初中七年级数学直方图
- 格式:doc
- 大小:308.00 KB
- 文档页数:8
10.2 直方图要点感知1频数分布直方图的制作过程:(1)计算最大值与最小值的__________;(2)决定组距和__________;(3)列__________;(4)画__________.预习练习1-1 为绘制一组数据的频数分布直方图,首先要算出这组数据的变动范围,即是指数据的( )A.最大值B.最小值C.个数D.最大值与最小值的差要点感知2 把所有数据分成若干组,每个小组的__________之间的距离称为组距.组距和组数__________的标准.当数据在100个以内时,按照数据的多少,常分成__________组.各个小组内的__________叫做频数.预习练习2-1在对n个数据进行整理的频数分布表中,各组的频数之和等于( )A.nB.1C.2nD.3n2-2 如果一组数据共有100个,则通常分成( )A.3~5组B.5~12组C.12~20组D.20~25组要点感知3 频数分布直方图中,小长方形的高的比就是各小组__________的比.各小组频数的和是__________,各小组的频率之和等于__________.预习练习3-1 (2012·丽水)为了解某中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图),估计该校男生的身高在169.5 cm~174.5 cm之间的人数有( )A.12B.48C.72D.96知识点1 认识直方图1.某频数分布直方图中,共有A,B,C,D,E五个小组,频数分别为10,15,25,35,10,则直方图中,长方形高的比为( )A.2∶3∶5∶7∶2B.1∶3∶4∶5∶1C.2∶3∶5∶6∶2D.2∶4∶5∶4∶22.(2013·三明)八年级(1)班全体学生参加了学校举办的安全知识竞赛.如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是__________.知识点2 补全频数分布直方图3.(2014·黄石)为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?4.(2013·丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( )A.16人B.14人C.4人D.6人5.对某校同龄的70名学生的身高进行测量,得到一组数据,其中最大值是175 cm,最小值是149 cm,对这组数据进行整理时,可得到其极差(最大值与最小值的差)为__________,如果确定它的组距为3 cm,那么组数为__________.6.(2013·内江改编)随着车辆的增加,交通违规的现象越来越严重.交警对某雷达测速区监测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):注:30~40为时速大于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?挑战自我7.(2013·南京)某校有2 000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了150名学生进行抽样调查.整理样本数据,得到下列图表:(1)理解画线语句的含义,回答问题:如果150名学生全部在同一个年级抽取,这样的抽取是否合理?请说明理由;(2)根据抽样调查的结果,将估计出的全校2 000名学生上学方式的情况绘制成条形统计图:(3)该校数学兴趣小组结合调查获取的信息,向学校提出了一些建议.如:骑车上学的学生数约占全校的34%,建议学校合理安排自行车停车场地.请你结合上述统计的全过程,再提出一条合理化建议:____________________.参考答案课前预习要点感知1差组数频数分布表频数分布直方图预习练习1-1 D要点感知2 两个端点没有固定5~12 数据的个数预习练习2-1 A2-2 B要点感知3 频数数据总数 1预习练习3-1 C当堂训练1.A2.30%3.(1)200-(35+40+70+10)=45,补图略;(2)设抽了x人,则20040=40x,解得x=8;(3)依题意知:获一等奖的人数为200×25%=50,则一等奖的分数线是80分.课后作业4.A5.26 cm 96.(1)0.18 78 56 0.28(2)如果汽车时速不低于60千米即为违章,则违章车辆共有76辆.7.(1)不合理.因为如果150名学生全部在同一个年级抽取,那么全校每个学生被抽到的机会不相等,样本不具有代表性.(2)图略.(3)答案不唯一,下列解法供参考:乘私家车上学的学生约400人,建议学校与交通部门协商安排停车区域.。
频数直方图一、频数直方图概念1.频数:数字出现的次数有的多有的少,或者说它们出现的频繁程度不同,我们称每个对象出现的次数为频数。
注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.2.频率:每个对象出现次数与总次数的比值为频率。
3.组数:把全体样本分成的组的个数称为组数.4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。
