工程光学习题课
- 格式:ppt
- 大小:338.50 KB
- 文档页数:29
工程光学光的衍射习题解答1、氦氖激光器发出的波长的单色光垂直入射到半径为1cm的圆孔,在光轴(它通过孔中心并垂直孔平面)附近离孔z处观察衍射,试求出夫琅和费衍射区的大致范围?解:2、钠灯发出波长为589nm的平行光垂直照射在宽度为0.01mm的单逢上,以焦距为600mm的会聚透镜将衍射光聚焦于焦面上进行观察,求(1)衍射图样中央亮纹的半角宽度;(2)第一亮纹和第二亮纹到中央亮纹的距离;(3)相邻暗纹之间的距离?解:3、在夫琅和费单缝衍射实验中,以波长为600nm的单色光垂直入射,若缝宽为1mm,则第1极小和第2极小的角位置分别出现在哪里?4、分析如图所示夫琅和费衍射装置如有以下变动时,衍射图样会发生怎样的变化?1)增大透镜L2的焦距;2)减小透镜L2的口径;3)衍射屏作垂直于光轴的移动(不超出入射光束照明范围)。
答:1)增大透镜L2的焦距,将使接收屏上衍射图样的间隔增大。
因有公式,此时衍射角不变,条纹间隔增大;2)增大透镜L2的口径,不会改变衍射图样的分布,但进入系统的光束宽度增加,可使光强增加;3)衍射屏垂直于系统光轴方向移动时,衍射图样不会改变,因为衍射屏移动前后光的入射角不变,缝宽不变,由衍射公式知其接收屏上的光强分布不变;5、在双缝夫琅和费实验中,所用的光波波长,透镜焦距,观察到两相临亮条纹间的距离,并且第4级亮纹缺级。
试求:(1)双缝的逢距和逢宽;(2)第1,2,3级亮纹的相对强度。
解:(1) (1)双缝的缝距和逢宽;又将代入得(2)(2)第1,2,3级亮纹的相对强度。
当m=1时当m=2时当m=3时代入单缝衍射公式当m=1时当m=2时当m=3时6、一块光栅的宽度为10cm ,每毫米内有500条逢,光栅后面放置的透镜焦距为500nm。
问:(1)它产生的波长的单色光的1级和2级谱线的半宽度是多少?(2)若入射光线是波长为632.8nm 和波长与之相差0.5nm的两种单色光,它们的1级和2级谱线之间的距离是多少?解:由光栅方程知,,这里的,确定了谱线的位置(1)(1)它产生的波长的单色光的1级和2级谱线的半宽度是多少?(此公式即为半角公式)(2)若入射光线是波长为632.8nm和波长与之相差0.5nm的两种单色光,它们的1级和2级谱线之间的距离是多少?由公式(此公式为线色散公式)可得。
第一章几何光学基本原理1. 作图分析下列光学元件对波前的作用:(1) 图1.1中(a )、(b )中所示,各向均匀同性介质中的点光源P 发出球面波,P '为其共轭理想像点.假设在相同时间间隔内形成的球面波前间距为d .求该波前入射到折射率大于周围介质的双凸透镜或凹透镜上,波前在透镜内和经透镜折射后的波前传播情况.(2) 图1.1中(c )所示,各向均匀同性介质中的无限远点光源发出平面波,求该波前入射到折射率大于周围介质的棱镜上,波前在棱镜内和经棱镜折射后的波前传播情况.Pd图1.1(b)图1.1(c)P '图1.1(a)解:(1)P d dd 'd 'P 'd(2)2. 当入射角很小时,折射定律可以近似表示为ni=n′i′,求下述条件的结果:(1) 当n =1,n′=1.5时,入射角的变化范围从0~65º.表格列出入射角每增加5º,分别由实际与近似公式得到的折射角,并求出近似折射角的百分比误差.请用表格的形式列出结果.(2) 入射角在什么范围时,近似公式得出的折射角i′的误差分别大于0.1%,1%和10%. 解:(1) 当1n =,1.5n '=时,由折射定律:sin sin n I n I ''=,得:11sin sin sin sin 1.5n I I I n --⎛⎫⎛⎫'==⎪ ⎪'⎝⎭⎝⎭由折射定律近似公式:ni n i ='',得: 1.5ni ii n '==' 入射角在0~65º范围内变化时,折射角和折射角近似值以及近似折射角的百分比误差如下表所示:(2) ()/=0.1%i I I '''-时,=5.7I ︒;()/=1%i I I '''-时,=18.2I ︒=53.3I ︒.3.