离子交换除盐水处理的系统(优质荟萃)
- 格式:ppt
- 大小:1.10 MB
- 文档页数:21
第九章软化与除盐(Softening and Salt Removal)第1节概述一、水中主要溶解杂质离子:Ca2+, Mg2+, Na+(K+)HCO3-, SO42-, Cl-一般Fe2+, SiO32-含量较少。
气体:CO2,O2总硬度:Ca2+, Mg2+,碳酸盐硬度(暂时硬度)非碳酸盐硬度含盐量:∑阳+∑阴软化:降低硬度除碱:HCO3-(锅炉给水、碱度太高,会汽水共沸)除盐:降低含盐量二、硬度单位mmol/L, meq/L, 度(我国用德国度)德国度=10 mg CaO/L 美国度=1mg CaCO3/L三、水的纯度以含盐量或水的电阻率表示(单位:欧姆厘米)淡化水:高含盐量水经局部处理脱盐水:相当于普通蒸馏水,含盐量1-5mg/L纯水:亦称去离子水,含盐量<1mg/L高纯水:含盐量<0.1mg/L四、软化和除盐基本方法1.软化(1)加热去除暂时硬度(2)药剂软化:根据溶度积原理(3)离子交换:离子交换硬度去除比较彻底。
2.除盐蒸馏法、电渗析法、反渗透法、离子交换法第2节药剂软化法一、石灰软化法:CaO + H2O = Ca(OH)2CO2 + Ca(OH)2 ---CaCO3↓+ H2OCa(HCO3)2 + Ca(OH)2 --- 2CaCO3↓ + 2H2OMg(HCO3)2 + 2Ca(OH)2 --- 2CaCO3↓+ Mg(OH)2↓+2H2O若碱度>硬度,还应去除多余的HCO3-若水中存在Fe离子,也要消耗Ca(OH)2所以,石灰投加量:[CaO] = [CO2] + [Ca(HCO3)2] + 2[Mg(HCO3)2] + [Fe] +a为尽量降低碳酸盐硬度,石灰+混凝沉淀可以同时进行。
注意:石灰法只能降低碳酸盐硬度以及降低水中的碱度二、石灰-纯碱法去除碳酸盐和非碳酸盐硬度CaSO4 + Na2CO3 ----CaCO3↓+ Na2SO4MgSO4 + Na2CO3 ---MgCO3 + Na2SO4MgCO3 + Ca(OH)2– CaCO3↓+Mg(OH)2↓但纯碱太贵,此法一般不用。
离子交换除盐中为什么阳床漏钠阴床必漏硅水的除盐有离子交换、反渗透、蒸馏法、电渗析等,目前使用最多的仍为阴、阳离子交换法,即使用阳离子交换树脂去除水中的阳离子,用阴离子交换树脂去除水中的阴离子,从而达到除盐的目的。
因为钠盐在水中溶解,不会产生沉淀,故往往认为对中、高压锅炉用水在阳离子交换器中出现漏钠影响和危害不大。
但没有认识到或足够的认识到阳床漏钠阴床必漏硅,不能达到除硅的目的。
本文将论述阳床漏钠阴床产生漏硅的原因和过程。
一、强碱ROH阴离子交换树脂的工艺特性水经强酸RH离子交换后,水中的Fe3+、Ca2+ 、Mg2+、Na+、K+等阳离子基本去除了,还剩下的是SO42-、Cl-、HCO3- 、NO3-、HSiO3-等离子,这些阴离子常用强碱ROH 才能去除,其反应式为:ROH+H2SO4=RHSO4+ H2O (1)2 ROH+H2SO4=R2SO4+2H2O (2)ROH+HCl=RCl+H2O (3)ROH+H2CO3=RHCO3+H2O (4)ROH+H2SiO3=RHSiO3+H2O (5)反应式(1)和(2)是同时进行的,代表了ROH与SO42-交换的两种情况。
当树脂主要是ROH存在时,反应式(2)占优势;当水中H2SO4浓度超过树脂上OH-时主要是反应式(1)。
因此,运行刚开始都是ROH型,故是(2)式反应;当树脂从上到下逐渐形成R2SO4型时,再进入的H2SO4,其交换结果转为RHSO4型,反应式为:R2SO4+H2SO4=2RHSO4 (6)从式(1)~(6)可见,水经ROH呈中性。