5.极差:是指一组数据中最大数据与最小数据的差。
组距=极差除以组数二、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。
画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组。
三、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为组距是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.四、制作频数分布直方图的步骤1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.五、频数分布折线图的制作我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.六、条形图和直方图的区别1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,把组距看成“1”,用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙七、与统计图有关的数学思想方法1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.方形的高度之比就是各组内数据个数之比.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】直方图知识讲解责编:康红梅【学习目标】1. 会制作频数分布表,理解频数分布表的意义和作用;2. 会画频数分布直方图,理解频数分布直方图的意义和作用.【要点梳理】要点一、组距、频数与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数:落在各小组内数据的个数.3.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.要点诠释:(1)求频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表;(2)频数之和等于样本容量.(3)频数分布表能清楚、确切地反映一组数据的大小分布情况,将一批数据分组,一般数据越多,分的组也越多,当数据在100个以内时,按数据的多少,常分成5~12组,在分组时,要灵活确定组距,使所分组数合适,一般组数为最大值-最小值组距的整数部分+1.要点二、频数分布直方图1.频数分布直方图:是以小长方形的面积来反映数据落在各个小组内的频数的大小,直方图由横轴、纵轴、条形图三部分组成.(1)横轴:直方图的横轴表示分组的情况(数据分组);(2)纵轴:直方图的纵轴表示频数;(3)条形图:直方图的主体部分是条形图,每一条是立于横轴之上的一个长方形、底边长是这个组的组距,高为频数.2.作直方图的步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.要点诠释:(1)频数分布直方图简称直方图,它是条形统计图的一种.(2)频数分布直方图用小长方形的面积来表示各组的频数分布,对于等距分组的数据,可以用小长方形的高直接表示频数的分布.【:数据的描述 369923 直方图和条形图的联系与区别:】3.直方图和条形图的联系与区别:(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.要点三、频数分布折线图频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数分布折线图.【典型例题】类型一、组距、频数与频数分布表的概念1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_____.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10 (2)10.【解析】解:(1)利用频数的定义进行分析;(2)利用组数的计算方法求解.【总结升华】组数的确定方法是,设数据总数目为n,一般地,当n≤50时,则分为5~8组;当50≤n<100.则分为8~12组较为合适,组数等于最大值与最小值的差除以组距所得商的整数部分加1.举一反三:【变式】(2015•大庆模拟)将100个数据分成①~⑧组,如下表所示:组号①②③④⑤⑥⑦⑧频数 4 8 12 24 18 7 3那么第④组的频率为()A.24 B.26 C.0.24 D.0.26【答案】C.解:根据表格中的数据,得第④组的频数为100﹣(4+8+12+24+18+7+3)=24,其频率为24:100=0.24.类型二、频数分布表或直方图2.(2015•黄石)九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.【思路点拨】利用合格的人数即50﹣4=46人,除以总人数即可求得.【答案】92%.【解析】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.类型三、频数分布折线图3.