA原核生物70s 50s(RNA:5s,23s)30s(RNA:16s)2:1真核生物80s 60s(RNA:5s,28s,5.8s)40s(RNA:18s)3:2六、什么是SD序列?其功能是什么?1、原核生物mRNA翻译起点上游存在一段富嘌呤区(5’-AGGAGGU-3’),能与核糖体小亚基16s RNA的3’端富嘧啶区互补结合,使mRNA与核糖体形成翻译起始前复合物。
2、作用:通过mRNA的SD序列,核糖体小亚基能够专一性识别和选择mRNA翻译起始位点,有助于翻译起始过程准确进行。
分子生物学第一章测试1-选择题1.分子生物学的诞生标志是:B DNA双螺旋结构模型的确立2.()年完成了人类基因组序列图:D 20033.分子生物学研究的内容不包括以下哪一项: C 影响生命活动的环境因素4.以下有关分子生物学的说法,哪一项不正确:A 数学和计算机科学这两门科学知识的学习对分子生物学研究工作不重要。
5.目前研究者对于衰老的机制提出了多种学说,不包括以下哪个学说:C细胞衰老学说第一章测试2-判断题1.细胞增殖涉及的信号转导途径有许多,而细胞分化涉及的信号转导途径很少。
×2.分子生物学是当前生命科学研究中发展最快的前沿领域。
√3.从广义上讲,分子生物学囊括了现代生物学在分子水平的绝大部分内容。
√4.大量的致病基因和疾病相关基因被陆续发现........取得了一定突破性进展。
√5.细胞增殖是指同一来源的细胞逐渐发生各自特有的形态结构、生理功能和蛋白质合成等的过程。
×第二章测试1-选择题1.Downs sydrome为()染色体数目畸变。
B三倍体2.下列哪种遗传病可通过染色体检查可确诊()D Klinefelter综合征3.D组或C组染色体与21号染色体...称为()D 罗伯逊易位4.根据Denver体制,X染色体应归为哪一组()C C组5.经检查,某患者的核型为46.....为()患者 D 染色体部分丢失。
第二章测试2-判断题1.染色质和染色体是同一物质在细胞分裂期间和分裂期的不同形态表现。
√2.笼统来说,凡是因遗传因素导致的疾病均称为遗传病,又称染色体病。
×3.大多数染色体疾病在一出生的时候就已经显示出病状了。
×4.多倍体细胞就是指细胞内染色体多了一条或几条。
×5.一个染色体臂的一段移接到另一....称为易位。
√第三章测试1-选择题1.下列哪个属于细胞凋亡的特点()D 溶酶体保持完整2.下列哪个属于细胞坏死的特点()C 细胞器肿胀破坏3.下列哪个不属于细胞凋亡的生理意义()D造成炎症反应4.细胞凋亡的形态学改变不包括()B细胞肿胀增大5.细胞凋亡的生化改变不包括()A包浆中钙离子浓度降低第三章测试2-判断题1.蝌蚪变青蛙的过程中,....通过细胞凋亡实现的。
第4章DNA复制一、填空题1.在DNA合成中负责复制和修复的酶是。
2.染色体中参与复制的活性区呈Y开结构,称为。
3.在DNA复制和修复过程中,修补DNA螺旋上缺口的酶称为4.在DNA复制过程中,连续合成的子链称为,另一条非连续合成的子链称为。
5.如果DNA聚合酶把一个不正确的核苷酸加到3′端,一个含3′→5′活性的独立催化区会将这个错配碱基切去。
这个催化区称为酶。
6.DNA后随链合成的起始要一段短的,它是由以核糖核苷酸为底物合成的。
7.复制叉上DNA双螺旋的解旋作用由催化的,它利用来源于ATP水解产生的能量沿DNA链单向移动。
8.帮助DNA解旋的与单链DNA结合,使碱基仍可参与模板反应。
9.DNA引发酶分子与DNA解旋酶直接结合形成一个单位,它可在复制叉上沿后随链下移,随着后随链的延伸合成RNA引物。
10.如果DNA聚合酶出现错误,会产生一对错配碱基,这种错误可以被一个通过甲基化作用来区别新链和旧链的判别的系统进行校正。
11.对酵母、细菌以及几种生活在真核生物细胞中的病毒来说,都可以在DNA独特序列的处观察到复制泡的形成。
12.可被看成一种可形成暂时单链缺口(I型)或暂时双链缺口(II型)的可逆核酸酶。