由一玻璃立方体切下一角制成的棱镜称为三面直角棱镜或立方角锥棱镜,如图1.2所示.用矢量形式的反射定律试证明:从斜面以任意方向入射的光线经其它三面反射后,出射光线总与入射光线平行反向.同时,说明这种棱镜的用途.解:(法一)如下图所示,设光线沿ST 方向入射经T 、Q 、R 点反射后,由RS '方向出射,设1A 、2A 、3A 、4A 分别为ST 、TQ 、QR 和RS 的单位矢量,射向反射面AOB 的入射光线1A 的单位矢量可表示为1=A li mj nk ---,式中l 、m 、n 为光线1A 在x 、y 、z 轴上的方向数,2221l m n ++=,光线1A 经AOB 面反射后,射向反射面BOC ,反射面AOB 的法线单位矢量为1n k =-,则反射光线2A 单位矢量可由矢量反射定律决定,即2112()2[()]A A A k k li mj nk li mj nk k k li mj nk =-=-------=--+反射面BOC 的法线方向单位矢量为2n i =-,光线2A 射向BOC 后的反射光线3A 的单位矢量为3222()2[()]A A A i i li mj nk li mj nk i i li mj nk =-=-------=-+反射面COA 的法线方向单位矢量为3n j =-,光线3A 射向COA 反射后的光线经4A 的单位矢量为4332()2[()]+A A A j j li mj nk li mj nk j j li mj nk =-=-------=+对光线1A 和4A 作点积,得22214()()()1A A li mj nk li mj nk l m n =-++++=-++=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角.(法二)如下图所示,入射光线从斜面进入棱镜后的折射光线方向为1A ,且1=(,,)A l m n ,然后经过AOB 面的反射后的折射方向为2A ,再依次经过BOC 反射面、COA 反射面后的方向分别为3A 、4A .其中,反射面AOB 、BOC 、COA 的法线单位矢量分别为1=N (0,0,1),2=N (1,0,0),3=N (0,1,0).这样由矢量形式的反射定律,有图 1-21A R)a 3A 4A 2A S '第一次AOB 面反射式,21111=-2()(,,)A A N N A l m n ⋅=- 第二次BOC 面反射式,32222=-2()(,,)A A N N A l m n ⋅=-- 第三次COA 面反射式,433133=-2()(,,)A A N N A l m n A ⋅=---=-说明入射光线1A 和出射光线4A 在空间上是平行的,而且方向相反,即有180︒夹角. 4.已知入射光线cos cos cos A i j k αβγ=++,反射光线cos cos cos A i j k αβγ''''''''++=,求此时平面反射镜法线的方向. 解:反射定律为=-2()''A A N N A ,在上式两边对A 做标积,有212()''=-A A A N , 由此可得12''=-A A A N ,将上式代入反射定律得cos =α=''A N A A) ()5. 发光物点位于一个透明球的后表面,从前表面出射到空气中的光束恰好为平行光如图1.3所示,求此透明材料的折射率的表达式.当出射光线为近轴光线时,求得的折射率是多少? 解:设空气折射率为0n ,透明球的折射率为1n ,则由折射定律01sin sin n i n i '=,得此透明球的折射率表达式为:10sin =sin i n n i'由三角关系有2i i '=,那么上式可以写作10=2cos n n i .近轴成像时,sin sin i i '、分别被i i '、代替,从而可得1022n n == 6.设光纤纤芯折射率1 1.75n =,包层折射率2 1.50n =,试求光纤端面上入射角在何值范围内变化时,可保证光线发生全反射通过光纤.若光纤直径40μm D =,长度为100m ,求光线在光纤内路程的长度和发生全反射的次数. 