第9章_波动光学xtjd-1分析
- 格式:ppt
- 大小:463.00 KB
- 文档页数:8
物理中的波动光学引言:波动光学作为物理学中的一个重要分支,研究的是光在传播过程中的行为和性质。
它是解释光的传播、衍射、干涉、偏振等现象的基础,对于理解光学现象、应用光学技术具有重要意义。
本教案将以波动光学为主题,探索波动光学的基本概念、原理和实际应用。
一、波动光学概述1. 光的波动性介绍a. 光的本质:电磁波b. 光的波动性体现:干涉、衍射等现象2. 光的传播与波动a. 光的传播介质:真空、介质b. 光的传播速度:光速与介质折射率的关系二、波动光学基本原理1. 光的最小分割单位:光子a. 波粒二象性:光既是粒子又是波动2. 光的波动性质a. 光的特性:波长、频率、振幅b. 光的传播方向:球面波、平面波3. 光的相位和相干性a. 相位差:定性描述光的波形差异b. 相干性:两个或多个光波之间的相位关系4. 光的干涉现象a. 光的叠加原理:干涉现象的基础b. 干涉的分类:分为构造干涉和破坏干涉c. 干涉的应用:光栅、干涉仪、光波导等5. 光的衍射现象a. 衍射的定义:光在通过一个绕过或遮挡障碍物后发生波的传播方向的偏折b. 衍射的特点:产生波动条纹、衍射极限等现象c. 衍射的应用:衍射光栅、衍射成像等6. 偏振光与偏振现象a. 偏振光的特点:仅在一个方向上振动的光b. 偏振现象的发生:透过偏振片、反射、折射等过程发生三、波动光学的实际应用1. 光的干涉与衍射在光学仪器中的应用a. 光学显微镜:干涉衍射成像原理b. 光栅光谱仪:利用干涉衍射原理实现光谱分析c. 激光干涉仪:利用激光的相干性进行精密测量2. 偏振光在光学技术中的应用a. 偏振滤波器:实现光的选择性吸收和透过b. 偏振显微镜:观察和分析材料的结构和性质c. 偏振光干涉仪:测量材料的特性和形貌3. 波动光学技术在通信领域的应用a. 光纤通信:利用光的波导特性传输信息b. 光栅、光波导器件:实现光的调制、分光和耦合等功能四、思考与延伸1. 如何利用波动光学的原理,设计更高效、更精密的光学仪器和设备?2. 波动光学与量子光学有哪些联系和区别?它们在光学研究和应用中的地位如何?3. 波动光学的发展对科技与人类社会有哪些深远影响?如何将其应用于解决现实生活中的问题?结语:波动光学是光学领域中一门重要的学科,对于我们理解光的本质和应用光学技术具有重要的意义。
第九章波动光学§9.4 分振幅法获得相干光《大学物理》校级精品课程教学团队2干涉现象的研究思路:1. 找出两束相干光;2. 列出光程差δ的具体表达式;3. 根据干涉条件确定明、暗纹的位置;4. 分析条纹的分布特征。
一、薄膜干涉分振幅干涉:在波阵面的同一点上分出的两束光,这两束光再相遇时形成干涉。
CB AC ==反射光束2和光束3的光程差:\222e n d \=-薄膜上下表面反射光的光程差:薄膜上下表面反射光的光程差:2. 当n1、n2一定时,光程差1)确定所研究的薄膜2)画图,标出已知条件及所求薄膜上、下表面的反射光3)写出薄膜上、下表面反射光的2l +=为所研究薄膜n 3(或n 1 n 3(或n 1 ★半波损失的确定8例题9.4.1:如图所示,为使透镜(n 3=1.50)透射的黄绿光(λ= 550nm )加强,求最少要镀上多厚的增透膜MgF 2(n 2=1.38)。
MgF 2玻璃n 2= 1.38n 3=1.50n 1 = 1三个光束实际上是重合的,为了讨论方便,把它们画开了。
解:入射角i≈0 ,设增透膜厚为消减弱,则光程差为(注意λ,无半波损失)作业9-9:在一块玻璃基片上交替镀上不同材料的多层介质膜,组成一个反射式滤波片,使它能对波长为99%以上。
