最新人教版九年级数学下册--反比例函数教学设计
- 格式:doc
- 大小:269.50 KB
- 文档页数:13
反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。
过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。
二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。
难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。
三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。
环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。
环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。
环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。
四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。
五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。
人教版数学九年级下册第26章《反比例函数》课堂教学设计一. 教材分析人教版数学九年级下册第26章《反比例函数》是学生在学习了正比例函数和一次函数的基础上,进一步深化对函数概念的理解。
本章通过反比例函数的概念、图像和性质的学习,使学生掌握反比例函数的基本知识,提高学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了正比例函数和一次函数的知识,具备一定的函数观念。
但反比例函数的概念和性质与前两者的差异较大,学生可能存在理解上的困难。
因此,在教学过程中,要注重引导学生发现反比例函数与正比例函数、一次函数的联系和区别,激发学生学习兴趣,提高学生自主学习能力。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的抽象思维能力和创新能力。
四. 教学重难点1.反比例函数的概念。
2.反比例函数的性质。
3.反比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,发现反比例函数的性质,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.教学课件。
2.反比例函数的实际问题案例。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考反比例函数的概念。
例如:一辆汽车以60公里/小时的速度行驶,行驶1小时后,距离是多少?当速度一定时,行驶的时间和距离之间的关系是什么?2.呈现(10分钟)讲解反比例函数的定义,引导学生发现反比例函数与正比例函数、一次函数的联系和区别。
通过多媒体课件,展示反比例函数的图像,使学生直观地理解反比例函数的性质。
3.操练(10分钟)让学生通过自主探究,发现反比例函数的性质。
教师提供几个实际问题,引导学生运用反比例函数解决问题。
例如:一个矩形的长和宽成反比例,长为8厘米,求矩形的面积。
4.巩固(10分钟)通过小组合作学习,让学生进一步巩固反比例函数的知识。
人教版数学九年级下册26.1《反比例函数》教学设计一. 教材分析人教版数学九年级下册第26.1节《反比例函数》是本册教材的重要内容,主要让学生了解反比例函数的定义、性质及图象,学会利用反比例函数解决实际问题。
本节内容承上启下,为后续学习函数的其他类型打下基础。
教材通过实例引入反比例函数,使学生能够从实际问题中抽象出反比例函数模型,进一步培养学生的抽象思维能力。
二. 学情分析九年级的学生已经学习了函数的基本概念、一次函数和二次函数,对函数有一定的认识。
但是,对于反比例函数这一概念,学生可能较为陌生,需要通过具体实例来引导学生理解和掌握。
此外,学生对于函数图象的绘制和分析还有一定的困难,需要在教学中给予指导。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的性质。
2.能够绘制反比例函数的图象,分析反比例函数图象的特点。
3.学会利用反比例函数解决实际问题,提高解决问题的能力。
4.培养学生的抽象思维能力和合作交流能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
3.利用反比例函数解决实际问题。
五. 教学方法1.情境教学法:通过实例引入反比例函数,使学生能够从实际问题中抽象出反比例函数模型。
2.合作学习法:引导学生分组讨论,共同探究反比例函数的性质和图象特点。
3.实践操作法:让学生动手绘制反比例函数的图象,提高学生的实践操作能力。
4.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
六. 教学准备1.准备相关的实例,用于引入反比例函数。
2.准备反比例函数的图象资料,用于分析反比例函数的性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入反比例函数的概念。
例如,一辆汽车以60千米/小时的速度行驶,行驶1小时后,行驶的距离与时间成反比例关系。
引导学生思考,如何表示这种关系。
2.呈现(10分钟)呈现反比例函数的定义,解释反比例函数的概念。