抽样检查40个工件的长度,收集到如下一组数据(单位:cm):23.26 23.27 23.52 23.51 23.43 23.42 23.54 23.55 23.6623.67 23.31 23.30 23.27 23.28 23.41 23.40 23.55 23.5623.44 23.43 23.38 23.39 23.63 23.64 23.54 23.56 23.4623.44 23.48 23.46 23.50 23.53 23.55 23.46 23.44 23.4523.47 23.49 23.50 23.46试列出这组数据的频数分布表.画出频数分布直方图和频数折线圈.【思路点拨】利用频数分布直方图画频数折线图时,折线图的两个端点要与横轴相交,其方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到轴两端假想组的组中点,就形成了频数折线图.【答案与解析】解:列频数分布表如下:根据上表,画出频数分布直方图;连接各小长方形上面一条边的中点及横轴上距直方图左右相距半个组距的两个频数为0的点得到频数折线图(如图所示).【总结升华】本例分组采用了“每组端点比数据多一位小数”,即第一组的起点比数据的最小值再小一点的方法.体会这种分组方法的优势,对我们今后的学习很有帮助.类型四、综合应用4. 低碳发展是今年深圳市政府工作报告提出的发展理念,近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动,根据调查数据制作了频数分布直方图(每组均含最小值,不含有最大值)和扇形统计图,下图中从左到右各长方形的高度之比为2:8:9:7:3:1.(1)已知碳排放值5≤x<7(千克/平方米·月)的单位有16个,则此次行动共调查了________个单位;(2)在图②中,碳排放值5≤x<7(千克/平方米·月)部分的圆心角为_________度;(3)小明把图①中碳排放值1≤x<2的都看成1.5,碳排放值2≤x<3的都看成2.5,依此类推,若每个被检查单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________吨.【思路点拨】(1)先算出碳排放值在5≤x<7范围内所对应的比例,再求一共调查了多少个单位;(2)由碳排放值在5≤x<7范围内所占的比例,可计算出圆心角度数;(3)先计算碳排放值4≤x<5的单位、碳排放值5≤x<6的单位,碳排放值6≤x<7的单位个数,再算出碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值.【答案与解析】解:(1)16÷430=120(个),故填120;(2)4÷30×360°=48°,故填48;(3)碳排放值x≥4(千克/平方米·月)的被检单位是第4,5,6组,分别有28个、12个、4个单位,10000×(28×4.5+12×5.5+4×6.5)÷1000=10×(126+66+26)=2180(吨).所以,碳排放值x≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为2180吨.【总结升华】解答本题的关键是将直方图提供的信息转化为频数分布表.这种“转化”过程对解题大有帮助,值得学习和借鉴.举一反三:【变式】 (山东德州)2011年5月9日至14日,德州市订共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=________,n=________,x=________,y=________;(2)在扇形图中,C等级所对应的圆心角是________度;(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?【答案】解:(1)20,8,0.4,0.16; (2)57.6;(3)由上表可知达到优秀和良好的共有19+20=39(人),500×3939050(人).初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。
人教版七年级数学下册10.2.2《直方图(2)》教学设计一. 教材分析《直方图(2)》是人教版七年级数学下册第十章第二节的一部分,主要内容是直方图的绘制和应用。
本节课通过实例让学生进一步掌握绘制直方图的方法,并能运用直方图解决一些实际问题。
教材内容由浅入深,循序渐进,符合学生的认知规律。
二. 学情分析七年级的学生已经掌握了条形图、折线图等基本图表的知识,具备了一定的图表绘制和分析能力。
但是,对于直方图的绘制和应用,部分学生可能还比较陌生。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出直方图的概念,并通过实例让学生加深对直方图的理解。
三. 教学目标1.知识与技能:掌握直方图的绘制方法,能运用直方图解决一些实际问题。
2.过程与方法:通过合作学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的创新意识和实践能力。
四. 教学重难点1.重点:直方图的绘制方法。
