谈对数学本质的认识
- 格式:doc
- 大小:25.00 KB
- 文档页数:4
数学思想是指人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式,数学思想”和“数学方法”之间,没有严格的界限,实际上两者的本质是相同的,差别只是站在不同的角度看问题。
通常混称为“数学思想方法”。
常见的数学四大思想为:函数与方程、转化与化归、分类讨论、数形结合.运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种积累达到一种程度时就会产生飞跃,从而上升为数学思想,比如,我们用代数知识去解决某一几何问题(或用几何知识去解某一代数问题)就是数形结合法,当其在整个几何,(或代数)体系中发挥重要作用时,就自然升华为数形结合思想,因此,人们通常将数学思想与数学方法看成一个整体概念——数学思想方法。
二、初中数学教材中的主要数学思想方法纵观初中数学教材,涉及到的思想方法主要有:1、符号与换元思想方法使用符号化语言和在其中引进变元是数学高度抽象的要求,它能够使数学研究的对象更加准确、具体、形象简明,更易于揭示对象的本质,一套形式化的数学语言极大地简化加速思维过程,例如公式(a +b)(a-b)=a2-b2就是采用符号化语方来表述,当a、b代的任意数、单项式、多项式等代数式都成立,这样的字母表示“换元”,初中教材中的公式、法则、运算律等绝大多数都是用含有变元及符号组合,来表示某一般规律和规则的,这种用符号表达的过程,反映了思维的概括性和简洁性。
2、化归思想方法化归思想方法是用一种联系、发展、运动与变化的观点去认识问题,而不是用孤立、静止的眼光去看待问题,它是通过观察、联想、类比等手段,把问题进行变换、转化、直到化为已经解决或容易解决的问题。
教材中几乎处处都隐含着化归思想,如把有理数的减法运算转化为加法运算,除法运算转化为乘法运算,最后转化为算术数的运算;把一元一次方程转化为最简方程;把异分母转化为同分母;将多元方程转化为一元方程;将高次方程化为低次方程;将分式方程化为整式方程;将无理方程化为有理方程;把求负数立方根问题转化为求正数立方根的问题;把不能直接查表的数转化为可以直接查表的数;把复杂图形转化为基本图形;把多边形转化为三角形或特殊四边形等等。
小学教育46张奠宙先生的《小学数学教材中的大道理》一书,是张教授站在整个数学发展历程上,去揣摩核心概念背后的大道理、思想方法的神髓。
阅读这本书,给了我不一样的思考——教材的编写是否够科学?作为一线教师也要敢于质疑甚至批判教材,要站在数学本质、适合小学生学习和数学文化教学的高度,去分析教材中的问题、缺失,悟出“小”数学中的“大”道理。
一、加法交换律应从本源上讲清道理现在教材里提到加法交换律,就拿出一组加法等式来找规律:5+6=6+5,3+8=8+3,22+34=34+22……发现两个数相加,交换加数的位置,和不变。
然后要求学生分组举很多例子,由此归纳出加法交换律成立,即a+b=b+a。
这部分内容我曾经教学过,当时觉得不太对劲,通过这次阅读,我觉得张奠宙老师讲得非常有理,加法交换律为什么成立?也就是说加数的位置为什么可以交换?没有从本源上讲清道理。
现在提出“过程与方法的教学目标”,凡是小学生能够懂的道理,还是要说理。