13.拓扑异构酶通过在DNA上形成缺口超螺旋结构。
14.真核生物中有五种DNA聚合酶,它们是A. ;B. ;C. ;D. ;E. ;15有真核DNA聚合酶和显示3'→5'外切核酸酶活性。
二、选择题(单选或多选)1.DNA的复制()。
A.包括一个双螺旋中两条子链的合成B.遵循新的子链与其亲本链相配对的原则C.依赖于物种特异的遗传密码D.是碱基错配最主要的来源E.是一个描述基因表达的过程2.一个复制子是()。
A.细胞分裂期间复制产物被分离之后的DNA片段B.复制的DNA片段和在此过程中所需的酶和蛋白质C.任何自发复制的DNA序列(它与复制起点相连)D.任何给定的复制机制的产物(如单环)E.复制起点和复制叉之间的DNA片段3.真核生物复制子有下列特征,它们()。
A.比原核生物复制子短得多,因为有末端序列的存在B.比原核生物复制子长得多,因为有较大的基因组C.通常是双向复制且能融合D.全部立即启动,以确保染色体的S期完成复制E.不是全部立即启动,在任何给定的时间只有大约15%具有活性4.下述特征是所有(原核生物、真核生物和病毒)复制起始位点都共有的是()。
A.起始位点是包括多个短重复序列的独特DNA片段B.起始位点是形成稳定二级结构的回文序列C.多聚体DNA结合蛋白专一性识别这些短的重复序列D.起始位点旁侧序列是A-T丰富的,能使DNA螺旋解开E.起始位点旁侧序是G-C丰富的,能稳定起始复合物5.下列关于DNA复制的说法正确的有()。
A.按全保留机制进行B.按3′→5′方向进行C.需要4种dNMP的参与D.需要DNA连接酶的作用E.涉及RNA引物的形成F.需要DNA聚合酶I6.标出下列所有正确的答案。
()A.转录是以半保留的方式获得两条相同的DNA链的过程B.DNA依赖的DNA聚合酶是负责DNA复制的多亚基酶C.细菌转录物(mRNA)是多基因的D.σ因子指导真核生物的hnRNA到mRNA的转录后修饰E.促旋酶(拓扑异构酶II)决定靠切开模板链而进行的复制的起始和终止7.在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸?()A.DNA聚合酶III B.DNA聚合酶II C.DNA聚合酶I D.外切核酸酶MFI E.DNA 连接酶8.使DNA超螺旋结构松驰的酶是()。
A.引发酶B.解旋酶C.拓扑异构酶D.端粒酶E.连接酶9.从一个复制起点可分出几个复制叉?()A.1 B.2 C.3 D.4 E.4个以上三、判断题1.大肠杆菌中,复制叉以每秒500bp的速度向前移动,复制叉前的DNA以大约定3000r/min的速度旋转。
( ) (如果复制叉以每秒500个核苷酸的速度向前移动,那么它前面的DNA 必须以500/10.5=48周/秒的速度旋转,即2880r/min)2.所谓半保留复制就是以DNA亲本链作为合成新子链DNA的模板,这样产生的新的双链DNA分子由一条旧链和一条新链组成。
( )3.“模板”或“反义” DNA链可定义为:模板链是被RNA聚合酶识别并合成一个互补的mRNA,这一mRNA是蛋白质合成的模板。
( )4.DNA复制中,假定都从5'→3'同样方向读序时,新合成DNA链中的核苷酸序列同模板链一样。
( ) (尽管子链与亲本链因为碱基互补配对联系起来,但子链核苷酸序列与亲链又很大不同)5.DNA的5′→3′合成意味着当在裸露3′→OH的基团中添加dNTP时,除去无机焦磷酸DNA链就会伸长。
( )6.在先导链上DNA沿5′→3′方向合成,在后随链上则沿3′→5′方向合成。
( )7.如果DNA沿3'→5'合成,那它则需以5'三磷酸或3'脱氧核苷三磷酸为末端的链作为前体。
( )8.大肠杆菌DNA聚合酶缺失3′→5′校正外切核酸酶活性时会降低DNA合成的速率但不影响它的可靠性。
( )9.DNA的复制需要DNA聚合酶和RNA聚合酶。
( )10.复制叉上的单链结合蛋白通过覆盖碱基使DNA的两条单链分开,这样就避免了碱基配对。