2.难点:如何从实际问题中抽象出直方图,以及如何运用直方图解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入直方图的概念,引导学生从实际问题中抽象出直方图。
2.合作学习法:分组讨论,共同完成直方图的绘制和分析,培养学生的团队协作能力。
3.实践教学法:让学生动手操作,实际绘制直方图,提高学生的实践能力。
六. 教学准备1.教学课件:制作直方图的教学课件,包括实例、动画、练习等。
2.教学素材:收集一些实际问题,用于引导学生运用直方图解决。
3.直方图绘制软件:准备直方图绘制软件,方便学生实际操作。
七. 教学过程1.导入(5分钟)利用生活实例,如调查学校七年级学生的身高情况,引导学生思考如何用图表表示这些数据。
通过分析条形图、折线图等图表的局限性,引出直方图的概念。
2.呈现(15分钟)展示一些实际问题,让学生运用直方图进行分析。
如:某地区居民的年龄分布情况、某商品的质量分布情况等。
引导学生从实际问题中抽象出直方图的概念,并学会绘制直方图。
人教版七年级数学下册10.2.1《直方图(1)》教学设计一. 教材分析《直方图(1)》是人教版七年级数学下册第10.2.1节的内容,主要介绍了频数分布表和直方图的概念,以及如何利用直方图获取数据分布的信息。
通过本节内容的学习,学生能够了解频数分布表和直方图的基本知识,掌握绘制直方图的方法,并能够通过直方图分析数据的分布特征。
二. 学情分析学生在之前的学习中已经掌握了统计学的一些基本概念,如平均数、中位数、众数等。
但他们对频数分布表和直方图的认识可能还不够深入,需要通过实例来进一步理解和掌握。
此外,学生可能对如何利用直方图分析数据的分布特征还不够了解,需要通过实践来提高。
三. 教学目标1.知识与技能目标:学生能够理解频数分布表和直方图的概念,掌握绘制直方图的方法,并能够通过直方图获取数据分布的信息。
2.过程与方法目标:学生能够通过合作交流,培养解决问题的能力。
3.情感态度与价值观目标:学生能够体验数学与生活的联系,提高学习数学的兴趣。
四. 教学重难点1.重点:频数分布表和直方图的概念,绘制直方图的方法。
2.难点:如何通过直方图分析数据的分布特征。
五. 教学方法采用讲授法、示范法、实践法、讨论法等多种教学方法,引导学生通过观察、思考、操作、交流等活动,掌握直方图的知识。
六. 教学准备1.教学素材:教材、直方图示例、练习题等。
2.教学工具:黑板、粉笔、投影仪等。
七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾之前学过的统计学知识,如平均数、中位数、众数等,为新课的学习做好铺垫。
呈现(10分钟)教师通过讲解和示范,向学生介绍频数分布表和直方图的概念,以及如何绘制直方图。
同时,教师可以通过展示实际例子,让学生直观地感受直方图的特点和作用。
操练(10分钟)学生分组进行实践活动,每组根据给定的数据绘制对应的直方图。
教师在旁边进行指导,解答学生的问题。
巩固(10分钟)教师提出一些有关直方图的问题,让学生进行思考和讨论。
第十章数据的收集、整理与描述第16讲统计调查与直方图知识导航1.数据的收集方式及选择.2.条形统计图、折线统计图、扇形统计图、频数分布表及频数分布直方图的特点及画法.3.根据实际问题,选择合适的统计图进行数据的描述与评价.【板块一】统计调查方法技巧1.统计调查的步骤:收集数据、整理数据、描述数据、分析数据.2.统计调查的方式:全面调查与抽样调查.3.描述数据的工具:统计图,有条形统计图、折线统计图,扇形统计图等.题型一全面调查与抽样调查【例1】(2018春海淀区校级期末)在下列调查中,调查方式选择合理的是()A.为了了解某批次汽车的搞撞击能力,选择全面调查B.为了了解神州飞般的设备零件的质量情况,选择抽样调查C.为了了解一个班学生的睡眠情况,选择全面调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【练1】(2018春无棣县期末)妈妈炖了一锅鸡汤,先用小勺舀了一点尝尝味道,这是利用了调查方式.(选填“普查”或“抽样调查”)题型二用统计图描述数据【例2】(2018春江阴市期中)为了解食品安全状况,质监部门抽查了甲,乙,丙,丁四个品牌饮料的质量,将收集的数据并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,完成下列问题:(1)这次抽查了四个品牌的饮料共瓶;(2)请补全两条统计图.【练2】(2018春丽水期末)如图所示的折线统计图分别表示我市A县和B县在4月份的日平均气温的情况,记该月A县和B县平均气温是12℃的天数分别为a天和b天,则a+b=针对练习11.某同学想了解“国庆节”期间某一天,青云路与向阳路叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为()A.查阅资料B.实验C.问卷调查D.观察2.(2018梧州)九年级一班同学根据兴趣分成A,B,C,D,E五个小组,把各小组人数分布绘制成如图所示的不完整统计图.则D小组的人数是()A.10人B.11人C.12人D.15人3.(2018春利津县期末)下列调查工作适合采用抽样调查方式的是(填序号).