怎么去说理?对此我很赞同书中所提到的做法,数数是最基本的数学活动之一,教材上可以画A、B两堆苹果,引导学生发现先数A堆接着数B堆,和先数B堆接着数A堆的结果是一样的,从本源上看,这就是加法交换律成立的证明。
二、乘法交换律和乘法的意义应相统一人教版《数学》二年级上册“认识乘法”展示了三幅不同的情景图片,引出三个加法算式:3+3+3+3+3=15 ,6+6+6+6=24,2+2+2+2+2+2+2=14,然后指出“这种加数相同的加法算式,还可以用乘法表示”。
以最后一个加法算式为例,指出这个加法算式表示7个2相加,可以写成乘法算式“2×7=14”或“7×2=14”,这就是说,不管是“2×7”还是“7×2”,都可以表示7个2相加,两个不同的乘法算式可以表示同一个加法算式。
照这么说来,当a和b都是大于1的整数时,a×b和b×a都表示b个a的和,也可以表示a个b的和。
加强对数学本质的认识,提高数学教学效果作者:文坚来源:《中学课程辅导·教育科研》2019年第01期【摘要】在教学过程中,老师们通常会根据教学大纲进行知识点的教学。
但很多老师都并没有思考过数学的本质是什么?为什么要进行数学的学习以及学习数学应该达到怎样一个境界?传统的数学教学过程中,将数学与生活分离开来看,数学的学习成了表面的知识点学习,对于同学们的实际生活能力的提高并没有什么帮助。
本文具体从数学的本质入手,提出要加强对数学本质的认识,加强数学与生活的联系,提高数学教学效果。
【关键词】数学本质数学教学课堂教学【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1992-7711(2019)01-047-01数学的学习是为了能够将数学知识应用到生活中去,因此数学的本质就是要学习实际能够应用的技术和方法,进行问题的解答。
但是,在数学学习的过程中,因为数学和生活的脱轨,让数学在实际生活中并没有充分发挥作用,数学的思维也没有得到充分的利用,数学课程的学习也就没有达到其预期的目标,浪费了数学课程这一资源。
同学们在面对生活问题时,不会主动和数学问题建立联系,同学们在解答数学问题时,也不会想到这就是生活中会遇到的问题。
正因如此,同学们把数学仅仅当成是一种知识的学习,其实生活问题很多本质上来说都可以用数学的方法来进行解决。
一、理论结合实际在进行数学知识教学的过程中,要尽可能的从现实生活中抽象出数学问题,这样同学们以后在生活中遇到问题时,会自觉向数学问题靠拢,便于同学们对于实际问题进行解决。
很多理论对于同学们来说都是抽象不易理解的,但是对于生活中的现象和问题,同学们理解起来就会比较有感触,容易接受。
老师在进行数学教学的过程中,可以引入一些生活的场景,让同学们可以借助自己固有的常识去解决数学中的问题,提高同学们对于知识的理解程度。
例如,在学习几何图形时,我们涉及到图形的面积计算、体积计算。
几何图形在我们生活中是比较常见的,所以我们在进行题目解答时,可以适当的引入生活场景。
所谓数学思想,就是对数学知识的本质的认识,是从某些具体的数学内容和对数学的认识过程中提炼上升的数学观点。
它在认识活动中被反复运用,带有普遍的指导意义,是建立数学和用数学解决问题的指导思想,它是数学的灵魂,是为学生后续学习打基础的。
因此,根据《课标》倡导的精神,在小学数学教学中很有必要有目的、有意识地向学生渗透一些基本的数学思想方法。
在小学阶段的数学课程中,学生经常体验到的数学思想有:1、符号思想;2、对应思想;3、类比思想;4、数形结合思想;5、分类思想;6、集合思想;6、建模思想;7、化归思想等。