但为什么在离子交换除盐中,水要先经过阳离子交换后再进入阴离子交换呢?水不经过阳床行吗?现在我们来论述一下这方面问题。
1、强碱树脂的选择性树脂的选择性也称交换势,亲和力,结合力等,其选择性的次序为:SO42->NO3->Cl->OH->F->HCO3- >HSiO3-可见SO42、NO3-、Cl-的选择性都大OH-,吸着能力强;而F-、HCO3-、、HSiO3-是弱酸阴离子,选择性小于OH-,吸着能力差,从交换势可见:(1)强酸阴离子SO42-、NO3-、Cl-能顺利的交换ROH上的OH-离子而被去除,而且按选择性的大小,后来的NO3-交换RCl上的Cl-,后来的SO42-又交换RNO3上的NO3-(当然也交换Cl-),随着交换的进行,逐渐形成R2SO4在最上层,第二层为RNO3(如果水中无硝酸,则该层没有),第三层为RCl(如图1)图1 阴离子交换次序(2)弱酸阴离子HCO3-、HSiO3-,一是选择性小于OH-离子;二是水中的含量相对来说又少;三是H2CO3、H2SiO3必须要在较强的碱性条件下才能离解为H++ HCO3-和H++HSiO3-。
除盐水处理工艺除盐水处理工艺介绍1 前言目前除盐水处理工艺主要有蒸馏法、离子交换法及膜分离法等,除盐水处理工艺是根据不同的入水水质和出水要求而设计的,针对不同的原水水质特点而设计水处理方案才是最经济有效的方案,同时也是出水水质长期稳定达到要求的保证。
本文就除盐水处理工艺(离子交换法和RO膜分离法)对比介绍各自的特点:在70年到80年代末离子交换法在我国除盐水处理领域得到广泛应用.离子交换法处理有以下特点:优点:◇预处理要求简单、工艺成熟,出水水质稳定、设备初期投入低;◇由于制水原理类同于用酸碱置换水中离子,所以在原水低含盐量的应用区域运行成本较低。
缺点:◇由于离子交换床阀门众多,操作复杂烦琐;◇离子交换法自动化操作难度大,投资高;◇需要酸碱再生,再生废水必须经处理合格后排放,存在环境污染隐患;◇细菌易在床层中繁殖,且离子交换树脂会长期向纯水中渗溶有机物◇在含盐量高的区域,运行成本高从80年末开始,膜法水处理在我国得到了广泛应用,反渗透就是除盐处理工艺的膜法水处理工艺之一。
反渗透法处理有以下特点:优点:◇反渗透技术是当今较先进、稳定、有效的除盐技术;◇与传统的水处理技术相比,膜技术具有工艺简单、操作方便、易于自动控制、无污染、运行成本低等优点,特别是几种膜技术的配合使用,再辅之经其他水处理工艺,如石英砂、活性炭吸附、脱气、离子交换、UV杀菌等◇原水含盐量较高时对运行成本影响不大◇缺点:◇预处理要求较高、初期投资较大本文以地下水为原水,生产250m3/h除盐水(5MΩ.cm)为例,就离子交换和反渗透两种处理方法在工艺、占地方面、和运行成本作简要比较。
2 除盐水处理工艺比较2。
1离子交换法1)离子交换处理工艺流程:2)流程简介:原水首先进入无阀滤池进行预处理直流入过滤水槽,再通过过滤水泵送水至阳床上部,在床中与强酸阳树脂接触,树脂将Ca2+、Mg2+、Na+、K+、等阳离子从水中置换到树脂上,除去阳离子后的水从塔下流出并送入脱CO2塔上部,在塔内与塑料多面空心球接触形成水膜,HCO3—很快分解成CO2和H2O,通过风机将CO2从塔顶吹除,从而大大减轻阴床的负荷。
离子交换设备离子交换设备简介:在纯水制作的工艺上,传统的离子交换工艺主要体现在工业纯水和超纯水的制水设备上使用到的一种流程,很多的工业水处理中运用到的离子交换,比如精细化工行业、电子电镀行业、线路板制作行业,电子、显示屏制作行业等等,离子交换设备在操作过程中比较简单,再生环节容易,离子交换设备主要在树脂的使用需要良好的选型,树脂的型号的规格决定水中的好坏和使用周期,以下是离子交换设备的一些介绍:1、离子交换是一种传统的、工艺成熟的脱盐处理设备,其原理是在一定条件下,依靠离子交换剂(树脂)所具有的某种离子和预处理水中同电性的离子相互交换而达到软化、除碱、除盐等功能。
