离子交换和反渗透产除盐水的方案比较.doc
- 格式:doc
- 大小:17.94 KB
- 文档页数:5
离子交换和反渗透产除盐水的方案比较离子交换是一种化学处理方法,通过将含有盐分的水通过特殊的树脂
来处理,树脂上的离子与水中的盐分发生交换反应,从而实现水的除盐。
离子交换的主要原理是树脂上的离子具有较高的亲合力,它们会与水中的
盐分离子发生反应,从而将盐分吸附在树脂上面。
通过控制树脂的使用量
和处理时间,可以实现对水的有效除盐。
离子交换方法的优点是操作简单、效果明显,可以高效地除去水中的盐分,因此在一些需要快速除盐的情况
下比较适用。
然而,离子交换方法也存在一些问题,如树脂的使用寿命有限,需要定期更换,同时由于对树脂质量要求较高,所以成本相对较高。
反渗透是一种物理处理方法,通过应用压力将水分子从半透膜中逼出,从而实现水的除盐。
反渗透的主要原理是半透膜的微孔具有较小的孔径,
只能让水分子通过,而无法让盐分离子通过。
通过应用较高的压力,可以
将水分子从半透膜中逼出,从而除去盐分。
反渗透方法的优点是过程可逆,不需要使用化学物质,对水质没有污染,因此广泛应用于饮用水和制药工
业等领域。
然而,反渗透方法也存在一些问题,如能耗较高,需要使用较
为复杂的设备,同时也对半透膜的使用寿命有一定要求。
综上所述,离子交换和反渗透都是常用的除盐方法,各有优缺点。
离
子交换方法操作简单,效果明显,适用于一些需要快速除盐的情况。
反渗
透方法过程可逆,不会对水质造成污染,适用于饮用水和制药工业等领域。
选择哪种方法主要取决于具体的应用场景和需求。
需要根据实际情况综合
考虑成本、效果、设备和维护等因素,选择最适合的除盐方案。
除盐水制水工艺对比1、 反渗透1)、主要是通过物理方法,利用半透膜的选择透过特性,在进水侧加上一个超过水中离子渗透压的压力,使溶剂(水)分子透过半渗透膜,而将大部分溶质(盐)分子截留 在膜的进水侧,从而达到去除水中离子,制备除盐水的目的。
2)、简易流程:工艺主要包括水质预处理、膜分离和助剂添加三部分。
原水池 原水泵 过滤器 反渗透机组 浓水 浓水池 原水池3)、能耗:①工业水消耗费用,包括消耗的工业水量和可以外供的脱盐水总量。
②药剂费用,包括絮凝剂、还原剂、阻垢剂等费用。
③设备及填料的折旧费用④动力消耗费用,各种机泵的动力消耗⑤日常维护费用⑥人工费用2、阴阳床(离子交换法)1)、采用化学方法,在原水先后通过阳、阴离子交换树脂后,水中所含离子与离子交换树脂进行离子交换反应而被除去,从而制得符合生产工艺要求的除盐水,因此离子交换法也称为化学除盐处理。
2)、简易工艺主要包括水质预处理、离子交换和酸碱再生三部分。
原水池 原水泵 活性炭过滤器 阳离子交换器 脱碳塔 中间水箱 中间水泵 阴离子交换器 除盐水箱 除盐水泵 用水岗位3)、能耗反洗过滤器消防水池 除盐水 除盐水箱 除盐水泵 用水岗位①工业水消耗费用,包括消耗的工业水量和可以外供的脱盐水总量。
②再生酸碱消耗费用。
③废水处理费用④设备及填料的折旧费用⑤动力消耗费用⑥日常维护费用⑦人工费用3、混床1)、阳、阴离子交换树脂按一定比例混合填装于同一交换柱内的离子交换装置称为混合离子交换柱,简称混合床(或混床)。
均匀混合的树脂层阳树脂与阴树脂紧密地交错排列,每一对阳树脂与阴树脂颗粒类似于一组复床,故可把混合床视作无数组复床串联运行的离子交换设备。
除了原水水质中含盐量很低(小于200mg.L)及设备处理非常小的情况,很少用混床单独处理原水,因为这样做酸、碱耗高,不经济。
当原水含盐量达一定值,但用混床不能制出合格的除盐水。
混床的主要作用有两点:⑴进一步提高出水水质;⑵在一级除盐设备监督不及时的情况下,瞬间会造成水质恶化,影响锅炉给水水质。
电厂反渗透及离子交换除盐系统去除水中有机物的试验摘要:水源中的各种有机污染物会妨碍离子交换系统的处理效果,其中有机物污染中最常见的物质为腐殖酸和富里酸。
在除盐水的生产过程中,有多种除盐技术可供选择,经过对反渗透法和全离子交换法除盐技术的初步比较,认为反渗透加离子混合交换器工艺较全离子交换法生产除盐水工艺技术可靠,经济可行。
关键词:反渗透;离子交换;除盐随着反渗透技术的日趋成熟,运用反渗透设备在锅炉补给水处理中进行预脱盐的电厂越来越多,而与之相匹配的后处理设备仍是传统的离子交换器。
由于反渗透设备出水具有一定的特点,这使得应用传统离子交换器作为后续处理设备出现了诸多问题,有必要对之进行改进。