①利津县环保部门对辖区内黄河域的水污染情况的调查②要保证“神舟六号”载人飞向成功发射,对重要零部件的检查③了解一批灯泡的使用寿命④了解全国初中毕业生的睡眠状况⑤企业在给职工做工作服前进行的尺寸大小的调查⑥电视台对正在播出的某电视节目收视率的调查4.(2018春洪山区期末)某音像制品公司将某一天的销售数据绘制成如下两幅尚不完整的统计图,若该公司民歌、流行歌曲、故事片、其它等音像制口的销售中,每张制品销售的利润分别为3元,5元,8元,4元,则这一天的销售中,该公司共盈利了元.5.(2018绥化)某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试.将这些学生的测试结果分为四个等级:A优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘制成如下统计图.请你根据图中信息,解答下列问题:(1)本次参加校园安全知识测试的学生有多少人?(2)计算B级所在扇形圆心角的度数,并补全折线统计图.【板块二】抽样调查方法技巧1.四个概念:部体、个体、样本、样本容量,其中总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体数目,不能带单位.2.抽样调查是实际中经常采用的调查方式,如查抽取的样本得当,就能很好地反映总体情况.否则,抽样调查的结果偏高总体的情况.3.用样本去估计总体时,容量越大,样本越具有代表性,这时对总体的估计也就是越精确.题型一总体、个体、样本、样本容量【例1】为了了解某市3.6万名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这3.6万名考生的数学中考成绩的全体是总体;②每个考生数学中考成绩是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有.(填序号)【练1】某区有3000名学生参加初中毕业生会考,要想了解这3000名学生的数学成绩,从中随机抽取了300名学生的数学成绩进行统计分析,在此问题中,总体是,样本是,样本容量是.题型二抽样调查的可靠性【例2】(2018重庆)为了调查某大型企业员工对企业的满意程度,以下样本最具有代表性的是()A.企业员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【练2】要调查某校学生周日的睡眠时间,下列调查对象选取最合适的是()A.选取该校50名女生B.选取该校50名男生C.选取该校一个班级的学生D.随机选取该校50名学生题型三用样本估计整体【例3】(2018邵阳)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.【练3】(2018河北模拟)从某公司3000名职工中随机抽取30名职工,每个职工周阅读时间(单位:min)依次为周阅读时(单位:min)61⁓7071⁓8081⁓9091⁓100101⁓110人数 3 6 9 10 2则该公司所有职工中,周阅读时间超过一个半小时的职工人数约为()A.1200 B.1500 C.1800 D.2100针对练习21.(2018春泰兴市校级期末)某市今年共有6万名学生参加中考,为了了解这6万名考生的数学成绩,从中抽取了1000考生的数学成绩进行统计分析,以下说法:①这种调查采用了抽样调查的方式;②6万名考生是总体;③1000名考生的数学成绩是总体的一个样本;④样本容量是1000名.其中正确的是有()A.0个B.1个C.2个D.3个2.(2018湘潭)每年5月11日是由世界卫生组织确定的世界防治肥胖日,某校为了解全校2000名学生的体重情况,随机抽测了200名学生的体重,根据体质指数(BMI)标准,体重超标的有15名学生,则估计全校2000名学生体重超标的学生的人数为()A.15 B.150 C.200 D.20003.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,只有2条鱼是前面做好记号的,那么可估计这个鱼塘鱼的数量约为()A.5000条B.2500条C.1750条D.1250条4.(2018兴化市二模)为了解某初中在校学生的身体健康状况,以下选取的调查对象中:①120位男学生;②每个年级都各选20位男学生和20位女学生;③120位八年级学生.你认为合适的是.(填序号)5.(2018春汶上县期末)某家庭为了了解用电量的多少,该家庭在六月份连续几天观察电月份的用电总量是千瓦时.6.(2018春如皋市期末)某校八年级学生参加“史地生会考”,八(1)班25名学生的成绩(满分100分)统计如下:90,74,88,65,98,75,81,42,85,70,55,80,95,88,72,87,60,56,76,66,78,72,82,63,100.(1)90分及以上为A级,75⁓89分为B级,60⁓74分为C级,60分以下为D级.请把下(2)根据(1)中完成的表格,将图中的条形图补充完整;(3)该校八年级共有1000名学生,如果60分以人为及格,请估计八年级有多少人及格?(4)若要知道抽测中每一个等级的人数占总分的百分比,应选择统计图【板块三】频数分布直方图方法技巧1.