理论力学第一章参考答案
- 格式:pdf
- 大小:502.85 KB
- 文档页数:64
第一章静力学公理和物体的受力分析一、选择题与填空题1.C2.ACD3.A, B两处约束力的方向如图所示60°第二章平面力系一、选择题与填空题■1. B; D。
2. B。
3. F;向上。
4. B。
5. 4^M;方向与水平线成60角,指向 23L右下。
6. 10kN; 10kN ; 5kN; 5kN。
7. 100kN;水平向右。
二•计算题1. F B - -70 KN F AX =70 KN ,F Ay =120 KN , M A二-30KN m2. F AX - -qa F BX二 F qa F Ay =qa F F By 二 qa - F3. F= -5kN F Dy = 4.33kN F E-4.33kN F C =24.41kND xF B^ -17.08kN F AX=F BX = -5kN l^y = -14.08kN M A=T4.66kN mF AX =10N FAy =20N M A =15N mF CD =14.1N6F Ax=2.5kN F Ay=—2.16kN M A=」kN ,m F c =20.33kN7 F B=40kNF AX = —10kNFA ^-20kN M -50kN m F cx = 40kNF ey = 0F HX =300N F Hy =100N第三章空间力系少2(-8. F A ^ = -100N F Ay 二-300N F Ex 二-300N F Ey =100N F °y 二 200N整=一一A > X Y m 一:J E £c X一、选择题与填空题f—- - Fa 6 Fa 1.B。
2.B。
3. M x(F)=O ; M y(F) —H2 44.F x=-40.2N; F y=30-2N; M z=240.2 N m。
5.F z= F sin :;F y= F cos :cos :;M x(F)二 F(ccos'cos : bsin )。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
理论力学(郝桐生)第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1)研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
解:(1) 研究铰E,受力分析,画力三角形:由图知:(2) 研究铰C,受力分析,画力三角形:由图知:习题2-7.夹具中所用的两种连杆增力机构如图所示,书籍推力P作用于A点,夹紧平衡时杆AB与水平线的夹角为;求对于工件的夹紧力Q和当α=10o时的增力倍数Q/P。
理论⼒学第⼀章题及解答(⽂末)第⼀章思考题1.1平均速度与瞬时速度有何不同?1.2 在极坐标系中,r v r =,θθ r v =.为什么2θ r r a r-=⽽⾮r ?为什么θθ r r a 20+=⽽⾮θθ r r +?你能说出r a 中的2θ r -和θa 中另⼀个θ r 出现的原因和它们的物理意义吗?1.3 在内禀⽅程中,n a 是怎样产⽣的?为什么在空间曲线中它总沿着主法线⽅向?当质点沿空间运动时,副法线⽅向的加速度b a 等于零,⽽作⽤⼒在副法线⽅向的分量b F ⼀般不等于零,这是不是违背了⽜顿运动定律呢?1.4 在怎样的运动中只有τa ⽽⽆n a ?在怎样的运动中⼜只有n a ⽽⽆τa ?在怎样的运动中既有n a ⽽⽆τa ?1.5dt r d 与dt dr 有⽆不同?dt v d与dtdv 有⽆不同?试就直线运动与曲线运动分别加以讨论. 1.6⼈以速度v 向篮球⽹前进,则当其投篮时应⽤什么⾓度投出?跟静⽌时投篮有何不同?1.7⾬点以匀速度v 落下,在⼀有加速度a 的⽕车中看,它⾛什么路经?1.8某⼈以⼀定的功率划船,逆流⽽上.当船经过⼀桥时,船上的渔竿不慎落⼊河中.两分钟后,此⼈才发现,⽴即返棹追赶.追到渔竿之处是在桥的下游600⽶的地⽅,问河⽔的流速是多⼤?1.9物体运动的速度是否总是和所受的外⼒的⽅向⼀致?为什么?1.10在那些条件下,物体可以作直线运动?如果初速度的⽅向和⼒的⽅向⼀致,则物体是沿⼒的⽅向还是沿初速度的⽅向运动?试⽤⼀具体实例加以说明.1.11质点仅因重⼒作⽤⽽沿光滑静⽌曲线下滑,达到任⼀点时的速度只和什么有关?为什么是这样?假如不是光滑的将如何?1.12为什么被约束在⼀光滑静⽌的曲线上运动时,约束⼒不作功?我们利⽤动能定理或能量积分,能否求出约束⼒?如不能,应当怎样去求?1.13质点的质量是1千克,它运动时的速度是k j i v 323++=,式中i 、j 、k 是沿x 、y 、z 轴上的单位⽮量。
第一章静力学公理和物体的受力分析一、是非判断题1.1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ∨ ) 1.1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( × )1.1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( × ) 1.1.4 力的可传性只适用于刚体,不适用于变形体。
( ∨ ) 1.1.5 两点受力的构件都是二力杆。
( × ) 1.1.6只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( × ) 1.1.7力的平行四边形法则只适用于刚体。
( × ) 1.1.8 凡矢量都可以应用平行四边形法则合成。
( ∨ ) 1.1.9 只要物体平衡,都能应用加减平衡力系公理。