已知高折射率介质为( 12 4 ke=使膜最薄,则k=1二、等厚干涉等厚干涉的特点是光线垂直膜表面入射,由于膜厚度不均匀,干涉条纹形成在膜表面。
获得等厚干涉的典型装置l 明纹和暗纹出现的条件为:=+=2ne l dl 相邻明纹(或暗纹)所对应的薄膜厚度之差:D e =e k+1-e k = l /2n2. 牛顿环牛顿环装置是在一块光学平面玻璃片上放一曲率半径l应用:求平凸透镜的半径R:由几何关系可知(R–e)2+r2三、迈克耳孙干涉仪1.迈克耳孙干涉仪构造反射镜M22半透半反膜2.迈克耳孙干涉仪工作原理光束2和1发生干涉。
等倾条纹M2不严格垂直,不严格平行,劈尖干涉Þ等厚条纹(明暗相间条纹)各种干涉条纹及M 2M 1¢M 2M 1¢M 2M 1¢M 1¢M 2M 1¢M 2M 2M 1¢M 2M 1¢M 2M 1¢M 1¢M 2M 1¢M 2(a)(a)(b)(b)(c)(c)(d)(d)(e)(e)(f)(f)(g)(g)(h)(h)(i)(i)(j)(j)2d n lD =D ×由等厚干涉原理,任意两相邻明纹(或暗纹)所对应的M ¢、M 间空气层厚度差为:3.迈克耳逊干涉仪的应用例题9.4.4:迈克尔逊干涉仪实验中,当条纹移2d n l D =D ×讨论:放入厚度为'M-=n e N l2(1)干涉条纹移动数目224. 相干长度(时间相干性)由于a、b不是相干光,24作业:P246:9-3 ,P247:9-9。
大学物理波动光学总结引言波动光学是大学物理中的一门重要课程,研究光的传播和干涉衍射现象。
本文将对大学物理中的波动光学进行总结和归纳,内容包括光的波动性质、干涉现象、衍射现象等。
光的波动性质光既具有粒子性质又具有波动性质,可以通过以下实验证明:- 杨氏双缝实验:将一个点光源照射到一个有两条细缝的屏幕上,观察到在屏幕背后的墙上出现一系列亮暗相间的干涉条纹。
实验证明光的干涉现象,说明光具有波动性质。
- 光的衍射现象:光通过某个孔洞或物体边缘时,会沿着扩散波的方式传播,形成衍射图样。
光的衍射现象同样证明了光的波动性质。
干涉现象干涉是两个或多个波相遇时产生的现象,具有以下特点: 1. 干涉是波动性质的直接表现,只有至少两束波才能产生干涉现象。
2. 干涉分为相干干涉和非相干干涉。
相干干涉是指波源的频率和相位相同或相近,非相干干涉指波源的频率和相位差异较大。
3. 干涉现象包括等厚干涉、薄膜干涉、牛顿环等。
等厚干涉等厚干涉是在等厚体(如平行板)两个表面之间形成的干涉现象,具有以下特点: - 干涉条纹的间距是由波长、介质折射率差和等厚体厚度决定的。
- 等厚干涉的应用包括测量薄膜厚度、判断材料性质等。
薄膜干涉薄膜干涉是在薄膜表面和基底表面之间形成的干涉现象,具有以下特点: - 薄膜干涉的颜色随着入射光的颜色和薄膜厚度的改变而改变。
- 薄膜干涉的应用包括光学镀膜、光学仪器等领域。
牛顿环牛顿环是一种由大气中的薄膜产生的干涉现象,具有以下特点: - 牛顿环是由于光的不同波长在大气中的衍射和干涉引起的。
- 牛顿环的中心位置与基座材料的折射率有关,可用于测量折射率。
衍射现象衍射是波传播过程中遇到障碍物或传播介质发生扰动时发生的现象,具有以下特点: 1. 衍射现象是波动性质的直接表现,与波的传播方式密切相关。
2. 衍射现象包括单缝衍射、双缝衍射、衍射光栅等。
单缝衍射单缝衍射是在缝隙较小的板上通过光时产生的衍射现象,具有以下特点: - 单缝衍射的衍射图样主要包括中央最亮的主极大和两侧的次级最暗区。