用于深度脱盐处理,产水电阻率动态可达到18MΩ·cm。
2、离子交换设备阴阳离子的基本原理:采用离子交换方法,将把水中阳、阴离子去除。
以氯化钠(NaCl)代表水中无机盐类,水质除盐的基本反应式:阳离子交换柱方程:阳离子交换树脂具有酸性基团。
在水溶液中酸性基团可以电离生成H+。
每种交换树脂可以含有一种或数种离子基团,按照离子基团的电离难易程度可把交换树脂分为强性和弱性。
阳离子交换树脂分为强酸性和弱酸性.R-H+Na+=R–Na+H+阴离子交换柱方程:阴离子交换树脂含有碱性基团他们在水溶液中电离并与阴离子进行交换。
阴离子交换树脂按照离子基团的电离难易程度分为强碱性及弱碱性。
R–OH+Cl-=R–Cl-+OH-3、阳、阴离子交换柱串联以后称为复合床,其总的反应式: R-H+R-OH+NaCl=R-Na+R-Cl+H2O由上面所描述得出,水中的NaCl已分别被树脂上的H+和OH-所取代,而反应生成物为H2O,达到了去除水中盐的作用。
4、混合离子交换柱(混床):将阳、阴床尚未交换的剩余盐类进一步除去,由于通过混合离子交换后进入水中的H+和OH-立即生成电离度很低(H2O),几乎不存在阳床或阴床交换时产生的逆交换现象,使交换反应进行得十分彻底,因而混合床的出水水质优于阳、阴离子交换柱串联组成的复床所能达到的水质,能制取纯度相当高的成品水。
脱盐柱原理脱盐柱是一种用于去除水中盐分的设备,其原理是通过离子交换树脂将水中的盐离子与其他离子进行交换,从而达到去除盐分的目的。
脱盐柱广泛应用于海水淡化、工业生产和生活饮用水处理等领域,具有高效、节能、环保等优点。
脱盐柱的工作原理主要包括两个方面,离子交换和再生。
首先,水通过脱盐柱时,离子交换树脂会将水中的盐离子与树脂中的其他离子进行交换,使水中的盐分得以去除。
其次,当脱盐柱中的离子交换树脂吸附了大量盐分后,需要进行再生。
再生过程中,可以通过向脱盐柱中注入盐水或其他化学物质,使离子交换树脂释放吸附的盐分,并恢复交换能力,以便继续使用。
脱盐柱的原理可以简单概括为“吸附-交换-再生”,其核心在于离子交换树脂的作用。
离子交换树脂是一种高分子化合物,其表面带有大量的交换位点,能够吸附和释放离子。
在脱盐过程中,水中的盐离子会与树脂上的其他离子进行交换,从而实现盐分的去除。
而在再生过程中,通过适当的方法,可以使离子交换树脂重新释放吸附的盐分,以恢复其交换能力。
脱盐柱原理的核心是离子交换树脂的性质和作用机制。
离子交换树脂具有选择性吸附离子的特点,可以根据需要选择不同的树脂类型和操作条件,实现对水中不同离子的去除。
同时,离子交换树脂的再生性能也影响着脱盐柱的效率和使用寿命。
因此,在设计和运行脱盐柱时,需要充分考虑离子交换树脂的选择、再生方法和操作参数等因素,以确保脱盐效果和设备稳定运行。
总的来说,脱盐柱的原理是基于离子交换树脂的作用,通过离子交换和再生过程去除水中的盐分。
了解脱盐柱的原理有助于我们更好地理解其工作机制和优缺点,为脱盐设备的选择、设计和运行提供科学依据。
同时,随着科学技术的不断进步,脱盐柱原理也在不断完善和创新,为解决水资源短缺和水质污染等问题提供了重要的技术支持。
目录一、系统简介.......................................................... 错误!未定义书签。
(一)工艺原理················错误!未定义书签。
(二)主要术语及计算公式···········错误!未定义书签。
(三)反渗透进水水质指标.............................................. 错误!未定义书签。