一、反渗透出水的特点1、原水中的大部分盐份已除去,电导率比较低。
一般的一级反渗透出水脱盐率在95%以上,而新投运的反渗透设备出水脱盐率在98%以上。
例如发电厂是以地下水作为补给水的,反渗透进水电导率800~900S/cm,出水电导率8~11S/cm。
以黄河水作为补给水,反渗透进水电导率1000S/cm左右,出水电导率20S/cm左右。
2、原水经反渗透处理后悬浮物含量降得很低,几乎为0浊度水,对后续的离子交换设备来说可以忽略。
反渗透对原水的预处理要求比较严格,反渗透保安过滤器入口水一般要求浊度小于1mg/L,经过保安过滤器又滤去了所有直径大于5m的颗粒,再经过反渗透半透膜的超细过滤几乎成为无浊水。
3、一级反渗透出水不能满足超高压以上锅炉补给水的要求。
超高压以上锅炉补给水要求电导率小于0.2S/cm,而一级反渗透出水电导率一般大于1S/cm。
归纳起来就是:反渗透出水含盐量比较低且浊度极低,但不能满足作为超高压以上机组补给水的要求,必须进行后续处理。
二、反渗透后续处理工艺1、二级反渗透处理。
二级反渗透可使水质进一步提高,但很难达到电导率小于0.2S/cm,而且二级反渗透处理设备投资大、运行效率低、经济性差。
2、混床处理。
反渗透技术原理是在高于溶液渗透压的作用下,依据其他物质不能透过半透膜而将这些物质和水分离开来。
反渗透膜的膜孔径非常小,因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等。
系统具有水质好、耗能低、无污染、工艺简单、操作简便等优点。
反渗透系统优点:1、连续运行,产水水质稳定2、无须用酸碱再生,不会因再生而停机,节省了反冲和清洗用水3、以高产率产生超纯水(产率可以高达95%)4、无再生污水,不须污水处理设施5、应用于预除盐处理也取得较好的效果,能使离子交换树脂的负荷减轻松90%以上,树脂的再生剂用量也可减少90%6、使用安全可靠,避免工人接触酸碱7、减低运行及维修成本8、安装简单、安装费用低廉主要品牌反渗透膜国内现主要应用国外反渗透膜品牌,具体品牌有:海德能膜HYDRANAUTICS 陶氏膜DOW 东丽膜TORAY 日东电工膜NittoDenko 世韩膜SAEHAN等用于反渗透法中制备纯水的半透膜。
一般用高分子材料制成。
如醋酸纤维素膜、芳香族聚酰肼膜、芳香族聚酰胺膜。
表面微孔的直径一般在0.5~10nm之间,透过性的大小与膜本身的化学结构有关。
有的高分子材料对盐的排斥性好,而水的透过速度并不好。
有的高分子材料化学结构具有较多亲水基团,因而水的透过速度相对较快。
因此一种满意的反渗透膜应具有适当的渗透量或脱盐率。
反渗透膜应具有以下特征:(1)在高流速下应具有高效脱盐率;(2)具有较高机械强度和使用寿命;(3)能在较低操作压力下发挥功能;(4)能耐受化学或生化作用的影响;(5)受pH值、温度等因素影响较小;(6)制膜原料来源容易,加工简便,成本低廉。
反渗透膜的结构,有非对称膜和复合膜两类。
当前使用的膜材料主要为三醋酸纤维素和芳香聚酰胺类。
其组件有中空纤维式、卷式、板框式和管式。
可用于分离、浓缩、纯化等化工单元操作,主要用于纯水制备和水处理行业中。
离子交换树脂原理:离子交换树脂是一种聚合物,带有相应的功能基团。
除盐水设备应用于各个行业,就目前除盐水设备技术有蒸馏水法,离子交换法,反渗透法,EDI电除盐等,在本文中,将把反渗透工艺及离子交换工艺特点进行比较,让大家更加认识这两种工艺。
工艺比较:
1、社会效益
反渗透工艺是当今最先进的除盐技术,利用反渗透工艺对水进行除盐,除盐率在97%以上。
该工艺工作量轻,维护量极小,反渗透工艺实行自动操作,人员配置较少,操作管理方便。
离子交换工艺是七十年代以来普遍采用的除盐工艺,它是靠离子交换工艺化学交换来完成对水进行除盐。
该工艺操作量较多维护量较大,人员配置较多,从目前锅炉除盐水工艺系统应用来看,离子交换工艺逐渐被反渗透工艺所取代。
2、环境效益
反渗透工艺是电能为动力,无需酸碱再生,若全为离子交换工艺的工作周期为1天,那么采用反渗透工艺脱除原水97%的盐分,在用离子交换工艺来担负3%的盐分,将使离子交换工艺的工作周期延至长30天以上,极大程度减少酸碱再生废液的排放量,降低了对环境的影响,大大减轻了酸碱排放废水的处理负担。
全离子交换工艺除盐化学交换,需要酸碱再生,其再生频率大,酸碱用量大,对周围的水和大气环境均有较大程度的影响.
