电子科技大学半导体物理学课件——半导体中的电子状态
- 格式:pdf
- 大小:989.25 KB
- 文档页数:19
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态在现代科技的宏伟画卷中,半导体无疑是一颗璀璨的明珠。
从智能手机到超级计算机,从新能源汽车到航天航空,半导体的身影无处不在。
而要深入理解半导体的奇妙特性,关键就在于探究半导体中的电子状态。
让我们先来了解一下什么是半导体。
半导体,顾名思义,其导电性能介于导体和绝缘体之间。
常见的半导体材料有硅、锗等。
在半导体中,电子的行为和在导体、绝缘体中有着显著的差异。
在半导体晶体中,原子按照一定的规律紧密排列,形成晶格结构。
电子所处的能态不再是像在自由空间中那样连续分布,而是被分成一系列离散的能级,这些能级形成了所谓的能带。
能带可以分为导带和价带。
价带是能量较低的能带,其中的电子被原子束缚得较为紧密,一般情况下不能参与导电。
而导带是能量较高的能带,其中的电子能够在电场的作用下自由移动,从而形成电流。
在绝对零度时,半导体中的电子刚好填满价带,而导带中则没有电子。
随着温度的升高,部分电子会获得能量,从价带跃迁到导带,在导带中形成自由电子,同时在价带中留下空穴。
自由电子和空穴都能参与导电,这是半导体导电的关键机制。
半导体中的电子状态还受到杂质的显著影响。
杂质原子可以分为施主杂质和受主杂质。
施主杂质能够释放出电子,增加导带中的电子浓度;受主杂质则能够接受电子,增加价带中的空穴浓度。
通过控制杂质的种类和浓度,可以精确地调节半导体的导电性能,这就是半导体掺杂技术。
比如在硅晶体中掺入少量的磷元素,磷是五价原子,在与硅原子形成共价键时,会多出一个电子。
这个电子很容易进入导带,使硅成为 n 型半导体,电子成为主要的载流子。
而如果掺入少量的硼元素,硼是三价原子,会形成一个空穴,使硅成为 p 型半导体,空穴成为主要的载流子。
半导体中的电子状态还与晶体缺陷有关。
晶体缺陷会在能带中引入能级,影响电子的跃迁和导电过程。
此外,外电场的作用也会改变半导体中电子的状态。
当施加外电场时,电子和空穴会在电场力的作用下发生定向移动,形成电流。
半导体物理学黄整教材:¾《半导体物理学》,刘恩科等编著3固体材料分类绝缘体半导体导体超导体什么是半导体?固体材料分类:绝缘体、半导体、导体、超导体gapgap4硼碳氮氧铝硅硫磷锌镓锗硒镉铟锡锑碲砷5经典描述:x,y,z,t适于描述晶体中原子核的运动定态描述:p x,p y,p z,E适于描述晶体中电子的运动k x,k y,k z,Er r,k E,kν也可用于描述晶体中原子核的振动能谱7一、晶体结构单胞对于任何给定的晶体,形成晶体结构的最小单元称为单胞注:(a)单胞无需是唯一的(b)单胞无需是基本的10三维立方单胞简立方体心立方BCC 面立方FCC11金刚石型晶体结构1。
金刚石型晶体结构原子结合形式:共价键原子结合形式共价键晶体结构:构成一个正四面体,具有金刚石晶体结构12111⎛⎞,,444⎜⎟⎝⎠()0,0,0具有金刚石型结构的半导体有:闪锌矿型晶体结构2。
闪锌矿型晶体结构具有闪锌矿型晶体结构的半导体有:化合物半导体14如GaAs 、InP 、ZnS纤锌矿型晶体结构3。
纤锌矿型晶体结构具有纤锌矿型晶体结构的半导体有:化合物半导体如ZnS、Z S G S G S ZnSn、GeS、GeSn15二、电子状态和能带原子的能级电子壳层不同支壳层电子¾1s;2s,2p;3s,2p,3d;…共有化动共有化运动16Si原子的能级量子化的电子能级n=34个价电子n=28个电子+14总共14个电子n=12个电子Array17Si原子的能级的分裂孤立原子的能级4个原子能级的分裂18大量原子的能级分裂为能带19Si的能带(价带、导带和带隙)价带导带和带隙20222k E m =h E 0为k 的多值函数,标为E m4m =4m =2m =3m =1布里渊区第一布里渊区面心立方(FCC )晶格的布里渊区k 空间为BCC 结构第一布里渊区27十四面体第一布里渊区第一布里渊区π⎛⎜3a π⎞⎟⎠(20,0,0a πΓ:k⎝210,0,2aπ⎛⎞⎜⎟:2111,,444L aπ⎛⎜:2⎟⎝⎠⎝⎠固体材料的能带30绝缘体、半导体和导体31半导体的本征激发:价带上的电子受热激发到导带的过程。