( × ) 1.1.10 凡是平衡力系,它的作用效果都等于零。
( × ) 1.1.11 合力总是比分力大。
( × ) 1.1.12只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( × ) 1.1.13若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ∨ ) 1.1.14当软绳受两个等值反向的压力时,可以平衡。
( × ) 1.1.15静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ∨ ) 1.1.16静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
( ∨ ) 1.1.17 凡是两端用铰链连接的直杆都是二力杆。
( × ) 1.1.18 如图所示三铰拱,受力F ,F1作用,其中F作用于铰C的销子上,则AC、BC构件都不是二力构件。
( × )二、填空题1.2.1 力对物体的作用效应一般分为 外 效应和 内 效应。
1.2.2 对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。
第一章 基本概念及基本原理[习题1-1] 支座受力F ,已知kN F 10=,方向如图所示, 求力沿y x ,轴及沿'',y x 轴分解的结果,并求力F 在各轴上的投影.解:(1)F 沿y x ,轴分解的结果把F 沿y x ,轴分解成两个分力,如图所示. →→→→=⨯==i i i F F x 66.8866.01030cos 0)(kN →→→→=⨯==j j j F F y 55.01030sin 0)(kN (2)F 沿'',y x 轴分解的结果把F 沿'',y x 轴分解成两个分力,如图所示. 由图可知,力三角形是等腰三角形.故:→→→==''10'i i F F x )(kN→→→-=⨯-=''018.575cos 102'j j F y )(kN (3) F 在y x ,轴上的投影)(66.8866.01030cos 0kN F F x =⨯==)(55.01030sin 0kN F F y =⨯== (4) F 在'',y x 轴上的投影)(66.8866.01030cos 0'kN F F x =⨯==)(59.275cos 1075cos 00'kN F F y -=-=-=[习题1-2] 已知N F 1001=,N F 502=,N F 603=N F 804=,各力方向如图所示,试分别求各力在x 轴y 轴上的投影. 解:)(6.86866.010030cos 011N F F x =⨯==)(505.010030sin 011N F F y =⨯==)(305350cos 222N F F x =⨯==α力沿x,y 轴的分解图力沿x ’,y ’轴的分解图力沿x ’,y ’轴的投影图xF yFy 'x F ')(405450sin 222N F F y -=⨯-=-=α 0060cos 333=⨯==αF F x)(60160sin 333N F F y =⨯==α)(57.56135cos 80cos 0444N F F x -===α)(57.56135sin 80sin 0444N F F y ===α[习题1-3] 计算图中321,,F F F 三个力分别在z y x ,,轴上的投影.已知kN F 21=,kN F 12= , kN F 33=. 解:)(2.16.025311kN F F x -=⨯-=⨯-= )(6.18.025411kN F F y =⨯=⨯=01=z F)(424.05345sin 1cos sin 02222kN F F x =⨯⨯==θγ )(566.05445sin 1sin sin 02222kN F F y=⨯⨯==θγ)(707.045cos 1cos 0222kN F F z =⨯==γ03=x F03=y F)(333kN F F z ==[习题1-4] 已知kN F T 10=,求T F 分别在z y x ,,轴上的投影. 解:(591.75353510sin 22222F F T Txy =+++⨯==γ)(51.6355591.7cos 22kN F F Txy Tx =+⨯==θ题1-2图)3,)0,)(91.3353591.7sin 22kN F F Txy Ty =+⨯==θ)(51.6535510cos 222kN F F T Tz -=++⨯-=-=γ[习题1-5] 力F 沿正六面体的对角线AB 作用,kN F 100=,求F 在ON 上的投影. 解:如图所示,F 在AC 线上的投影为:)(345.88400300400400400100cos 22222kN CAB F F F OB AC =+++⨯===5.0400200tan ==NOD 057.265.0arctan ==NOD 00043.1857.2645=-=BONF 在ON 线上的投影为:)(811.8343.18cos 345.88cos 0kN BON F F O B O N ===[习题1-6] 已知N F 10=,其作用线通过A(4,2,0),B(1,4,3)两点,如图所示.试求力F 在沿CB 的T 轴上的投影. 解: 61.313)42()14(22==-+-=AD69.413361.322==+=AB 2361.322=-=DGF 在AD 上的投影为:M)(697.769.461.310cos N BAD F F AD =⨯== )(40.669.4310sin N BAD F F z =⨯==)(264.461.32697.7cos N ADG F F AD y =⨯==)(396.661.33697.7sin N ADG F F AD x =⨯==F 在T 轴上的投影为:)(251.75340.654264.4cos cos kN ECB F BCD F F z y T =⨯+⨯=+= [习题1-7] 图中圆轮在力F 和矩为M 的力偶作用下保持平衡,这是否说明一个力可与一个力偶平衡? 