数学人教版九年级下册26.2实际问题与反比例函数教学设计(推荐5篇)第一篇:数学人教版九年级下册26.2 实际问题与反比例函数教学设计26.2 实际问题与反比例函数教学设计【设计理念】在很多人的印象中,数学除了繁琐的计算、抽象的符号就是让人头疼的几何证明。
实际上数学是一门具有丰富内容并且与现实世界联系非常密切的学科。
本节就体现了反比例函数是解决实际问题的有效的数学模型的思想。
教师创设问题情境,激发学生探究实际问题的兴趣,引发学生思考,体验数学知识的实用性。
让学生经历“问题情境→建立模型→拓展应用”的过程,培养学生善于发现问题、积极参与学习的能力,培养学生的数学应用意识,充分开发学生的潜能。
【教材分析】本节课选自义务教育课程标准实验教科书《数学》(人教版)八年级下册第十七章第二节“实际问题与反比例函数”的第一节。
在前面学习了反比例函数的概念及函数的图象和性质的基础上,使学生进一步体验反比例函数在现实世界中的无处不在,以及如何应用反比例函数的知识解决现实世界中的实际问题。
虽然教科书在本节安排了四个现实生活中的问题,但我们却采用了自编的关于教师上班的路程问题,因为这个问题是全校师生所熟悉的亲身经历的事件,这样能让学生真正体验到数学知识来源于实际生活又反过来服务实际生活这种数学建模思想。
同时又通过问题的内容加深学生与教师的情感,培养学生的感恩意识,更重要的是通过让学生举出一个生活中的反比例函数应用的事例培养学生的语言表达能力及与人合作的意识。
【学情分析】学生已经有了反比例函数的概念及其图象与性质这些知识基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,因此学生已经有了一定的知识准备。
但由于所教学生都是农村学生,信息掌握程度不高,知识面较窄,语言表达能力较差,因此,本节课教师更换了例题,使学生从身边事物入手,真正体会到数学知识来源于生活,有一种亲切感。
在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来活动,不断引导学生利用数学知识来解决实际问题。
反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
三、情感态度与价值观1、积极参与交流,并积极发表意见。
2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
教学重点:掌握从实际问题中建构反比例函数模型。
教学难点:从实际问题中寻找变量之间的关系。
关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。
2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。
教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。
二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。
设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。
反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。
运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。
案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。
师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。
通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。
二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。
复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。
案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。
师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。
那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。
生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。
反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。
2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。
教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。
今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。
这两种量之间是反比例关系。
活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。
(2)三角形的面积肯定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积肯定,底面积和高。