频数分布直方图的绘制步骤:①计算最大值与最小值的差;②决定组距与组数;③确定分点;④列频数分布表;⑤绘制频数分布直方图.2.绘制频数分布直方图注意事项:①分组时不能出现同一个数据在两个组的情况,通常使分点比题中要求的数据单位多一位,并且把第一组的起点稍微减小一点;②组距和组数的确定没有固定标准,数据越多,组数也就越多,当数据在100以内时,根据数据的多少通常分成5-12组.题型一频数和频率【例1】(2018春长安区期中)在一次数学测试中,将某班50名学生的成绩分为5组,第一组至第四组的频率之和为0.8,则第5组的频数是()A.10 B.9 C.8 D.7【练1】(2018春如皋市期末)某中学抽取部分学生对“你最喜欢的球类运动”做问卷调查,项目乒乓球羽毛球篮球足球频数80 50 n频率0.4 0.25 m则mn的值为.题型二频数分布表与频数分布直方图【例2】(2018锦州)为了解同学们每月零花钱数额,校园小记者随机抽查了本校部分学生,并根据调查结果绘制出如下不完整的统计图表:零花钱数额x/元人数(频数)频率0≤x<30 6 0.1530≤x<60 12 0.3060≤x<90 16 0.4090≤x<120 b0.10120≤x<150 2 a请根据以上图表,解答下列问题:(1)这次被调查的人数共有人,a= ;(2)计算并补全频数分布直方图;(3)请估计该校1500名学生中每月零花钱数额低于90元的人数.【练2】(2018春·丰台区期末)2018年6月6日是第二十三个全国爱眼日,某校为了做好学生的眼睛保护工作,对全体学生的裸眼视力进行了一次抽样调查,调查结果如图所示.根据学生视力合格标准,裸眼视力大于或等于5.0的为正常视力,那么该校正常视力的学生占全体学生的比值是.针对练习31.(2018春·天津期末)在一个样本中,40个数据分别落在5个小组内,第1,2,3,5小组的频数分别是2,8,15,5,则第4小组的频数是( )A.5B.10C.15D.202.(2017秋·宛城区期末)将某班女生的身高分成三组,情况如表所示,则表中a的值是.第一组第二组第三组频数 6 10 a频率b c20%3.(2018春·建昌县期末)一组数据,最大值与最小值的差为16,取组距为4,则组数为.4.(2018秋·建瓯市校级月考)如图,晓岚同学统计了她家5月份的长途电话明细清单,按通话时间画出频数分布直方图,则从图中的信息可知,她家通话时间不足10分钟的有次.5.(2018·临沂)某地某月1~20日中午12时的气温(单位:ºC)如下:22 31 25 15 18 23 21 20 27 1720 12 18 21 21 16 20 24 26 19气温分组划记频数12<≤x1717<≤x22≤x22<27≤x3227<(3)根据频数分布表或频数分布直方图,分析数据的分布情况.【板块四】统计图的综合应用方法技巧1.条形统计图的特点:反映每组中的具体数据;易于比较数据之间的差别.2.折线统计图的特点:反映数据的变化趋势.3.扇形统计图的特点:反映部分在总体中所占的百分比.4.频率分布直方图的特点:频数和频率都能够反映每个对象出现的频繁程度;频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况.◢题型一条形统计图、折线统计图和扇形统计图的综合应用【例1】(2018·荆州)荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是( )A.本次抽样调查的样本容量是500B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人【练1】某校七( 2)班班长统计了今年1-8月“书香校园”活动中全班同学的课外阅读数量( 单位:本),绘制了折线统计图,下列说法错误的是( )A.阅读量最多的是8月份B.阅读量最少的是6月份C.3月份和5月份的阅读量相等D.每月阅读量超过40本的有5个月◢题型二频率分布表与频数分布直方图的综合应用【例2】(2018·内江)为了掌握八年级数学试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率1 47.5~59.52 0.052 59.5~71.5 4 0.103 71.5~83.5 a0.204 83.5~95.5 10 0.255 95.5~107.5 b c6 107.5~120 6 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a= ,b= ,c= ;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为,72分及以上为及格,预计及格的人数约为,及格的百分比约为;(3)补全完整频数分布直方图.针对练习41.(2018·贺州)某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生时间(小时) 频数(人数) 频率32<≤x 4 0.143<≤x10 0.2554<≤x a 0.1565<≤x8 b76<≤x12 0.3合计40 1(1)表中的a= ,b= ;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?。