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态半导体是一种在电性能上介于导体和绝缘体之间的材料。
半导体中的电子状态对于半导体器件的特性和性能起着至关重要的作用。
本文将探讨半导体中的电子状态,并介绍与之相关的几个重要概念。
1. 能带结构半导体中的电子状态与能带结构密切相关。
能带是将材料中的电子能级按照能量高低进行分类的一种方式。
在半导体中,一般存在两个主要的能带,即价带和导带。
价带是电子处于较低能量状态的能带,而导带则是电子处于较高能量状态的能带。
能带之间的能隙决定了电子的跃迁行为。
2. 杂质能级半导体中的杂质能级是指由掺入杂质引起的局部能量水平。
掺杂是通过向半导体中引入少量的杂质元素改变其电子状态。
掺入五价元素(如磷)会产生施主能级,该能级位于导带上方,提供自由电子;而掺入三价元素(如硼)会产生受主能级,该能级位于价带下方,吸收自由电子。
杂质能级的引入对半导体器件的性能起着决定性作用。
3. 载流子在半导体中,载流子是负责电荷传输的粒子。
主要有电子(负载流子)和空穴(正载流子)两种类型。
在纯净的半导体中,电子和空穴的浓度相等,称为本征半导体。
通过掺杂,可以改变载流子的浓度,从而实现半导体的导电性的调控。
4. 载流子的浓度与掺杂浓度的关系半导体材料的光、热、电等特性与掺杂浓度有关。
掺杂浓度越高,材料的导电性能越好。
在一定范围内,载流子浓度与掺杂浓度成正比。
然而,过高的掺杂浓度可能导致材料中的杂质能级相互重叠,从而影响器件的性能。
5. 半导体的禁带宽度禁带宽度是指价带和导带之间的能量间隔,决定了半导体材料的电导率。
半导体的禁带宽度较小,比绝缘体的小,但比导体的大。
通过控制禁带宽度,可以实现对半导体的电学性质调控。
总结:本文讨论了半导体中的电子状态。
通过对能带结构、杂质能级、载流子浓度与掺杂浓度关系,以及禁带宽度等概念的介绍,我们可以更好地理解半导体器件的工作原理和性能特点。
半导体物理作为一门重要的学科领域,对于现代电子技术的发展和应用具有重要意义。
第三章 半导体中的电子状态半导体独特的物理性质与其内部电子的运动状态密切相关。
本章扼要介绍一些有关的基本概念。
§3-1 电子的运动状态和能带§3-1-1孤立原子和自由空间中的电子状态为了便于理解半导体中的电子运动状态和能带的概念,先复习一下孤立原子中的电子状态和能级﹑自由空间中的电子状态和能谱的概念。
一.原子中的电子状态和能级。
原子是由带正电荷的原子核和带负电荷的电子组成的,原子核的质量远大于电子的质量。
因此,可认为电子是在原子核的库仑引力作用下绕着原子核运动的。
电子绕原子核运动遵从量子力学规律,处于一系列特定的运动状态,这些特定状态称量子态或电子态。
在每个量子态中,电子的能量(能级)是确定的。
处于确定状态的电子在空间的几率分布是一定的。
在讨论原子中的电子运动时,也常采用经典力学的“轨道”概念,不过其实际含义是指电子在空间运动的一个量子态和几率分布。
按“轨道”概念,对于原子中的电子,能级由低到高可分为E 1﹑E 2﹑E 3 ﹑E 4..等,分别对应于1s ﹑2s ﹑2p ﹑3s …等一系列量子态。
如图3-1所示,内层轨道上的电子离原子核近,受到的库仑束缚作用强,能级低。
越往外层,电子受到的束缚越弱,能级越高。
总之,在单个原子中,电子运动的特点是其运动状态为一些局限在原子核周围的局域化量子态,其能级取一系列分立值。
二.自由空间中的电子状态和能谱。
根据量子力学理论,在势场不随位置变化的自由空间中,电子的运动状态满足下面的定态薛定谔方程)()()(222r k E r mψψ=∇- (3-1) 该方程的解为平面波:r k i k e Vr ⋅=1)(ψ )(22)(222222z y x k k k mm k k E ++== (3-2)其中,)(r k ψ称波函数,)(k E 称能量谱值或本征值,V 为空间体积,k 为平面波的波矢,其大小为波长倒数的2π倍,即k=2π/λ。
这里k 也起着量子数的作用,用来标志自由电子的运动状态。