解:图中圆轮在力F 和矩为M 的力偶作用下保持平衡,这不能说明一个力可与一个力偶平衡.因为轮子的圆心处 有支座,该支座反力R 与F 构成一力偶,力偶矩),(F R M 与M 等值,共面,反向,故圆轮保持平衡.[习题1-8] 试求图示的力F 对A 点之矩,已知m r 2.01=m r 5.02=,N F 300=.010012030cos 60sin )30sin (60cos )(r F r r F F M A ⋅+--=)(15232.023300)5.02.05.0(5.0300)(m N F M A ⋅-=⨯⨯⨯+⨯-⨯-= [习题1-9] 试求图示绳子张力T F 对A 点及对B 点的矩.已知kN F T 10=,m l 2=,m R 5.0=,030=α.解:)(530sin 10sin 0kN F F T Tx ===α)(66.830cos 10cos 0kN F F T Ty ===α )(732.1866.0260sin 0m l OC =⨯==)(15.0260cos 0m l AC =⨯==)()()(Ty A Tx A T A F M F M F M +=)30cos 5.01(66.8)30sin 5.0732.1(500+⨯+-⨯-=)(5m kN ⋅=)()()(Ty B Tx B T B F M F M F M +=)30cos 5.01(66.8)30sin 5.0732.1(500-⨯--⨯-=)(320.12m kN ⋅-=[习题1-10] 已矩正六面体的边长为c b a ,,,沿AC 作用一力F ,试求力F 对O 点的矩矢量表达式. 解:zy xF F F c bak j iF M →→→=)(0式中,2222222222cos cos c b a Fa b a a c b a b a F F F x ++-=+⋅+++⋅-=⋅-=θγ2222222222sin cos cb a Fb ba b cb a b a F F F y ++-=+⋅+++⋅-=⋅-=θγ222222sin cb a Fc cb ac F F F z ++=++⋅==γ故cb ac b ak j i c b a FF M --++=→→→2220)(cc bak j i c b a F200222→→→++=baj ic c b a F→→⋅++=2222)(2222→→-++=j a i b c b a cF[习题1-11] 钢绳AB 中的张力kN F T 10=.写出该张力T F 对O 点的矩的矢量表达式.解:2)21()01(22=-+-=BC2318)04()12()10(222==-+-+-=ABzy xF F F k j iF M 42)(0→→→=式中,)(357.22123210cos cos kN F F T Tx =⋅⋅=⋅=θγ )(357.22123210sin cos kN F F T Ty -=⋅⋅-=⋅-=θγ)(428.923410sin kN F F T Tz -=⋅-=-=γ故428.9357.2357.2420)(0--=→→→k j i F M 357.2357.24428.9357.22---=→→→→jiki)(357.24)357.2428.9(2→→→→--⨯---=j i k i →→→-+-=k j i 714.4428.9428.9[习题1-12] 已知力→→→→+-=k j i F 32,其作用点的位置矢→→→→++=k j i r A 423,求力F 对位置矢为→→→→++=k j i r B 的一点B 的矩(力以N 计,长度m 以计).A解:→→→→→⨯-=⨯=F r r F r F M B A AB B )()(式中,→→→→++=k j i r A 423,→→→→++=k j i r B ,=-→→)(B A r r →→→++k j i 312 →→→→+-=k j i F 32故, =)(F M B ⨯++→→→)312(k j i )32(→→→+-k j i=-=→→→132312k j i=--→→→240312k j i 23522---→→→→k k j i 5222---=→→→k j i)425(2→→→+---=k j i→→→-+=k j i 8410 )(m N ⋅[习题1-13] 工人启闭闸门时,为了省力,常常用一根杆子插入手轮中,并在杆的一端C 施加力,以转动手轮.设手轮直径m AB 6.0=,AC 轩长m l 2.1=,在C 端用N F C 100=的力能将闸门开启,若不借用杆子而直接在手轮A,B 施加力偶),('F F ,问F 至少应多大才能开启闸门? 解:支座O 反力O R 与C F 构成一力偶),(0C F R 若要闸门能打开,则),('F F 与),(0C F R 必须 等效,即它们的力偶矩相等:)3.02.1(1006.0-⨯=⨯F )(150N F =[习题1-14] 作下列指定物体的示力图.物体重量,除图上已注明者外,均略去不计.假设接触处都是光滑的.。
理论力学部分第一章 静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
( )2.两端用光滑铰链连接的构件是二力构件。
( )3.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
