高等数学 第二类曲线积分与路径无关问题
- 格式:pdf
- 大小:191.43 KB
- 文档页数:7
§ 22.2曲线积分和路径的无关性引言第二类曲线积分不仅与曲线的起点和终点有关, 而且也与所沿的积分路径有关。
对同一个起点和同一个重点, 沿不同的路径所得到的第二类曲线积分一般是不相同的。
在什么样的 条件下第二类曲线积分与积分路径无关而仅与曲线的起点和重点有关呢?下面我们在平面 中情形来讨论这个问题。
定理1:若函数P x,y ,Q x, y 在区域D 上有连续的偏导数,D 是单连通区域,则 F 列命题等价:⑴对D 内任意一条闭曲线C ,有P x,y dx Q x, y dy 0。
C⑵对D 内任意一条闭曲线I ,曲线积分P x, y dx Q x, y dyI与路径无关(只依赖曲线的端点)。
⑶存在可微函数 U x, y ,使得D 内成立dU Pdx Qdy ;P Q⑷ 在D 内处处成立。
y x定义1:当曲线积分和路径无关时, 即满足上面的诸条件时,如令点A x o ,y o 固定而点 B x, y 为区域内任意一点,那么x,yU x, y Pdx Qdy x o ,y o在D 内连续并且单值。
这个函数 U x,y 称为Pdx Qdy 的原函数。
原函数的求法:(1)U x,y x P x, y dx x yQ x0, y dy C ;y o或x y(2)U x, y P x,y ° dx Q x, y dy C 。
y o 例1 :求原函数u(1) x2 2xy y2 dx x2 2xy y2 dy;2 2(2) 2xcosy y sinx dx 2ycosx x siny dy。
定义2:只绕奇点M —周的闭路上的积分值叫做区域D的循环常数,记为。
于是,对D内任一闭路CC Pdx Qdy n ,这里n为沿逆时针方向绕M的圈数。
例2:证明;xd x 今关于奇点的循环常数是0,0,从而积分与路径无关。
x y。
证明曲线积分在整个xoy面内与路径无关
曲线积分与路径无关的充要条件是:区域d是一个单连通域,函数p(x,y)及q(x,y)在d上有一阶连续偏导数,ap/ay=aq/ax。
对于满足一些条件的曲线,起点和终点的位置固定,沿不同的路线积分,其积分值相同,即曲线积分只与起点和终点有关,与路线的选取无关。
曲线积分分为:
(1)对弧长的曲线分数(第一类曲线分数)
(2)对坐标轴的曲线积分(第二类曲线积分)
两种曲线分数的区别主要是分数元素的差别,对弧长的曲线分数的分数元素就是弧长元素ds。
比如:对l的曲线分数∫f(x,y)*ds 。
对坐标轴的曲线积分的积分元素是坐标元素dx或dy,例如:对l’的曲线积分∫p (x,y)dx+q(x,y)dy。
但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。
(1)平面上的单相连区域与为丛藓科扭口藓相连区域
设d是平面xy.上的区域。
如果d内的任何封闭曲线l所围成的区域di,恒有d; c d ,则d称为单连通区域;否
则,d称作为丛藓科扭口藓相连区域。
(2)平面曲线积分与路径无关的条件
定理1 [1] 设d就是平面xy.上的单相连闭合区域,函数p(x, y)与q(x,y) 在d内具备一阶已连续略偏导数,则以下1° ~ 4°。
探究第二类曲线积分与路径无关的条件
第二类曲线积分又称为弧长积分,是一个沿曲线的长度积分。
对于一个向量场F,我们希望找到一个路径无关性条件,使得F沿一条从A到B的路径的积分等于F沿另一条路径的积分,从而简化积分的计算。
首先我们需要了解一个概念:保守场。
如果一个向量场F满足一定条件,那么F就是保守场,这意味着路径积分只与A、B两点的位置有关,即与路径无关。
具体而言,F是连续可微的,并且满足旋度为零的条件,即curl F=0。
这个条件表明,F的散度为零,即场的通量经过任意一个闭合曲面都等于零。
总之,保守场是第二类曲线积分与路径无关的条件之一。
另外一个条件是单连通域。
一个域是单连通的,当且仅当从该域中任意一点出发的任意路径都可以被连续地收缩为一个点。
单连通域的存在保证了积分的路径无关性。
具体来说,如果F定义在单连通域上,F满足连续和可微的条件,并且:
∮<sub>γ</sub>F·ds=0
对于该域中任意两点A、B以及连接它们的任意两条路径都成立。
当然,这个定理的证明需要一定的拓扑学知识,这里不再详细阐述。
综上所述,第二类曲线积分与路径无关的条件包括保守场和单连通域。
在实际问题中,我们需要根据给定的向量场和曲线来判断是否满足这些条件,以确保积分的计算是正确的。
曲线积分与路径无关问题1. 第一型曲线积分(1)对弧长的曲线积分的模型:设给定一条平面曲线弧L :AB ,其线密度为),(y x ρ求弧AB 的质量m 。