那么,在课堂教学中如何才能做好合理有效地渗透数学思想方法呢?现在结合我平时的教学举例说明:一、让学生结合身边的生活素材灵活运用数学思想。
生活中充满着数学,作为数学教师,我们更要善于从学生生活中抽出数学问题,使学生感到数学就在自己的身边,人情数学思想的实用性,从而灵活运用数学思想。
例如:在教学四年级下册“三角形的稳定性”一知识点时,我先从学生生活中熟悉的红领巾、自行车架、架桥等引出三角形,再让学生通过推、拉等实践活动认识三角形的稳定性,并运用它来解决一些实际生活问题,如修补摇晃的椅子。
学生会马上想到应用刚学过的“三角形稳定性”,给椅子加上木档子形成三角形,从而使椅子稳当起来。
这样使学生学的容易且印象深刻,达到事半功倍的效果。
这样数学思想在实际生活中就得到很好的应用,学生就逐渐有了数学思想的意识。
二、让学生在亲历探究中充分感悟数学思想数学思想方法蕴含在数学知识之中,尤其蕴含于数学知识的形成过程中。
在学习每一数学知识时,尽可能提炼出蕴含其中的数学思想方法,即在数学知识产生形成过程中,让学生充分感悟数学思想。
例如:我在教学二年级下册“角”一课中,进行符号思想、数形结合思想、建模思想的渗透。
先让学生在媒体上观察“巨大的激光器发送了两束激光线”,然后由学生确定一点引出两条射线画角,感知角的“静止性”定义以及角的大小与所画边的长短无关的观念。
对数学本质的认识数学是什么?这一问题对于从事数学教育事业的数学教师来说显然是个十分重要的问题,也许有的教师并未对此问题有意识地进行过认真的思考,甚至不一定能作出明确的回答,但在我们的实际工作中却必然自觉或不自觉地以某种观念指导着具体的行动,从而也影响了数学教学的实践与效果。
随着数学本身的发展和人们对数学的认识,对数学是什么?这一问题有着不同的回答:数学是模式的科学、数学是科学,数学更是一门创造性的艺术。
、数学是科学,数学也是一门技术、数学是一种语言、数学是一种文化。
这正好反映了数学是一个多元的综合产物,不能简单地将数学等同于命题和公式汇集成的逻辑体系,数学通过模式的构建与现实世界密切联系,但又借助抽象的方法,强调思维形式的探讨;现代技术渗透于数学之中成为数学的实质性内涵,但抽象的数学思维仍然是一种创造性活动;数学其实是一种语言,由此形成的思维方式不仅决定了人类对世界的认识方式,还对人类理性精神的发展具有重要的影响,因而必然成为人类文化的一个重要组成部分[5]。
综上所述,对数学的本质不外乎两种不同的看法:一种是动态的,将数学描述处于成长发展中因而是不断变化的研究领域;另一种是静态的将数学定义为具有一整套已知的确定的概念、原理和技能的体系。
数学教师所持的数学观,与他在数学教学中的设计思想,在课堂讲授中的叙述方法以及他对学生的评价都有密切的联系。
通过数学教师传递给学生的任何一些关于数学及其性质的细微信息都会对学生数学观的形成产生深刻的影响。
作为一名数学教师,其首要任务是树立正确的数学观,积极地自觉地促进自己的观念改变,以实现由静态的,片面的、机械反映论的数学观向动态的,辩正的模式论的数学观的转变。
特别是实现对上述问题的朴素的不自觉的认识向自觉认识的转化。
对数学本质特征的若干认识对数学本质特征的若干认识什么是数学?这是任何一个数学教育工作者都应认真思考的问题。
只有对数学的本质特征有比较清晰的认识,才能在数学教育研究中把握正确的方向。