3、经济效益
反渗透工艺制水成本低,通常该成本约2.5元/吨(含原水成本暂定1.0元/吨水,以及工资折扣等),该工艺的投资约在两年内从节约酸碱的费用中回收,紧急效益非常显著。
而离子交换工艺的制水成本在5.0元/吨.
并且反渗透工艺发展应用至今,生产工艺已非常成熟,进口RO膜元件可稳定运行5年以上,而离子交换工艺运行周期受到原水含盐量变化影响很大,为延长运行周期,往往需要增加大量的离子交换设备。
工艺占地面积大,运行管理不方便。
相对来讲,反渗透工艺比离子交换工艺更好一些。
离子交换和反渗透能耗比较由于水处理设备的工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。
除盐处理工艺的要求是多样的,用户对不同技术的看法也是不同。
例如有些用户希望用反渗透技术,而有些用户则希望用更传统的技术如离子交换,另外有些用户则以低投资为主要考虑因素。
离子交换法处理有以下特点:优点:◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低;◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。
缺点:◇由于离子交换床阀门众多,操作复杂烦琐;◇离子交换法自动化操作难度大,投资高;◇需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患;◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物◇在含盐量高的区域,运行成本高从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。
反渗透法处理有以下特点:优点:◇反渗透技术是当今较先进、稳定、有效的除盐技术;◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等◇原水含盐量较高时对运行成本影响不大◇缺点:◇预处理要求较高、初期投资较大本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。
2 工艺比较2.1离子交换法1)离子交换处理工艺流程:2)流程简介:原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Ca2+、Mg2+、Na+、K+、等阳离子从水中置换到树脂上,除去阳离子后的水从塔下流出并送入脱CO2塔上部,在塔内与塑料多面空心球接触形成水膜,HCO3-很快分解成CO2和H2O,通过风机将CO2从塔顶吹除,从而大大减轻阴床的负荷。
离子交换法和反渗透离子交换法和反渗透是两种常见的水处理技术,用于去除水中的杂质和提高水质。
本文将分别介绍离子交换法和反渗透的原理、应用和优缺点。
一、离子交换法离子交换法是一种通过固液相之间离子交换的方法来实现水处理的技术。
其原理是利用具有交换性能的固体材料,将水中的离子与固体材料上的离子进行交换,从而去除水中的杂质。
离子交换法主要通过离子交换树脂来实现。
离子交换树脂是一种高分子化合物,具有很强的离子交换能力。
当水流经过离子交换树脂时,树脂上的离子与水中的离子发生交换,从而实现水质的净化。
离子交换法广泛应用于水处理领域。
例如,它可以用于软化水、去除重金属离子、去除放射性物质等。
离子交换法可以有效地去除水中的硬度离子,使水质变软,减少水垢的形成。
此外,离子交换法还可以去除水中的有害物质,提高水质。
离子交换法有一些优点和缺点。
其优点是操作简单、效果好、处理效率高。
离子交换法可以去除水中的杂质,改善水质,使水变得更加清洁。
然而,离子交换法也存在一些缺点,例如成本较高、耗能较多、产生废水等问题。
二、反渗透反渗透是一种利用半透膜来实现水处理的技术。
其原理是通过施加一定的压力,将水通过半透膜,从而去除水中的溶质和杂质。
反渗透主要通过反渗透膜来实现。
反渗透膜是一种具有特殊结构的薄膜,可以选择性地让水分子通过,而阻止溶质和杂质的通过。
当水流经过反渗透膜时,溶质和杂质被滞留在膜的一侧,而纯净水则通过膜的另一侧。
反渗透广泛应用于饮用水处理、工业废水处理等领域。
例如,它可以用于去除水中的盐分、有机物、细菌等。
反渗透可以有效地提高水质,得到符合饮用水标准的纯净水。
