s 1 9 9 , k 8; 当k=81时0 ,执10行第二次循环,此时s=
当k=7时,执行第三次循环,此时s=
故判断框内应填的条件为s> .
7 10
,k9=78; 4 ,1k0=69;结束5 循环. 4 7 7 5 8 10
第二十七页,共47页。
(2)算法(suàn fǎ)框图如图所示:
第二十八页,共47页。
【方法技巧】应用(yìngyòng)循环结构设计框图时应注意的三个对应 关系
第二十九页,共47页。
【变式训练】画出求4+
1 的值的算法(suàn fǎ)框图.
4
4
4
1
1 1
4
1
【解析】算法(suàn fǎ)框图如图: 4
第三十页,共47页。
【补偿(bǔcháng)训练】画出求1×2×4×…×249的值的算法框图. 【解析】
第三十四页,共47页。
(2)计数变量用n表示,学生的成绩用r表示. 算法步骤如下: 第一步,把计数变量n的初始值设为1. 第二步,输入一个成绩r,比较r与85的大小,若r>85,则输出r,然后执 行下一步;若r≤85,执行下一步. 第三步,使计数变量n的值增加1. 第四步,判断n与54的大小,若n≤54,返回(fǎnhuí)第二步;若 n>54,结束.
s 10 5 . 答6 案:6 3
5 3
第四十一页,共47页。
【规范(guīfàn)解答】设计循环结构求最值 【典例】(12分)(2014·济南高一检测)画出满足 12+22+32+…+n2>20142的最小正整数n的算法框图.
第四十二页,共47页。
【审题】抓信息(xìnxī),找思路