26.1.1反比例函数 教学设计 人教版九年级数学下册一、教学目标1.从现实情境和已知识经验出发,研究两个变量之间的相互关系,抽象出反比例函数的概念.2.能根据实际问题中的条件确定反比例函数的解析式,能结合具体情境体会反比例函数的意义,体会数学从实践中来又到实际中去的研究、应用过程,培养学生的观察能力,以及发现问题,解决问题的能力。
.3.掌握反比例函数解析式的特点,能够用待定系数法求出反比例函数的解析式,通过建立反比例函数模型解决实际问题过程中渗透建模思想二、教学重难点1. 教学重点用待定系数法求出反比例函数的解析式2. 教学难点能根据具体实际问题确定反比例函数的解析式三、教学过程(一)新课导入回顾旧识:1. 一般地,在一个变化的过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是因变量,y 是x 的函数。
(学生填写)2. 负整数指数幂:aa n 1=- 3.教师提问:我们以前学习过哪些函数?你能说出它们的一般形式吗?正比例函数(0)y kx k =≠一次函数(0)y kx b k =+≠二次函数2(0)y ax bx c a =++≠(二)探索新知思考:下列问题中,变量间具有函数关系吗?如果有,它们的解析式有什么共同特点?(1)问题1:京沪线铁路全程为1463km ,某次列车的平均速度v (单位:km/h )随此次列车的全程运行时间t (单位:h )的变化而变化;①平均速度v ,运行时间t 存在什么数量关系?②这两个变量间有函数关系吗?试说明理由.③你能写出v 关于t 的解析式吗?(2)问题2:某长方体的体积为 1000 cm 3,长方体的高 h (单位:cm )随底面积 S (单位:cm2)的变化而变化(3)问题3:一个物体重 100 N ,物体对地面的压强 p (单位:Pa )随物体与地面的接触面积 S (单位:m 2)的变化而变化sp s h t 100,1000,1463v === 上述解析式都具有k y x=的形式,其中k 是非零常数. 提问:类比一次函数、正比例函数的一般形式,你能根据特点给出反比例函数的定义及其一般形式吗?定义:一般地,形如(0)k y k k x=≠为常数,的函数,叫做反比例函数.其中x 是自变量,y 是函数.提问:反比例函数中,自变量x 和函数y 的取值范围分别是什么? 在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x 无意义,所以自变量x 的取值范围是不等于0的一切实数,函数y 的取值范围是不等于0的一切实数.提问:回顾以上问题的答案,想一下反比例函数的解析式还可以有哪些形式? 反比例函数的三种形式:①(0)k y k k x=≠为常数,;②(0)xy k k k =≠为常数,;③1(0)y kx k k -=≠为常数, .例 判断下列函数是不是反比例函数?若是,请指出k 的值13y x -= 是,k =3 3x y =- 不是 111y x =- 111k =-是, 31y x =- 不是 21y x= 不是 概念应用:1.当m= ________时,322-=m x y 是反比例函数2.当m =__±1___时,22m y x-=是反比例函数. 3.已知函数(2)(1)k k y x-+=是反比例函数,则k 必须满足2 1.k k ≠≠-且 例1 已知 y 是 x 的反比例函数,并且当 x=2 时,y =6.(1)写出 y 关于 x 的函数解析式;(2)当 x =4 时,求 y 的值.分析:因为y 是x 的反比例函数,所以设k y x =.把x =2和y =6代入上式,就可以求出常数k 的值.解:(1)设k y x =.因为当x =2时,y =6,所以有62k =. 解得k =12. 因此12.y x= (2)把x =4代入12,y x =得12 3.4y == 方法总结:用待定系数法求反比例函数解析式的一般步骤:①设出含有待定系数的反比例函数解析式;②将已知条件(自变量与函数的对应值)代入解析式,得到关于待定系数的方程;③解方程,求出待定系数;④写出反比例函数解析式.课堂练习:1.计划修铁路l (km ),铺轨天数为t (d ),每日铺轨量为s (km/d ),则在下列三个结论中,正确的是( )①当l 一定时,t 是s 的反比例函数;②当t 一定时,l 是s 的反比例函数;③当s 一定时,l 是t 的反比例函数.A.仅①B.仅②C.仅③D.①②③2.点(2,4)-在反比例函数k y x =的图像上,则下列各点在此函数图像上的是( ) A.(2,4) B.(4,2) C.(2,4)- D.()2,4--3.在下列函数:①,②y x =,③,④11y x =+中,反比例函数有( ) A.0个 B.1个 C.2个 D.3个4.下列各问题中,两个变量之间的关系不是反比例函数的是( )A.小明完成100m 赛跑时,时间t (s )与他跑步的平均速度v (m/s )之间的关系B.菱形的面积为48,它的两条对角线的长y (cm )与x (cm )之间的关系C.一个玻璃容器的体积为30L 时,所盛液体的质量m 与所盛液体的密度ρ之间的关系D.压力为600N 时,压强p 与受力面积S 之间的关系5.已知y 是x 的反比例函数,下面给出了x ,y 的一些数值:(1)写出这个函数的解析式;2y x =1y x -=2cm(2)根据解析式完成上表.(三)小结作业小结:本节课我们主要学习了哪些内容?1.本节课主要学习了反比例函数的哪些知识?如何获得反比例函数的概念?2.反比例函数解析式三种形式分别是什么?自变量和函数的取值范围是什么?3.如何根据已知条件求反比例函数的解析式?作业:四、板书设计:。
反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。