解:图1.3011sin 0.901464.34n I I ====光线在光纤内路程长度116.7m L '===发生全反射次数21502313()N ==次7.如图1.4所示,一激光管所发出的光束扩散角为7',经等腰直角反射棱镜(=1.5163n ')转折,是否需要在斜面上再镀增加反射率的金属膜? 解:由折射定律得:11sin sin 3.5sin 0.0006714421.5163n i i n ''==='解之得10.03847i '= 而1=90=89.96153i β'- 根据平面几何关系有2==89.9615345=134.961539044.96153i αβγα++=-=而第二面临界角11211sin sin 41.261751.5163m I i n --===<' 所以,不需要镀膜.8.一厚度为200mm 的平行平板玻璃 1.5n =,下面放一直径为1mm 的金属片,如图1.5所示.若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,求纸片的最小直径?解:要使圆形纸片之外都看不到金属片,只有在这些方向上发生全反射.由几何关系可得纸片最小直径1tan 2+=a L d由于发生了全反射,所以有sin 1/1/1.52/3a n ===,tan =sin 2a a =得367.7709mm d =9.折射率为1 1.5n =,12 1.6n n '==,21n '=的三种介质,被两平行分界面分开,试求当光图1.5线在第二种介质中发生全反射时,光线在第一种界面上的入射角1I .解:由折射定律sin sin n I n I ''=,光线从光密进入光疏介质时发生全反射90I '=由题意知221sin /cos m I n n I ''==又知1111sin sin n I n I n ''===11.5sin I =解得156.374I=10.如图1.6所示,有一半径为R 厚度为b 的圆板,由折射率n ,沿径向变化的材料构成,中心处的折射率为n 0,边缘处的折射率为n R ..用物点理想成像的等光程条件推导出圆板的折射率n r 以何种规律变化时,在近轴条件下,平行于主光轴的光线将聚焦?此时的焦距f′又为多少?解:如图1.6所示,离轴r 的光程为r n b A +=即r n b f A +=其中A 为常数,与轴上光线的光程比较,得2201122r R r Rr R n b f A n b f n b f f f='''++=−−−→++=+''故202()R R f n n b '=-或202()r rf n n b'=-220002()2'R r r n n r n n n bf R-=-=- 11.试用费马原理推导光的折射定律解:设任一折射路径的光程为OPL11OPL n OP n PL n '=+=由费马原理1111sin sin 0dOPL OPL n n n i n i dx δ''==-=-= 故1111sin sin n i n i ''= 12. 已知空气中一无限远点光源产生的平行光从左入射到形状未知的凹面镜上,该光束经会图1.6聚后在凹面镜顶点的左方成一理想像点,试用等光程原理确定该凹面镜的形状. 解:如右图所示,以凹面镜的顶点为原点建立(,)z y 坐标系.由等光程原理知,光线①与光线②的光程相等,则22()2 4 4f z f y y fz z f++=⇒=-=-或13. 举例说明正文中图1.4.2中所示四种成像情况的实际光学系统.解:(a )实物成实像:照相机、显微镜的物镜、望远镜的物镜、投影仪、幻灯机 (b )虚物成实像:对着镜子自拍、拍摄水中的鱼(c )实物成虚像:平面镜、眼镜、放大镜、显微镜的目镜、倒车镜(d )虚物成虚像:出现在海市蜃楼(虚像)中的水面上的倒影(虚物)、潜望镜的第二个反射镜对第一个反射镜中的像成像、多光学元件系统.14.如何区分实物空间、虚物空间以及实像空间和虚像空间?是否可按照空间位置来划分物空间和像空间?解:光学系统前面的空间为实物空间.光学系后面的空间为实像空间.