锁相环频率合成技术及其应用
- 格式:doc
- 大小:27.00 KB
- 文档页数:2
1.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成u D(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压u C(t),对振荡器输出信号的频率实施控制。
2.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压u D为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压u (t)。
即u C(t)为:C(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,u c(t)为恒定值。
锁相环的组成和原理及应用一.锁相环的基本组成许多电子设备要正常工作,通常需要外部的输入信号与内部的振荡信号同步,利用锁相环路就可以实现这个目的。
锁相环路是一种反馈控制电路,简称锁相环(PLL)。
锁相环的特点是:利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环通常由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成,锁相环组成的原理框图如图8-4-1所示。
锁相环中的鉴相器又称为相位比较器,它的作用是检测输入信号和输出信号的相位差,并将检测出的相位差信号转换成uD(t)电压信号输出,该信号经低通滤波器滤波后形成压控振荡器的控制电压uC(t),对振荡器输出信号的频率实施控制。
二.锁相环的工作原理锁相环中的鉴相器通常由模拟乘法器组成,利用模拟乘法器组成的鉴相器电路如图8-4-2所示。
鉴相器的工作原理是:设外界输入的信号电压和压控振荡器输出的信号电压分别为:(8-4-1)(8-4-2)式中的ω0为压控振荡器在输入控制电压为零或为直流电压时的振荡角频率,称为电路的固有振荡角频率。
则模拟乘法器的输出电压uD为:用低通滤波器LF将上式中的和频分量滤掉,剩下的差频分量作为压控振荡器的输入控制电压uC(t)。
即uC(t)为:(8-4-3)式中的ωi为输入信号的瞬时振荡角频率,θi(t)和θO(t)分别为输入信号和输出信号的瞬时位相,根据相量的关系可得瞬时频率和瞬时位相的关系为:即(8-4-4)则,瞬时相位差θd为(8-4-5)对两边求微分,可得频差的关系式为(8-4-6)上式等于零,说明锁相环进入相位锁定的状态,此时输出和输入信号的频率和相位保持恒定不变的状态,uc(t)为恒定值。
锁相环倍频锁相环倍频是一种常用的频率合成技术,可以将输入的信号倍频到更高的频率。
它在现代通信、雷达、微波、光纤通信等领域中得到广泛应用。
本文将对锁相环倍频的原理、应用和实现进行详细阐述。
一、锁相环倍频的原理锁相环倍频是利用锁相环的稳定性和反馈控制能力来实现的。
锁相环由一个相频比较器、一个电压控制振荡器(VCO)、一个相位误差检测器、滤波电路和一个反馈回路组成。
1.相频比较器:将输入信号和VCO的输出信号进行比较,得到相位误差信号。
2.VCO:根据相频比较器输出的相位误差信号,调整自身的频率。
3.相位误差检测器:检测VCO输出信号的相位与输入信号的相位之间的差异。
4.滤波电路:将相位误差信号进行滤波处理,得到控制VCO频率的电压信号。
5.反馈回路:将滤波电路输出的电压信号反馈给VCO,控制VCO的频率与输入信号的频率保持一致。
锁相环倍频的工作原理是通过调整VCO频率,使得反馈回路能够将输入信号与VCO输出信号的相位保持恒定,从而实现对输入信号的倍频。
二、锁相环倍频的应用锁相环倍频广泛应用于各种需要高稳定性和高精度的频率合成系统中。
下面介绍几个典型的应用场景。
1.通信领域:在无线通信中,锁相环倍频可以将基带信号倍频到射频频率,用于信号的调制和解调。
它可以使得信号频率更高,提高通信信号的传输距离和抗干扰能力。
2.雷达系统:在雷达系统中,锁相环倍频可以将低频信号倍频到微波频率,用于雷达的脉冲压缩和信号处理。
它可以提高雷达系统的分辨率和目标检测能力。
3.光纤通信:在光纤通信系统中,锁相环倍频可以将低频光信号倍频到高频光信号,用于光时钟的生成和光信号的调制。