( ) (单链结合蛋白与磷酸骨架结合,离开暴露碱基)11.拓扑异构酶I和II可以使DNA产生正向超螺旋。
()12.拓扑异构酶I解旋需要ATP酶。
()13.RNA聚合酶I合成DNA复制的RNA引物。
()14.当DNA两条链的复制同时发生时,它是由一个酶复合物,即DNA聚合酶III负责的。
真核生物的复制利用三个独立作用的DNA聚合酶,Polα的一个拷贝(为了起始)和Polδ的两个拷贝(DNA多聚体化,当MF1将RNA引发体移去之后填入)。
( )四、简答题1.在DNA聚合酶III催化新链合成以前发生了什么反应?2.DNA复制起始过程如何受DNA甲基化状态影响?3.DNA连接酶对于DNA的复制是很重要的,但RNA的合成一般却不需要连接酶。
解释这个现象的原因。
4.曾经认为DNA的复制是全保留复制,每个双螺旋分子都作为新的子代双螺旋分子的模板。
如果真是这样,在Meselson和Stahl的实验中他们将得到什么结果?5.描述Matthew和Franklin所做的证明DNA半保留复制的实验。
6.解释在DNA复制过程中,后随链是怎样合成的。
答案一、填空1. DNA聚合酶2. DNA复制叉3. DNA连接酶4. 先导链后随链5. 校正核酸外切 6. RNA引物DNA引发酶7. DNA解旋酶8. 单链结合蛋白(SSB)9. 引发体10. 错配校正(错配修复)11. 复制起点12. DNA拓扑酶13. 松弛14.αβγδε 15. δε二、选择1.BD2.C3.C4.ACD5.DEF6. BC7. C8.C9.B三、判断√√√X√X√X√X XXX√四、简答1.在DNA聚合酶III催化新链合成以前发生了什么反应?答:DnaA(与每9个碱基重复结合,然后使13个碱基解链)、DnaB(解旋酶)和DnaC(先于聚合酶III与原核复制起点相互作用。
后随链复制需要引发体完成的多重复制起始,引发体由DnaG引发酶与多种蛋白质因子组成。
2.DNA复制起始过程如何受DNA甲基化状态影响?答:亲本DNA通常发生种属特异的甲基化。
在复制之后,两模板-复制体双链DNA是半甲基化的。
半甲基化DNA对膜受体比对DnaA有更高的亲和力,半甲基化DNA不能复制,从而防止了成熟前复制。
3.DNA连接酶对于DNA的复制是很重要的,但RNA的合成一般却不需要连接酶。
解释这个现象的原因。
答:DNA复制时,后随链的合成需要连接酶将一个冈崎片段的5'端与另一冈崎片段的3'端连接起来。
而RNA合成时,是从转录起点开始原5'→3'一直合成的,因此不需DNA连接酶。
4.曾经认为DNA的复制是全保留复制,每个双螺旋分子都作为新的子代双螺旋分子的模板。
如果真是这样,在Meselson和Stahl的实验中他们将得到什么结果?答:复制一代后,一半为重链,一半为轻链;复制两代后,1/4为重链,3/4为轻链。
5.描述Matthew和Franklin所做的证明DNA半保留复制的实验。
答:(1)将大肠杆菌在15N培养基中培养多代,得到的DNA两条链都被标记,形成重链。
(2)细胞移到14N培养基中培养,提取DNA;(3)将DNA进行氯化铯密度梯度离心,;(4)经过一定时间后,DNA在离心管聚集成带,每个带的密度均与该点的氯化铯溶液的密度相同;(5)照相决定每条带的位置和所含的DNA量。
1)经15N培养基,所有DNA都聚集在一条重密度带;2)经14N培养基一代后,所有的DNA形成一条中间密度带;3)经14N继续培养基一代,DNA一半是中间密度带,另一半是轻密度带;4)最后,他们证明第一代的分子是双链,且为半保留复制。
6.解释在DNA复制过程中,后随链是怎样合成的。
答:DNA聚合酶只能朝5'→3'方向合成DNA,后随链不能像前导链一样一直进行合成。
后随链是以大量独立片段(冈崎片段)合成的,每个片段都以5'→3'方向合成,这些片段最后由连接酶连接在一起。
每个片段独立引发、聚合、连接。