1、数学,其英文是mathematics,这是一个复数名词,“数学曾经是四门学科:算术、几何、天文学和音乐,处于一种比语法、修辞和辩证法这三门学科更高的地位。
”自古以来,多数人把数学看成是一种知识体系,是经过严密的逻辑推理而形成的系统化的理论知识总和,它既反映了人们对“现实世界的空间形式和数量关系”的认识,又反映了人们对“可能的量的关系和形式”的认识。
数学既可以来自现实世界的直接抽象,也可以来自人类思维的能动创造。
2、从人类社会的发展史看,人们对数学本质特征的认识在不断变化和深化。
“数学的根源在于普通的常识,最显著的例子是非负整数。
"欧几里德的算术来源于普通常识中的非负整数,而且直到19世纪中叶,对于数的科学探索还停留在普通的常识,”另一个例子是几何中的相似性,“在个体发展中几何学甚至先于算术”,其“最早的征兆之一是相似性的知识,”相似性知识被发现得如此之早,“就象是大生的。
”因此,19世纪以前,人们普遍认为数学是一门自然科学、经验科学,因为那时的数学与现实之间的联系非常密切,随着数学研究的不断深入,从19世纪中叶以后,数学是一远,而且数学证明(作为一种演绎推理)在数学研究中占据了重要地位,因此,出现了认为数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问,等等观点。
这些认识,既反映了人们对数学理解的深化,也是人们从不同侧面对数学进行认识的结果。
正如有人所说的,“恩格斯的关于数学是研究现实世界的数量关系和空间形式的提法与布尔巴基的结构观点是不矛盾的,前者反映了数学的来源,后者反映了现代数学的水平,现代数学是一座由一系列抽象结构建成的大厦。
”而关于数学是研究模式的学问的说法,则是从数学的抽象过程和抽象水平的角度对数学本质特征的阐释,另外,从思想根源上来看,人们之所以把数学看成是演绎科学、研究结构的科学,是基于人类对数学推理的必然性、准确性的那种与生俱来的信念,是对人类自身理性的能力、根源和力量的信心的集中体现,因此人们认为,发展数学理论的这套方法,即从不证自明的公理出发进行演绎推理,是绝对可靠的,也即如果公理是真的,那么由它演绎出来的结论也一定是真的,通过应用这些看起来清晰、正确、完美的逻辑,数学家们得出的结论显然是毋庸置疑的、无可辩驳的。
对数学教学本质的认识数学是一门重要的基础学科,它涉及到逻辑推理、问题解决、数据分析等多个方面。
在教育领域,数学教学的本质是什么?本文将从以下几个方面进行探讨。
数学教学的核心目标是培养学生的思维能力,包括逻辑推理、抽象思维、创新思维等方面的能力。
通过数学学习,学生可以掌握分析问题、解决问题的能力,同时也可以培养创新思维和解决问题的能力。
这些能力对于学生的未来发展非常重要,因此,数学教学应该注重培养学生的思维能力。
数学教学的内容应该符合学生的认知特点,根据学生的年龄段和认知水平来确定教学内容和教学方法。
例如,对于小学生,数学教学应该注重基础知识的掌握和基本技能的培养;对于初中生,数学教学应该注重数学思想和方法的渗透;对于高中生,数学教学应该注重数学思维和数学文化的培养。
因此,数学教学内容应该根据学生的认知特点来设计,以适应不同阶段学生的需求。
数学是一门实践性很强的学科,它涉及到很多实际问题和案例。
因此,数学教学应该注重实践和应用,通过案例教学、实验操作等方式让学生更好地理解数学知识,掌握数学技能。
同时,数学教学也应该注重与实际生活的,让学生更好地了解数学在生活中的作用和应用。