⎰=Lds y x f m ),(,(2)若BA L AB L ==21,,则⎰1),(L ds y x f =⎰2),(L ds y x f ,即对弧长的曲线积分与积分弧段有关,但与积分弧段的方向无关。
(3)对弧长的曲线积分的计算设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,)(βα≤≤t ,其中)(t ϕ、)(t ψ在[]βα,上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,则曲线积分⎰Lds y x f ),(存在,且⎰Lds y x f ),(=[]dt t t t t f )()()(),(2'2'ψϕψϕβα+⋅⎰ )(βα<特别,当1),(=y x f 时,⎰Lds y x f ),(表示曲线弧L 的弧长。
当曲线弧L 的方程为)(x g y = )(b x a ≤≤,)(x g 在[]b a ,上有连续的导数,则⎰Lds y x f ),(=[]dx x g x g x f da)(1)(,2'+⋅⎰;把线弧L 的方程为)(x f y =化作参数方程⎩⎨⎧==)(x g y xx ,)(b x a ≤≤,⎰Lds y x f ),(=[]dy y h y y h f dc)(1),(2'+⋅⎰ )(d y c ≤≤2. 第二型曲线积分(1) 第二型曲线积分的模型: 设有一平面力场j y x Q i y x P y x F ),(),(),(+=,其中),(),,(y x Q y x P 为连续函数,一质点在此力场的力作用下,由点A 沿光滑曲线L 运动到点B ,求力场的力所作的功W 。
dy y x Q dx y x P W L),(),(+=⎰,(2)设L 为有向曲线弧,L -为与L 方向相反的有向曲线弧,则dy y x Q dx y x P L),(),(+⎰dy y x Q dx y x P L),(),(+-=⎰-即第二型曲线积分方向无关(3)设xoy 平面上的有向曲线L 的参数方程为⎩⎨⎧==)()(t y t x ψϕ ,当参数t 单调地由α变到β时,曲线的点由起点A 运动到终点B ,)(t ϕ、)(t ψ在以α及β为端点的闭区间上具有一阶连续导数,且0)()(2'2'≠+t t ψϕ,函数),(y x P 、),(y x Q 在L 上连续,则曲线积分dy y x Q dx y x P L),(),(+⎰存在,且⎰+Ldy y x Q dx y x P ),(),(=[][]{}dt t t t Q t t t P ⎰+βαψψϕϕψϕ)()(),()()(),(''这里的α是曲线L 的起点A 所对应的参数值,β是曲线L 的终点B 所对应的参数值,并不要求βα<。
曲线积分与路径无关性的应用摘要:本文介绍了第二型曲线积分与路径无关的四个等价条件,并结合实例说明了此定理的应用:计算曲线积分、求原函数、求微分方程的解、求微分方程中的未知函数,特别是在求未知函数的例子中,解决了与之相关的一系列利用曲线积分与路径无关性求微分方程中的未知函数的问题。
关键词:曲线积分全微分全微分方程路径对于第二型曲线积分,一般来说其积分值不仅与积分曲线的起点和终点位置有关,而且即便是同样的起点和终点,若沿的路线不同,其积分值也可能不同。
但是在一定的条件下,第二型曲线积分完全可以做到与积分曲线的路线无关,只与曲线的起点和终点位置有关,这就是下面介绍的定理:定理设是单连通闭区域,函数在区域内连续,且有一阶连续偏导数,则以下四个条件等价:(1) 沿内任一按段光滑的闭曲线,有;(2)对内任一按段光滑的曲线,曲线积分与路线无关,只与的起点和终点有关;(3)是内某一函数的全微分;(4)在内每一点处有。
此定理的主要应用是在求第二型曲线积分中,若在单连通闭区域内可以做到,则沿内任一按段光滑的曲线,曲线积分只与的起点和终点有关,从而可以选择合适的路线(一般是折线)。
但是由于在定理的条件下,还等价于是内某一函数的全微分,故此定理还可以运用于与全微分方程相关的一些微分方程的求解。
现将此定理的应用总结如下:1 此定理可用来求曲线积分例1 设为圆周的上半圆,顺时针方向。
求曲线积分。
解:令,,则在不包含曲线的任何区域都有由定理知,在曲线的上方或下方区域内沿任何按段光滑曲线的曲线积分与路径无关,而在曲线的上方,故只要起点和终点与相同,则沿曲线的上方任一按段光滑曲线的曲线积分都与所求积分相同。
设的起点为,终点,,,由上面的讨论可知,原曲线积分与沿折线上的曲线积分相同。
故因在区间上是奇函数,故,从而。
注意:虽然沿直线上的曲线积分计算量要少,但是与所求曲线积分值却不同,这是因为直线含曲线上的点。
因此运用此定理时要特别注意定理的条件:是单连通闭区域,在内且有一阶连续偏导数。