反渗透技术有一些优点和缺点。
其优点是处理效果好、水质高、操作简单。
反渗透可以彻底去除水中的溶质和杂质,获得纯净水。
然而,反渗透也存在一些缺点,例如设备成本高、能耗较大、产水量较低等问题。
离子交换法和反渗透是常见的水处理技术,可以有效地去除水中的杂质和提高水质。
离子交换法通过离子交换树脂实现,适用于软化水、去除重金属离子等应用。
任何伟大的发明都离不开实验,各行各业都离不开实验,实验用水是有一定要求的,那就是实验室超纯水器,在对水质要求不同的情况下还必须要符合国际水质标准的要求。
实验室用水标准(GB6682-66):
一级水:基本上不含有溶解或胶态离子杂质及有机物。
它可用二级水经进一步处理而制得。
二级水:可含有微量的无机、有机或胶态杂质。
三级水:适用一般实验室实验工作。
实验室超纯水器离子交换和反渗透技术优缺点
第一种采用离子交换其优点在于初投资少,占用的地方少,但缺点就是需要经常进行离子再生,耗费大量酸碱,而且对环境有一定的破坏。
第二种采用反渗透作预处理再配上EDI装置,这是目前制取超纯水最经济,最环保用来制取超纯水的工艺,不需要用酸碱进行再生便可连续制取超纯水,对环境没什么破坏性。
其缺点在于初投资相对以上两种方式过于昂贵。
实验室威立雅CENTRA-R 120的工作原理是自来水经过精密滤芯和活性炭滤芯进行预处理,过滤泥沙等颗粒物和吸附异味等,让自来水变得更加干净,然后再通过反渗透装置进行水质纯化脱盐,纯化水进入储水箱储存起来,其水质可以达到国家三级水标准,同时反渗透装置产水的废水排掉。
威立雅MEDICA-R 7超纯水器可以使水中的悬浮物(颗粒物质)、胶体、有机物、硬度、微生物等杂质含量大大降低,以减轻后续的反渗透、电除盐等精处理系统的处理负荷,延长其使用寿命。
由于水处理设备的工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。
除盐处理工艺的要求是多样的,用户对不同技术的看法也是不同。
例如有些用户希望用反渗透技术,而有些用户则希望用更传统的技术如离子交换,另外有些用户则以低投资为主要考虑因素。
离子交换法处理有以下特点:优点:◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低;◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。
缺点:◇由于离子交换床阀门众多,操作复杂烦琐;◇离子交换法自动化操作难度大,投资高;◇需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患;◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物◇在含盐量高的区域,运行成本高从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。
反渗透法处理有以下特点:优点:◇反渗透技术是当今较先进、稳定、有效的除盐技术;◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等◇原水含盐量较高时对运行成本影响不大◇缺点:◇预处理要求较高、初期投资较大本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。
2工艺比较2.1离子交换法1)离子交换处理工艺流程:2)流程简介:原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Ca2+、Mg2+、Na+、K+、等阳离子从水中置换到树脂上,除去阳离子后的水从塔下流出并送入脱CO2塔上部,在塔内与塑料多面空心球接触形成水膜,HCO3-很快分解成CO2和H2O,通过风机将CO2从塔顶吹除,从而大大减轻阴床的负荷。
离子交换与反渗透比较目录1为什么会有离子交换和反渗透? (2)2离子交换法处理有以下特点 (3)3反渗透法处理有以下特点 (3)4工艺比较 (3)4.1离子交换法 (3)4.1.1流程简介: (3)4.1.2流程单元说明 (4)4.2反渗法 (5)4.2.1流程简介 (5)4.2.2流程单元说明: (5)5占地面积比较 (6)6经济运行比较 (7)1为什么会有离子交换和反渗透?由于水处理设备的工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。