七年级的直方图知识点梳理直方图是数学中一个常见的图形表示方法,用于观察数据的分布情况,通过对数据的分析得出结论。
作为七年级数学学科中的一部分,直方图是一个必须掌握的知识点。
本文将重点梳理七年级直方图知识点相关的内容。
一、直方图的定义直方图是一种图形表示方式,它把数据按照一定规则划分成若干个区间,然后以矩形的形式展现每个区间中数据的数量或者频率。
其中纵坐标表示频数或频率,横坐标表示区间。
二、直方图的组成要素1.数据:展示成直方图的数据,通常是一组连续或者离散的数据。
2.区间:将数据按照一定规则划分成若干个区间。
每个区间的长度要相等。
3.频率:频率是指每个区间的数据数量占总数据数量的比例。
4.纵轴:纵轴是频率或频数。
5.横轴:横轴是各个区间。
三、直方图的绘制方法1.确定数据:要展示成直方图的数据,可以通过表格或者统计图来获得。
2.确定区间:根据数据的范围和数量,确定合适的区间数量和区间长度。
3.计算频率:计算每个区间的数据数量占总数据数量的比例。
4.绘制矩形:用矩形的形式展现每个区间的频率或者频数。
5.修改轴线:确定横轴和纵轴的最小值和最大值,并设置刻度。
四、直方图的解读方法1.观察数据的分布情况:直方图可以直观地展现数据的分布情况,包括数据的集中程度、数据的分散程度等。
2.确定数据的中心趋势:数据的中心可以通过观察直方图中矩形的高度来确定。
高度最高的矩形所代表的区间就是数据的中心。
3.判断数据的偏态:如果直方图中高度最高的矩形位于直方图的中心,则数据具有对称性,没有明显的偏态;如果高度最高的矩形偏向左侧或者右侧,则数据表现出偏态。
4.计算数据的范围:数据的范围可以通过直方图中最左侧和最右侧的区间的范围来计算。
五、直方图的注意事项1.数据不可过多,否则会对展示效果造成影响。
2.区间数量要适当,过多会影响观察效果,过少会缺乏数据的细节。
3.区间长度要相等。
4.不能将数据和纵轴的原点同时设置成较大的数值,这会使直方图显得过分夸张。
10.2直方图
为了参加全校各个年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.为此收集到这63名同学的身高(单位:cm)如下:
选择身高在哪个范围内的学生参加呢?
为了使选取的参赛选手身高比较整齐,需要知道数据的分布情况,即在哪些身高范围的学生比较多,哪些身高范围内的学生人数比较少.为此可以通过对这些数据适当分组来进行整理.
1、计算最大值和最小值的差
在上面的数据中,最小值是149,最大值是172,它们的差是23,说明身高的变化范围是23 cm.
2、决定组距和组数
把所有数据分成若干组,每个小组的两个端点之间的距离称为组距.
(最大值-最小值)÷组距 所以要将数据分成8组:149≤x <152,152≤x <155,… 170≤x <173.这里组数和组距分别是8和3.
3.列频数分布表
对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数).整理可以得到频数分布表.
2327,
33
=
从表中可以看出,身高在155≤x<158,158≤x<161,161≤x<164三个组的人数最多,
一共有41人,因此可以从身高在155~164 cm(不含164 cm)的学生中选队员.
A。
频数分布表有何优点?易于显示大小数据次数多少,分布情况,哪一组数据较集中等。
B.频数分布表有何不足之处?原始数据不见了,还不够直
观.
4、画频数分布直方图
为了更直观形象地看出频数分布的情况,可以根据表格中的数据画出频数分布直方图.
我们也可以用频数折线图来描述频数分布的情况。
频数
折线图可以在频数分布直方图的基础上画出来。
方法: (1) 取直方图上每一个长方形上边的中点.
(2) 在横轴上直方图的左右取两个频数为0的
点,它们分别与直方图左右相距半个组距
(3) 将所取的这些点用线段依次连接起来
频数折线图也可以不通过直方图直接画出
直方图的特点:
1、直方图能够显示各组频数分布情况
2、易于显示各组之间频数之间的差别
3、直方图的各长方形通常是连续排列,中间没有空隙。
总结:
画频数分布直方图的一般步骤: (1) 计算最大值与最小值的差(极差).
(2) 决定组距与组数:极差/组距=_____数据分成__组.
(3)列频数分布表. 数出每一组频数
(4)绘制频数分布直方图.
横轴表示各组数据,纵轴表示频数, 该组内的频
数为高,画出一个个矩形。
条形图与直方图的区别
1、条形图各矩形间有空隙,直方图各矩形间无空隙。
2、直方图横轴数据一般是连续的,而条形图横轴数据一般无关联。
练习题:
1、大宝同学统计了他家10月份的长途电话清单,并按通话时间画出直方图
51015
202530时间/分
频数
(通话次数) 1
5
10
15
20
25
25
18
8
10
16
2、在对七年级某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观察图形,并回答下列问题。
(1)该班有名学生;
(2)70.5~80.5这一组的频数是,频率是;。