(四)工艺流程说明和工艺指标.......................................... 错误!未定义书签。
二、系统操作方法...................................................... 错误!未定义书签。
(一)机泵操作方法··············错误!未定义书签。
(二)预处理系统操作方法···········错误!未定义书签。
(三)反渗透系统操作方法···········错误!未定义书签。
(四)加药系统操作方法············错误!未定义书签。
脱盐柱的原理
脱盐柱是一种用于去除水中盐分的设备,其原理主要是利用离子交换树脂对水中的盐离子进行吸附和交换。
在海水淡化、工业用水以及家用净水等领域都有广泛的应用。
下面将详细介绍脱盐柱的原理及其工作过程。
首先,脱盐柱内部填充了离子交换树脂。
离子交换树脂是一种具有特殊结构的高分子化合物,其分子内部带有大量的阴阳离子交换位点。
当水通过脱盐柱时,水中的盐离子会与离子交换树脂上的阴阳离子进行交换,从而使水中的盐分得到去除。
其次,脱盐柱的工作过程可以分为吸附和再生两个阶段。
在吸附阶段,当含盐水通过脱盐柱时,离子交换树脂会吸附水中的盐离子,使水中的盐分得到去除。
而在再生阶段,通过向脱盐柱中注入含有高浓度盐分的溶液,可以将离子交换树脂上吸附的盐离子释放出来,从而实现对离子交换树脂的再生。
此外,脱盐柱的原理还涉及到离子交换树脂的选择和操作条件的控制。
不同类型的离子交换树脂对不同的盐离子具有不同的选择性,因此在选择离子交换树脂时需要根据水样的盐分成分来进行合
理选择。
同时,控制脱盐柱的操作条件如流量、温度、压力等也对脱盐效果有着重要影响。
综上所述,脱盐柱的原理是通过离子交换树脂对水中的盐离子进行吸附和交换,从而实现对水中盐分的去除。
脱盐柱的工作过程包括吸附和再生两个阶段,同时需要合理选择离子交换树脂并控制操作条件。
这种原理简单而有效的设备在水处理领域有着重要的应用,为解决水资源短缺和水质污染问题提供了重要的技术支持。
除盐水处理系统工艺流程
在工业生产中,除盐水处理系统是非常重要的一环,它可以有
效地去除水中的盐分,使水变得更加纯净,从而可以用于各种用途,比如饮用水、工业生产等。
下面我们将介绍除盐水处理系统的工艺
流程。
首先,除盐水处理系统的第一步是预处理。
在这个阶段,水会
经过一系列的预处理设备,比如过滤器、沉淀池等,去除水中的杂
质和悬浮物,以减少对后续设备的损害和影响。
接着,水会进入反渗透设备进行处理。
反渗透是一种利用高压
将水通过半透膜,从而将盐分和其他杂质从水中分离出来的方法。
这是除盐水处理系统中最关键的一步,也是最有效的一步。
然后,经过反渗透处理的水会进入电离交换器。
在这里,水中
的离子会被交换成氢离子和氢氧根离子,从而进一步去除水中的盐
分和其他离子杂质。
最后,经过电离交换器处理的水会经过精密过滤器的最后一道
过滤,确保水质的纯净度。
这一步也是为了保护设备和确保出水质
量的稳定性。
通过以上工艺流程,除盐水处理系统可以将含盐水处理成纯净水,满足不同领域的用水需求。
这种工艺流程不仅可以高效去除水中的盐分,还可以保证水质的稳定性和纯净度,是一种非常有效的水处理方法。
除盐水处理系统的工艺流程在实际应用中可以根据具体情况进行调整和优化,以满足不同水质和用水需求。
但总的来说,以上介绍的工艺流程是一个比较常见和有效的处理方法,可以为各种领域的用水提供高质量的纯净水。
一、实验目的1. 了解离子交换除盐的原理及过程。
2. 掌握离子交换树脂的性能和应用。
3. 通过实验验证离子交换除盐的效果。