除盐处理工艺的要求是多样的,用户对不同技术的看法也是不同。
例如有些用户希望用反渗透技术,而有些用户则希望用更传统的技术如离子交换,另外有些用户则以低投资为主要考虑因素。
2离子交换法处理有以下特点优点:◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低;◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。
缺点:◇由于离子交换床阀门众多,操作复杂烦琐;◇离子交换法自动化操作难度大,投资高;◇需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患;◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物◇在含盐量高的区域,运行成本高3反渗透法处理有以下特点优点:◇反渗透技术是当今较先进、稳定、有效的除盐技术;◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等◇原水含盐量较高时对运行成本影响不大◇缺点:◇预处理要求较高、初期投资较大4工艺比较4.1离子交换法4.1.1流程简介:原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Ca2+、Mg2+、Na+、K+、等阳离子从水中置换到树脂上,除去阳离子后的水从塔下流出并送入脱CO2塔上部,在塔内与塑料多面空心球接触形成水膜,HCO3-很快分解成CO2和H2O,通过风机将CO2从塔顶吹除,从而大大减轻阴床的负荷。
离子交换和反渗透产除盐水的方案比较
概述
多年来,离子交换水处理技术一直被认为是唯一稳定可靠的高纯水生产技术,该技术已广泛应用于许多工业领域,如电厂锅炉补给水等。
近二十年来,离子交换在许多地方常常被反渗透替代。
反渗透是一种膜分离工艺,因其不产生污染废水,而被称为“绿色”工艺。
反渗透的快速发展始于上世纪70 年代后期, 当时离子交换技术已经发展的相当成熟,而反渗透还是一种新兴技术。
工艺技术往往在初始应用时发展很快,之后发展速度缓慢,到成熟阶段几乎没有什么改进。
因此,长期以来反渗透常被认为是一种有活力的技术,可以有效应用于各种领域的纯水解决方案,而离子交换却被认为是陈旧的工艺,其实人们往往忽略了反渗透在诸多实际应用中会产生膜的结垢和污堵问题,它会增加化学药品的使用量,减少膜的运行寿命,增加设备的操作和维护成本。
如今,反渗透虽然被认为是一项很成熟的工艺,但是这两种技术的比较已经到了重新评估的时候了。
当然离子交换工艺需要使用化学药品再生,但在过去,化学药品并没有有效利用,而且再生过程还产生了过量的废水。
然而,再生技术的新发展意味着最新一代的离子交换床已大大提高了再生剂的使用效率,同时消耗的电量和产生的废水都远少于反渗透。
为了重新评估这些变化和发展,有必要了解离子交换工艺的一些基本原理。
离子交换树脂主要由聚苯乙烯系骨架键合了活性基团组成,活性基团包括磺酸基,羧酸基、
叔胺基、季胺基等。
交换床所需离子交换树脂的体积主要是由水力学和动力学来控制的。
在水力学方面,通过树脂床的压降是流速和树脂深度的函数,树脂深度小一些效果比较好;而在动力学方面,由于受到扩散因素的限制,树脂深度大一些比较好。
因此,工程师会综合这两方面的因素,对树脂床树脂深度进行最优化的设计。
最近20 年来,离子交换树脂最重要的发展就是能够生产尺寸精确的聚苯乙烯系树脂颗粒,即能生产均粒树脂。
这听起来好像只是较小的创新,但我们可以使用经过动力学大大改善的小粒径树脂,同时均一尺寸的树脂颗粒确保紧密的六边形堆积,这使较小的树脂颗粒也能保持相对较低的压降。
这和可靠性能已大大改善的自动阀共同促进了应用于很多商业去离子工艺的SCION? (Short cycle ion exchange)短期循环技术的发展。
羧酸型弱酸阳树脂再生效率高,再生时酸的利用率达到了95%,但它只能同弱酸盐(如重碳酸盐)进行阳离子交换反应;而磺酸基强酸阳树脂能够去除所有的阳离子,但在再生时酸的利用率大约仅在60%左右。