数学教学评价是衡量教学质量和学生学习效果的重要手段。
因此,数学教学评价应该多元化,包括考试成绩、平时表现、作业完成情况等多个方面。
教学评价也应该注重学生的个体差异和进步情况,以更好地激发学生的积极性和创造力。
数学教学的本质是培养学生的思维能力、符合学生的认知特点、注重实践和应用以及多元化评价。
只有把握好这些方面,才能更好地提高数学教学质量和学生的学习效果。
数学,作为人类智慧的结晶,其深远的意义和广泛的应用在人类社会的各个方面都得到了充分的体现。
然而,对于数学的本质,人们的理解却各有不同。
有的人认为数学是一种逻辑游戏,有的人认为数学是一种工具,还有的人认为数学是一种抽象艺术。
然而,在我看来,数学的本质在于其普遍性、抽象性和应用性的结合。
教育实践与研究Educational Practice and Research 2016年第23期/A (8)>>>学科教学探索米斯拉说:“数学是人类的思考中最高的成就。
”追问数学的本质,就是寻找原点,或是寻找起点。
套用哲学层面的最基本的三个问题“我是谁?我从哪里来?要到哪里去?”就是要弄清数学的相关知识是什么,它从哪里来,又将到哪里去。
简而言之就是:是什么,为什么,怎么做?所以,数学教师要统观全盘,不能只关注知识点的教学而忽视了知识之间的内在联系;要盘根究底,不能只教单纯的知识,而忽视知识的所以然。
在数学教学过程中,教师要永葆一腔探究热情,多追问数学的本质,方能引领学生进入更广阔的数学天地。
一、追问数学概念数学概念是数学知识的基础。
在北师大版小学数学教材中,有许多数学概念,如,周长、面积、百分比、比例、合数、质数、分解质因数、偶数的含义等。
对于这些概念,不仅要让学生知其然(定义的内容),更要知其所以然(为什么这样定义)。
只有教师对知识的来龙去脉了如指掌,对数学概念的内涵和外延认识清晰,对相近概念的相同点和不同点把握准确,学生才能学得明了。
同时,在教学过程中,教师要有意识设计一些相应的题目,帮助学生理清概念的本质,使学生对概念的认识更为清晰。
例如,在教学“什么是周长”一课时,我通常要追问:什么是周长,周长的本质是什么(周长指的是物体表面或图形一周的长度。
它的本质是线的长度)。
所以,在教学时,要有意识引导学生用铁丝或线绕出枝叶或数学书封面的一周,然后拉直,抽象出:树叶的周长其实就是边线的长度,数学书封面的周长是四条边的总长度。
这样,学生在学习面积时,才能理清周长与面积本质的不同。
在教完“周长”一课,教师可出示这样的练习题:出示变形后成问:变形后的周长有变化吗?为什么?在教学“面积”一课时,教师可出示这样的练习题:出示变形后成问:变形后的面积有变化吗?为什么?对于第一个问题,学生比较好理解,因为变形后,四条边的长度不变,所以周长没有发生追问数学的本质高莲莲(石狮市永宁镇中心校,福建泉州362700)摘要:数学教师要有不断探究的精神,既要关注具体数学知识点的教学,又要不断追问数学概念、数学性质及数学思想的本质问题,使学生接受系统的数学知识,成为全面、健康发展中的人。
谈对数学本质的认识
【摘要】:数学本质是一个认识论问题,它涉及到了经验知识与理论知识的关系。
数学本质是数学观的重要表现,它影响并决定着数学研究方法。
研究数学本质是数学教育工作者的一个重要课题,不是“没有必要”的;培养学生树立正确的数学观是数学教师的一项重要任务,不是“无关紧要的”.数学发展的动力是实践,而不是归纳法.