二、实验原理离子交换除盐是利用离子交换树脂的选择性吸附性能,将水中的阳离子和阴离子与树脂上的离子进行交换,从而达到除盐的目的。
本实验采用阴阳离子交换树脂对水进行除盐处理。
三、实验材料与仪器1. 实验材料:- 离子交换树脂(阳床、阴床)- 待处理水样(含Na+、Cl-、SO42-、Ca2+、Mg2+等)- 蒸馏水- 硝酸、氢氧化钠、氯化钠、硫酸钠、硫酸钙、氯化钙、氯化镁等试剂2. 实验仪器:- 离子交换柱- 恒温水浴锅- 烧杯、漏斗、玻璃棒、移液管、滴定管等四、实验步骤1. 准备工作:将阳床、阴床分别用蒸馏水浸泡,使其充分膨胀,备用。
2. 阳床处理:- 将待处理水样倒入阳床柱中,调节流速为1~2 mL/min。
- 待水样通过阳床后,收集流出液,测定其阳离子含量。
3. 阴床处理:- 将阳床处理后的流出液倒入阴床柱中,调节流速为1~2 mL/min。
- 待水样通过阴床后,收集流出液,测定其阴离子含量。
4. 结果分析:- 将实验数据与原水样中的离子含量进行对比,分析离子交换除盐的效果。
五、实验结果与分析1. 阳床处理结果:- 原水样中Na+含量为100 mg/L,处理后流出液中Na+含量为10 mg/L,去除率为90%。
- 原水样中Ca2+含量为50 mg/L,处理后流出液中Ca2+含量为5 mg/L,去除率为90%。
- 原水样中Mg2+含量为30 mg/L,处理后流出液中Mg2+含量为3 mg/L,去除率为90%。
2. 阴床处理结果:- 原水样中Cl-含量为80 mg/L,处理后流出液中Cl-含量为8 mg/L,去除率为90%。
- 原水样中SO42-含量为60 mg/L,处理后流出液中SO42-含量为6 mg/L,去除率为90%。
3. 结果分析:- 通过实验可知,离子交换除盐法可以有效去除水中的阳离子和阴离子,去除率较高。
一、填空题1、离子交换树脂的交换容量分为全交换容量、工作交换容量、平衡交换容量。
2、按离子交换树脂的结构,离子交换树脂分为凝胶型树脂、大孔型树脂、超凝胶型树脂和均孔型强碱型阴树脂。
3、树脂型号为001×7,第一位数字代表活性基团代号,第二位数字代表骨架代号,第三位数字代表顺序代号,×代表联接符号,第四位数字代表交联度。
4、树脂的污染主要分为有机物污染,无机物污染,硅酸根污染。
5、阴树脂发生硅酸根污染的主要原因为未及时再生或者再生不彻底。
6、离子交换器体内再生分为顺流再生、逆流再生、分流再生和串联再生四种。
7、被处理的水流经离子交换树脂层时,其离子交换树脂按水流顺序可分为失效层、工作层、保护层。
8、离子交换树脂的可逆性是反复使用的基础。
9、离子交换器再生过程中,提高再生液温度,能增加再生程度,主要因为加快了内扩散和膜扩散的速度。
10、混床反洗分层是利用阴阳树脂密度不同;若反洗效果不佳,可通过加碱浸泡后,重新反洗分层。
11、运行规程中,阳床出水Na>100ug/L,即为失效;阴床出水DD>5us/cm或SiO2>50ug/L,即为失效;混床出水DD>0.2us/cm或SiO2>20ug/L,即为失效。
12、运行分析中测量钠离子,所用碱化剂为二异丙氨,控制样水pH>10,pNa4=2300ug/L。
13、每台阳离子交换器的额定制水量为205t/h,每台阴离子交换器额定制水量为205t/h,每台混合离子交换器的额定制水量为235t/h。
14、除盐水的主要监测的项目为电导率和二氧化硅,其标准分别为DD≤0.2μs/cm,SiO2≤20μg/L。
15、阳床或阴床或混床失效时应停运进行再生。
16、001×7型树脂是强酸阳离子交换树脂。
17、离子交换器的交换过程,实质上就是工作层逐渐下移的过程。
18、强弱碱树脂联合使用,弱阴树脂交换强酸根离子,强阴树脂交换弱酸根离子。
19、混床阴阳树脂的填装比例阴:阳=2:1。