它可以实现光信号的稳定传输和高速通信。
三、锁相环倍频的实现锁相环倍频的实现需要选择合适的锁相环参数和设计合理的电路结构。
下面介绍几种常用的锁相环倍频实现方案。
1.模拟锁相环倍频:模拟锁相环倍频使用模拟电路实现,具有延迟小、稳定性好等特点。
它适用于频率较低的应用场景,如音频信号的倍频。
锁相与频率合成技术实验讲义桂林电子科技大学通信实验中心实验一锁相环实验一、实验原理锁相环路实质是一个负反馈的相位差自动调节系统。
1、锁相环路的构成图1 锁相环基本框图1(1)鉴相器鉴相器是相位差转换成电压的变换器(θe / V变换器、相差/电压变换器),它把两个信号U2(t)和U1(t)的相位进行比较,产主对应于两个信号相位差θe的误差电Ud(t)。
图2(a) 鉴相器模型23图2(b )异或门鉴相曲线 图2(c )数字比相器的鉴频鉴相曲线4如图2(c )的数字比相器,其特性可以理解为:① 对于相位跳变信号,如f1输入已调2PSK 信号,f2输入载波信号,则鉴相器的输入输出信号为:图3 f 1 :PSK 信号图4 f 0: 载波信号图5 f 1 与f 0 的相差θe图6 鉴相器的输出电压Ud②对于频率跳变信号,如f1输入已调2FSK信号,由高低频率f H、f L组成,f2输入f L信号,则鉴相器的输入输出信号为:图7 f1:FSK信号图8 f0:FSK的f L信号图9 f1与f0 的相差θe5(2)环路滤波器环路滤波器的作用是滤除误差电压Ud(t)中的进行积分,以保证环路所要求的性能,增加系统的稳定性。
环路滤波器常用的类型有RC积分滤波器,无源比例积分滤波器,有源比例积分滤波器。
(3)压控振荡器VCO的技术指标:中心频率、频率变化范围、频率稳定度、相位噪声、压控线性度、压控灵敏度。
图11 压控振荡器控制电压/ 输出频率(Uc-ωO)特性曲线6同步带与捕获带同步带的测量方法:环路锁定之后,缓慢提高信号源的输入频率,直到输入输出频率不相等,测出Δωh H ;用同样方法测量Δωh L ,环路锁定之后,降低信号源的输入频率,直到输入输出频率不相等,测出ΔωL 。
图20 PLL同步带范围78同步带的测量方法:由于频率太低引起环路失锁之后,缓慢提高信号源的输入频率,直到输入输出频率不相等,测出Δωp H ;用同样方法测量Δωp L 。
锁相环技术原理及其应用一、锁相环技术原理1.1 基本概念锁相环(Phase-Locked Loop,PLL)是一种调节电路,能够通过控制其输出信号相位与参考信号相位之间的差值,使输出信号频率与参考信号频率一致,并且其输出信号相位与参考信号精确同步。
锁相环可以用于频率合成、时钟恢复、数字信号处理、射频通信等领域。
1.2 工作原理锁相环主要由相位比较器、低通滤波器、时钟发生器、可变增益放大器和电压控制振荡器等组成。
其中,相位比较器的作用是将参考信号和反馈信号进行比较,然后得到相位误差信号。
低通滤波器的作用是将相位误差信号进行平滑处理,得到直流误差信号。
时钟发生器的作用是产生参考信号。
可变增益放大器的作用是将误差信号放大后作为电压控制振荡器的控制电压。
电压控制振荡器的作用是产生锁相环输出信号,并且通过调节电压来控制输出信号的频率和相位。
1.3 稳定性分析锁相环的稳定性与参考信号的稳定性和相位比较器的带宽以及低通滤波器的截止频率等因素有关。
稳定性分析主要是评估锁相环输出信号的频率精度和相位噪声。
二、锁相环技术应用2.1 频率合成频率合成是利用锁相环技术将一个较低频率信号转换为高频率信号。
其中,参考信号是一个较低频率信号,产生参考信号的时钟发生器经过倍频器将参考信号的频率增加到所需的合成频率,然后经过相位比较器和滤波器控制电压控制振荡器的输出频率。
频率合成广泛应用于通信、广播、雷达、卫星导航等领域。
2.2 时钟恢复时钟恢复是一种将时钟信号从数据信号中恢复出来的技术。
锁相环可以通过将数据信号作为反馈信号,将时钟信号从数据信号中恢复出来。
时钟恢复广泛应用于数字通信和数字音频领域。
2.3 数字信号处理锁相环可以通过将输入信号与锁相环输出信号相比较,将输入信号变换的频率和相位误差降到很小,从而使输入信号的相位和频率与输入信号一致。
锁相环广泛应用于数字信号处理,例如数字滤波器、数字混频器、数字降噪器等。
2.4 射频通信锁相环在射频通信中的应用非常广泛,主要用于频率合成、时钟恢复等领域。
锁相环频率合成技术及其应用