同样叔胺基弱碱阴树脂不能去除水中的二氧化碳和二氧化硅,而季胺基强碱阴树脂则可以,但再生剂氢氧化钠的使用效率远低于弱碱阴树脂。
为了节省运行成本,可以先让水通过弱离子交换树脂,再利用强离子交换树脂进一步处理,以更有效的利用化学再生剂。
典型的一级除盐工艺包括使用弱酸阳树脂去除原水中和碱度相关的阳离子,然后用强酸阳树脂去除剩余的阳离子,阳床出水经过脱炭塔去除水中的二氧化碳后,除炭水再用弱碱阴树脂除去强的酸性阴离子如硫酸离子、氯离子等,最后用强碱阴树脂进一步去除
解离出来的碳酸或二氧化硅。
每一次,化学再生剂都要首先穿过强离子交换树脂,然后穿过弱离子交换树脂,弱离子交换树脂更容易被再生剂再生,从而提高了再生剂的使用效率。
很明显,用强、弱树脂分开处理会增加设备投资成本,因为这需要增加压力容器,所以回收期通常会很长。
试图把强、弱树脂放在同一床中使用以减少投资费用的想法,因两种树脂分层问题而难以实现。
但新的
均粒树脂已经做成分层床,从而降低了设备投资成本,提高了再生剂的使用效率,并且使设备的操作更加容易。
来自于高沼地的水通常含有高水平的天然有机物如腐殖酸、棕黄酸等。
这些大的有机分子可以通过反渗透系统去除,但是会残留在膜表面,形成有机污堵并增加膜清洗的频率。
这些有机分子大多数都是弱酸,在离子交换床里,这些分子可被交换和吸附到强碱阴树脂上,在那里被物理截留,形成树脂的污染。
使用弱碱阴树脂可以减少树脂污染,延长树脂清洗周期,还常常能减除昂贵的预处理设备如有机物清除设备等。
这就意味着使用分层床的强弱阴离子交换树脂对于污垢的抵抗力比反渗透或者传统的单阴离子交换树脂更强。
RAPIDE 和RAPIDE plus
开发SCION?(Short cycle ion exchange)工艺的英国ELGA 水处理公司,现在已经成功完成一种新型再生工艺,所谓的脉冲再生程序(Pulsed Regeneration Sequence,已申请专利),这种工艺是使用高浓度的化学再生剂通过已失效树脂床,不是以连续流动方式而是以短
脉冲形式对树脂进行再生,当中增加了水冲洗的步骤。
这种超浓度的
再生剂不仅可以很有效地去除树脂内的离子杂质,同时也增加了树脂
颗粒的收缩,并形成颗粒表面的自然渗透。
这种收缩可以去除表面的
污垢,同时也可以去除树脂颗粒内污垢,例如有机物等。
接下来的水冲洗会帮助树脂的重新膨胀,并将用过的再生剂冲洗掉。
通过重复再生剂/水冲洗的步骤,树脂就完成了化学和物理的处理过程,从而恢复到最好的运行状态。
威立雅水处理系统公司的新一代
RAPIDE 去离子设备:RAPIDE 和RAPIDE plus,是属于首家运用脉冲再生步骤工艺的设备。
运用的再生剂比一般的离子交换设备少于30%至50%,同时具有所有SCION?技术的优点:即为30 到45 分钟的再生时间,以及产生较少的废水。
RAPIDE Strata 设备产水电导率可以低于2?s/cm,Si02 可以低于0.1 mg/l;对于一些水质要求较高的工业,例如电厂的锅炉补给水,RAPIDE Strata Plus 能提供产水电导率低于0.1?s/cm,Si02 的含量低于0.02
mg/l。
多数自来水或井水作为RAPIDE 去离子设备的原水都可以实现上述数据。
反渗透工艺
相比之下,反渗透工艺可以脱除原水中95%的溶解盐。
去除率是离子所带电荷的函数,二价和三价离子几乎被完全去除,而像二氧化硅这类
的弱酸离子的去除率稍低。
二氧化碳之类的溶解气体可以通过扩散在
膜的两侧达到平衡。
以英格兰南部的自来水为例,通过反渗透处理后,产水中总溶解固体(TDS)约为
20mg/l,二氧化硅的浓度约为1mg/l,二氧化碳的浓度约为10mg/l,和
一级除盐产水比较,反渗透产水由于这些离子较多的存会进一步增加后续抛光混床的负担。
此外,还有一个问题经常会被忽略,那就是大型的反渗透系统经常用到一些化学试剂,如亚硫酸氢钠、阻垢剂和清洗杀菌剂等,与离子交换再生剂相比,这些化学试剂往往比较贵,而且后期处理也比较困难。
小结
工程经济学是评价工艺的准绳,但基础参数是变化的,也就是说目标通常是随电价和化学试剂的市场价格而变化的。
近10 年来,在纯水制备方面最重要的变化就是不断增长的自来水和污水排放价格。
反渗透和离子交换工艺的概括比较是非常困难的,因为相对性能会随着原水的含盐量有所变化。
通常离子交换法对较低含盐量(TDS)的进水更具有竞争力,将典型的英国自来水(TDS。