( )4.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
( )5.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
( )6.约束反力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
( )二、选择题1.若作用在A 点的两个大小不等的力1F 和2F ,沿同一直线但方向相反。
则其合力可以表示为 。
① 1F -2F ;② 2F -1F ;③ 1F +2F ;2.三力平衡定理是 。
① 共面不平行的三个力互相平衡必汇交于一点;② 共面三力若平衡,必汇交于一点;③ 三力汇交于一点,则这三个力必互相平衡。
3.在下述原理、法则、定理中,只适用于刚体的有 。
① 二力平衡原理; ② 力的平行四边形法则;③ 加减平衡力系原理; ④ 力的可传性原理;⑤ 作用与反作用定理。
4.图示系统只受F 作用而平衡。
欲使A 支座约束力的作用线与AB 成30︒角,则斜面的倾角应为________。
① 0︒; ② 30︒;③ 45︒; ④ 60︒。
5.二力A F 、B F 作用在刚体上且0=+B A F F ,则此刚体________。
①一定平衡; ② 一定不平衡;③ 平衡与否不能判断。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
3.作用在刚体上的两个力等效的条件是。
4.在平面约束中,由约束本身的性质就可以确定约束力方位的约束有,可以确定约束力方向的约束有,方向不能确定的约束有(各写出两种约束)。
.第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)b(杆ABa(球A ))c(杆AB、CD、整体)d(杆AB、CD、整体)e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体.第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体.第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体,还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点,该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型,在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量,力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中,只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A )b(杆ABd(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重,所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体)d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’,所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时,若选用不同的直角坐标系,则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N,放在水平梁AC的中央,如图所示。
理论力学习题答案精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】静力学第一章习题答案1-3 试画出图示各结构中构件AB 的受力图1-4 试画出两结构中构件ABCD 的受力图1-5 试画出图a 和b 所示刚体系整体合格构件的受力图1-5a 1-5b1- 8在四连杆机构的ABCD 的铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡。
试求二力F 1和F 2之间的关系。
解:杆AB ,BC ,CD 为二力杆,受力方向分别沿着各杆端点连线的方向。
解法1(解析法)假设各杆受压,分别选取销钉B 和C 为研究对象,受力如图所示:由共点力系平衡方程,对B 点有:对C 点有:解以上二个方程可得:221362F F =F 2F BCF ABB45oyxF BCF CDC 60oF 130oxy解法2(几何法)分别选取销钉B 和C 为研究对象,根据汇交力系平衡条件,作用在B 和C 点2F =对C 点由几何关系可知: 0130cos F F BC =解以上两式可得:2163.1F F =静力学第二章习题答案2-3 在图示结构中,二曲杆重不计,曲杆AB 上作用有主动力偶M 。
试求A 和C 点处的约束力。
解:BC 为二力杆(受力如图所示),故曲杆AB 在B 点处受到约束力的方向沿BC 两点连线的方向。
曲杆AB 受到主动力偶M 的作用,A 点和B 点处的约束力必须构成一个力偶才能使曲杆AB 保持平衡。
AB 受力如图所示,由力偶系作用下刚体的平衡方程有(设力偶逆时针为正):其中:31tan =θ。
对BC 杆有:aM F F F A B C 354.0=== A ,C 两点约束力的方向如图所示。
2-4F CD F AB解:机构中AB 杆为二力杆,点A,B 出的约束力方向即可确定。
由力偶系作用下刚体的平衡条件,点O,C 处的约束力方向也可确定,各杆的受力如图所示。