反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。
重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。
教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。
今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。
例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。
轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。
即每天至少要48吨。
这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。
实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。
反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:(1)理解反比例函数的定义;(2)掌握反比例函数的性质;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用图形演示反比例函数的特点;(3)运用数学建模的方法,解决生活中的反比例函数问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力;(3)培养学生的团队协作和交流能力。
二、教学重点与难点1. 教学重点:(1)反比例函数的定义;(2)反比例函数的性质;(3)反比例函数在实际问题中的应用。
2. 教学难点:(1)反比例函数图形的特点;(2)解决实际问题时,如何建立反比例函数模型。
三、教学过程1. 导入新课:(1)引导学生回顾正比例函数的知识;(2)通过提问,激发学生对反比例函数的好奇心。
2. 自主学习:(1)让学生阅读教材,理解反比例函数的定义;(2)学生相互讨论,总结反比例函数的性质。
3. 课堂讲解:(1)利用图形演示反比例函数的特点;(2)讲解反比例函数在实际问题中的应用。
4. 课堂练习:(1)布置一些反比例函数的题目,让学生独立完成;(2)挑选学生回答,总结解题思路。
5. 课后作业:(1)巩固反比例函数的知识;(2)培养学生运用反比例函数解决实际问题的能力。
四、教学评价1. 课堂讲解:评价学生对反比例函数的理解程度;2. 课堂练习:评价学生运用反比例函数解决问题的能力;3. 课后作业:评价学生对反比例函数知识的掌握情况。
五、教学资源1. 教材:提供反比例函数的相关知识;2. 图形演示软件:帮助学生直观地理解反比例函数的特点;3. 实际问题案例:培养学生运用反比例函数解决实际问题的能力。
六、教学策略1. 实例引导:通过展示实际生活中的反比例关系,如人口增长、radioactive decay等,让学生直观地感受反比例函数的应用。
三、自主展示
1.说一说反比例函数 y=
x
6 的图象与一次函
数63+=x y 的图象有什么区别? 2.根据你所画的反比例函数 y=x
6
的图象,说说它有哪些特征? 3、自主画图 y= x
6
-的图象,说说它有哪些特征?
讨论交流,从图象的形状,增减性。
双曲线的两支分别在第一、三象限,在每个象限内,y 随x 的增大而减少; 双曲线的两支分别在第二、四象限,在每个象限内,y 随x 的增大而增大。
四、概括与归纳
一般地,反比例函数 y=
x
k (k ≠0,k 为常数),的图象是双曲线。
当k>0时,双曲线的两支分别在第一、三象限,在每个象限内,y 随x 的增大而减少;当k<0时,双曲线的两支分别在第二、四象限,在每个象限内,y 随x 的增大而增大。
理解识记,互相提问。
五、例题教学
例1、y=(m -2)25
m x -.
(1)当m 取何值时,它是反比例函数? (2),先说出图象经过哪些象限,y 随x 如何变化?再画图象。
(3)判断点P(1,-4),(2,-2)是否在图象上 (4)求当2
1≤x ≤2时,函数y 的取值范围.
[拓展]甲乙两地相距100km ,一辆火车从甲地开往乙地,把火车到达乙地所用的时间y(h)表示为汽车的平均速度x(km/h)的函数,则这个函数的图象大致是( )
学生尝试解题,师生共同
纠错
学生交流,如何画实际问题的图象,是一个“残图” 课堂小结
说一说反比例函数反比例函数 y=x
k
(k ≠0,k 为常数)的图象特征,与性质?
各抒己见
义
二、新课教学[例1]某自来水公司计划新建一个容积为4×
104m3的长方体蓄水池,小华爸爸把这一问题带
回来与小华一起探讨:
⑴蓄水池的底面积S(m2)与其深度h(m)有
怎样的函数关系?
⑵如果蓄水池的深度设计为5m,那么蓄水
池的底面积应为多少平方米?
⑶由于绿化以及辅助用地的需要,经过实地
测量,蓄水池的长和宽最多只能分别设计为
100m和60m,那么蓄水池的深度至少达到多少
才能满足要求? (保留两位小数)
[同步训练]课本P74练习第1、2题
[例2]某气球内充满了一定量的气体,当温度不
变时,气球内气体的气压P(kpa)是气体体积
V(m3)的反比例函数,其图象如图所示.⑴写出
这一函数表达式;⑵当气体体积为1m3时,气
压时多少?⑶当气球内的气压大于140kpa时,
气球将爆炸,为了安全起见,气体的体积应不小
于多少?
学生尝试解题,并说明理
由。
其余学生进行补充。
(1)
h
s
40000
=
(2)8000
5
40000
=
=
s
(3)67
.6
≈
h
学生思考后回答,其余学
生纠错。
数形结合进行解题。