【关键词】:数学本质认识论数学观实践归纳法
对于数学的本质我们应该怎样认识呢?数学本质,简单的解释就是数学的根本性质。
对数学本质的认识,是数学认识的根本性问题,也是数学教育论的根本性问题,历来被数学家,尤其为数学哲学家所重视。
我认为对数学本质的认识我们不应该从传统数学哲学的角度退缩到方法论的一个狭隘的层面,而是应该从更广阔的、更为多样的角度对数学本质进行更为透彻的了解。
从人类社会发展史来看,对数学本质特征的认识在不断的加深。
在19世纪以前,由于数学与现实联系的比较密切,所以认为数学只是一门自然科学、经验科学,但随着对数学研究的不断深入,人们逐渐认识到数学是一门演绎科学的学问,而且这样的观点在19世纪中叶以后开始占据主导地位,这种观点在布尔巴基学派的研究中得到发展,他们认为数学是研究结构的科学,一切数学全部都建立在代数结构、序结构以及拓扑结构这三种母结构之上。
与这种观点相对应的是从古希腊的柏拉图开始,许多人认为数学是研究模式的学问,数学家怀特海在《数学与善》中说,“数学的本质特征就是:在从模式化的个体作抽象的过程中对模式进行研究,”数学对于理解模式和分析模式之间的关系,是最强有力的技术。
”1931年,歌德尔通过不完全性定理的证明了公理化逻辑演绎系统中存在的缺憾,这样,人们又想到了数学是经验科学的观点,著名数学家冯·诺伊曼就认为,数学兼有演绎科学和经验科学两种特性。
而数学是人类思维的自由创造物,是研究量的关系的科学,是研究抽象结构的理论,是关于模式的学问等这些观点既反映了人们对数学理解的深化,也让人们从不同方面对数学进行认识的结果。
波利亚认为,“数学有两个侧面,它是欧几里德式的严谨科学,但也是别的什么东西。
由欧几里德方法提出来的数学看来象是一门系统的演绎科学,但在创造过程中的数学看来却像是一门实验性的归纳科学。
”弗赖登塔尔说,“数学是一种相当特殊的活动,这种观点“是区别于数学作为印在书上和铭,记在脑子里的东西。
”他认为,数学家或者数学教科书喜欢把数学表示成“一种组织得很好的状态,”也即“数学的形式”是数学家将数学(活动)内容经过自己的组织(活动)而形成的;但对大多数人来说,他们是把数学当成
一种工具,他们不能没有数学是因为他们需要应用数学,这就是,对于大众来说,是要通过数学的形式来学习数学的内容,从而学会相应的(应用数学的)活动。
这大概就是弗赖登塔尔所说的“数学是在内容和形式的互相影响之中的一种发现和组织的活动”的含义。
菲茨拜因(Efraim Fischbein)说,“数学家的理想是要获得严谨的、条理清楚的、具有逻辑结构的知识实体,这一事实并不排除必须将数学看成是个创造性过程:数学本质上是人类活动,数学是由人类发明的。
”
数学活动由形式的、算法的与直觉的等三个基本成分之间的相互作用构成。
库朗和罗宾逊也说,“数学是人类意志的表达,反映积极的意愿、深思熟虑的推理,以及精美而完善的愿望,它的基本要素是逻辑与直觉、分析与构造、一般性与个别性。
虽然不同的传统可能强调不同的侧面,但只有这些对立势力的相互作用,以及为它们的综合所作的奋斗,才构成数学科学的生命、效用与高度的价值。
”
另外,对数学还有一些更加广义的理解。
如有人认为,“数学是一种文化体系”,“数学是一种语言”,数学活动是社会性的,它是在人类文明发展的历史进程中,人类认识自然、适应和改造自然、完善自我与社会的一种高度智慧的结晶。
数学对人类的思维方式产生了关键性的影响.也有人认为,数学是一门艺术,“和把数学看作一门学科相比,我更喜欢把它看作一门艺术,因为数学家在理性世界指导下所表现出的经久的创造性活动,具有和艺术家的,“数学是推理的音乐,”而“音乐是形象的数学”.这是从数学研究的过程和数学家应具备的品质来论述数学的本质,还有人把数学看成是一种对待事物的基本态度和方法,一种精神和观念,即数学精神、数学观念和态度。
数学的这两个侧面之间的差异并非数学内容本身的问题,而是人们所关注的焦点不同。
无论是纯粹的还是应用的,作为科学的数学有助于产生知识和洞察力。
数学是美学的一个领域,能为许多醉心其中的人们提供对美感、愉悦和激动的体验。
作为一门学科,数学的传播和发展都要求它能被新一代的人们所掌握。
数学的学习不会同时而自动地进行,需要靠人来传授,所以,数学也是我们社会的教育体系中的一个教学科目.”