在当今的调频广播发送技术中,为了适应对发射机输出频率稳定度和频率准确度的严格要求,以及方便更换发射机频率的需要,在固态调频发射机中普遍使用了锁相技术和频率合成技术。
锁相环频率合成器成为固态调频发射机重要的组成部分。
锁相环频率合成器的优点在于其能提供频率稳定度很高的输出信号,能很好地抑制寄生分量,避免大量使用滤波器,因而有利于集成化和小型化。
而频率合成器中的程序分频器的分频比可以使用微机进行控制,易于实现发射机频率的更换及其频率显示的程控和遥控,促进全固态调频发射机的数字化、集成化和微机控制化。
将一个标准频率(如晶振参考源),经过加、减、乘、除运算,变成具有同一稳定度和准确度的多个所需频率的技术,称为频率合成技术。
控制振荡器,使其输出信号和一个参考信号之间保持确定关系的技术,称为锁相技术。
把由基准频率获得不同频率信号的组件或仪器,称为“频率合成器”。
频率合成的方法很多,但大致可分成两大类:直接合成法和间接合成法。
固态调频发射机中的频率合成器采用间接合成法。
间接合成法一般可用一个受控源(例如压控振荡器)、参考源和控制回路组成一个系统来实现。
即用一个频率源,通过分频产生参考频率,然后用锁相环(控制回路),把压控振荡器的频率锁定在某一频率上,由压控振荡器间接产生出所需要的频率输出。
1锁相环基本工作原理
一个基本的锁相环路由以下3个部件组成:压控振荡器(VCO)、鉴相器(PD)和环路滤波器(LF),如图1所示。
当锁相环开始工作时,输入参考信号的频率f i与压控振荡器的固有振荡频率f 0总是不相同的,即f i≠f 0,这一固有频率差△f=f i-f 0必然引起它们之间的相位差不断变化,并不断跨越2π角。
由于鉴相器特性是以相位差2π为周期的,因此鉴相器输出的误差电压总是在某一范围内摆动。
这个误差电压通过环路滤波器变成控制电压加到压控振荡器上,使压控振荡器的频率f 0趋向于参考信号的频率f i,直到压控振荡器的频率变化到与输入参考信号的频率相等,并满足一定条件,环路就在这个频率上稳定下来。
两个频率之间的相位差不随时间变化而是一个恒定的常数,这时环路就进入“锁定”状态。
当环路已处于锁定状态时,如果输入参考信号的频率和相位发生变化,通过环路的控制作用,压控振荡器的频率和相位能不断跟踪输入参考信号频率的变化而变化,使环路重新进入锁定状态,这种动态过程称为环路的“跟踪”过程。
而环路不处于锁定和跟踪状态,这个动态过程称为“失锁”过程。
从上述分析可知,鉴相器有两个主要功能:一个是频率牵引,另一个是相位锁定。
2锁相环频率合成器工作原理
锁相环路总是有可编程分频器加在压控振荡器VCO和鉴相器PD之间。
在锁相环路中加入可编程分频器可以起到两个很关键的作用:首先是不改变输入参考频率就可以改变压控振荡器VCO的输出频率,为实际应用提供了方便;其次是提高输出频率的分辨率和降低鉴相器的参考频率,进一步提高输出频率的精确度和稳定度。
但是,在目前的技术条件下,可编程分频器的最高工作频率约30MHz。
而调频广播频段为87~108MHz,显然,工作频率太高而不能直接使用可编程分频器。
在这种情况下,通常在可编程分频器前端加入一个前置固定分频模数为M的ECL分频器,如图2所示。
ECL固定分频器的工作频率可高达几GHz。
当环路锁定时,这种频率合成器的输出频率为f o=N(Mf i)
式中,M是固定的,N是可变的(可编程的),f i是输入参考信号的频率,频率的间隔为Mf i。
3频率合成器在固态调频发射机中的应用
图3是锁相环频率合成器在固态调频发射机中的实际应用方框图。
从图中可以看到,由晶体振荡器所产生的1MHz基准频率,通过分频比为1/160的固定分频后产生6 25kHz的基准频率f i,同时压控振荡器输出的信号经过前置分频器Ⅰ、Ⅱ(分频比均为1/4)和可编程分频器(分频比为1/N)分频后产生信号f n,将信号f n和基准频率信号f i 同时送至鉴相器进行比较,由鉴相器输出一个自动相位控制电压,经环路滤波器滤去高频分量后,去锁定压控振荡器的频率。
可编程分频器的分频比为1/870~1/1080,其分频比1/N可由频率预置电路来选定,该频率合成器的频率间隔为 M f i =4×4×6 25kHz=100kHz
这也就是调频广播频道间隔,从87MHz开始,每隔100kHz,一直到108MHz,共选择210个调频频道频率。