从上所述可以看出,人们是从数学内部如数学与社会的关系、数学与其它学科的关系、数学与人的发展的关系等几个方面来讨论数学的性质的。
它们都侧面反映了数学的本质特征,为我们全面认识数学的性质提供了一个视角。
基于对数学本质特征的上述认识,人们也从不同侧面讨论了数学的具体特点。
比较普遍的观点是,数学具有抽象性、精确性和应用的广泛性等特点,其中最本质的特点是抽象性。
亚历山大洛夫说,“甚至对数学只有很肤浅的知识就能容易地觉察到数学的这些特点:第一是它的抽象性,第二是精确性,或者更好他说是逻辑的严格性以及它的结论的确定性,最后
是它的应用的极端广泛、性,”另外,从数学研究的过程方面、数学与其它学科之间的关系方面来看,数学还有形象性、似真性、拟经验性。
“可证伪性”的特点。
对数学特点的认识也是有时代特征的,例如,关于数学的严谨性,在各个数学历史发展时期有不同的标准,从欧氏几何到罗巴切夫斯基几何再到希尔伯特公理体系,关于严谨性的评价标准有很大差异,尤其是哥德尔提出并证明了“不完备性定理…以后,人们发现即使是公理化这一曾经被极度推崇的严谨的科学方法也是有缺陷的。
因此,数学的严谨性是在数学发展历史中表现出来的,具有相对性。
关于数学的似真性,波利亚在他的《数学与猜想》中指出,“数学被人看作是一门论证科学。
然而这仅仅是它的一个方面,以最后确定的形式出现的定型的数学,好像是仅含证明的纯论证性的材料,然而,数学的创造过程是与任何其它知识的创造过程一样的,在证明一个数学定理之前,你先得猜测这个定理的内容,在你完全作出详细证明之前,你先得推测证明的思路,你先得把观察到的结果加以综合然后加以类比.你得一次又一次地进行尝试。
数学家的创造性工作成果是论证推理,即证明;但是这个证明是通过合情推理,通过猜想而发现的。
只要数学的学习过程稍能反映出数学的发明过程的话,那么就应当让猜测、合情推理占有适当的位置。
”正是从这个角度,我们说数学的确定性是相对的,有条件的,对数学的形象性、似真性、拟经验性。
“可证伪性”特点的强调,实际上是突出了数学研究中观察、实验、分析。
比较、类比、归纳、联想等思维过程的重要性。
综上所述,对数学本质特征的认识是发展的,从历史的发展的观点来看数学的本质特征,恩格斯的“纯数学的对象是现实世界的空间形式和数量关系”的论断并不过时,对初等数学来说就更是如此,当然,对“空间形式和数量关系”的内涵,我们应当作适当的拓展和深化。
顺便指出,对数学本质特征的讨论中,采取现象与本质并重、过程与结果并重、形式与内容并重的观点,对数学教学具有重要的指导意义。
自上个世纪的数学基础大论战之后,关于“数学的本质及其实在性”问题的讨论占据了当前数学哲学发展的主流。
数学的本质是一个数学认识论问题。
不同时代的哲学家和数学家都从认识论角度提出不同的理论和观点。
但随着数学的发展又暴露出它们的片面性或局限性,特别是,当计算机引起数学研究方式的变革时,又提出有关数学本质更深层次的问题,从而推动着人们全面而辩证地认识数学的本质。
参考文献:[1] 黄光荣.对数学本质的认识[J].数学教育学报,2002,11(2):21-23.
[2] 林夏水.论数学的本质[J].哲学研究,2000,(9):66,70.
[3] 林夏水.数学本质·认识论·数学观[J].数学教育学报,2002,11(3)26-30.
[4] 郑毓信.数学哲学:20世纪末的回顾与展望[J].哲学研究,2000,(10):76-77.
[5] 林夏水.数学哲学译文集[M].北京:知识出版社,1986.350.
[6] 郑毓信.数学教育哲学[M].成都:四川教育出版社,2001.12,13。