光学系统后面的空间为实像空间.光学系统前面的空间为虚像空间.物空间和像空间在空间都是可以无限扩展的,不能只按照空间位置划分.15.假设用如图1.7所示的反射圆锥腔使光束的能量集中到极小的面积上.因为出口可以做到任意小,从而射出的光束能流密度可以任意大.验证这种假设的正确性.解:如图所示,圆锥的截面两母线是不平行的,从入口进入的光线,在逐次反射过程中入射角逐渐减小,必然会在某一点处光线从法线右侧入射,从而使光线返回入口.显然,仅从光的反射定律来分析,欲用反射圆锥腔来聚焦光束能流的设想是不现实的.第二章球面成像系统1. 用近轴光学公式计算的像具有什么实际意义?解:近轴光学是通过光线追迹确定光学系统一阶成像特性和成像系统基本性质的光学.近轴光学公式表示理想光学系统所成像的位置和大小,也作为衡量实际光学系统成像质量的标准.2.有一光学元件,其结构参数如下: (mm)r (mm)t n 1003001.5 ∞(1) 当l =∞时,求像距l '.(2) 在第二个面上刻十字线,其共轭像在何处?(3) 当入射高度10mm y =时,实际光线和光轴的交点在何处?在高斯像面上的高度是多少?该值说明什么问题?解:(1)由近轴折射公式(2.1.8)1100 1.5 300mm 1.51n n n n rn l l l r n n '''-⨯'-=⇒===''-- 2123003000l l t l ''=-=-==(2)由光路可逆,共轭像在无限远处.(3)当10mm y =时:由式(2.1.5),10sin 0.1100y I r ===光线入射角: 5.739170I =︒由式(2.1.2),s i n 10.1si n 0.06671.5n I I n ⨯'==='折射角: 3.822554I '=︒由式(2.1.3),像方孔径角:0 5.739170 3.822554 1.916616U U I I ''=-+=︒-︒+︒=-︒由式(2.1.4),像方截距:sin sin 3.82255411001299.332(mm)sin sin( 1.916616I L r U '⎛⎫︒⎛⎫'=-=-= ⎪ ⎪'-︒)⎝⎭⎝⎭在高斯面上的高度:()299.332300tan(| 1.9166167|)0.022(mm)y '=-⨯-=-,该值说明点物的像是一个弥散斑.3.一个直径为200mm 的玻璃球,折射率为1.53,球内有两个小气泡,看上去一个恰好在球心,另一个从最近的方向看去,好像在表面和球心的中间,求两气泡的实际位置. 解:如右图:A 的像A '在球心,则A 仍在球心. B '在球面和球心中间,/250mm Bl r '==-,则 1 1.531 1.53 60.474mm 50100B B B B n n n n l l l r l ''---=⇒-=⇒=-'--B 离球心39.526mm.4.在一张报纸上放一平凸透镜,眼睛通过透镜看报纸.当平面朝着眼睛时,报纸的虚像在平面下13.3mm 处;当凸面朝着眼睛时,报纸的虚像在凸面下14.6mm 处.若透镜中央厚度为20mm ,求透镜材料的折射率和凸球面的曲率半径.解:如右图(a)(b):对第一面10l =,10l '=.故仅需计算第二面.第一种情况:,20mm,13.3mm,1r l l n ''=∞=-=-=第二种情况:20mm,14.6mm,1l l n ''=-=-=故有:1111 13.32014.620n n n nr---=-=--∞-- 联立求解得:75.282mm 1.504r n =-=所以,透镜材料的折射率为1.504,凸球面的曲率半径为75.282mm.5.一个等曲率的双凸透镜,放在水面上,两球面的曲率半径均为50mm ,中心厚度为70mm ,玻璃的折射率为1.5,透镜下100mm 处有一个物点Q ,如图2.1所示,试计算最后在空气中成的像.解:由光线近轴计算基本公式n n n nl l r''--=' 对于面1,11.5 1.33 1.5 1.3310050l --=-' 解得1151.515mm l '=-对于面2,21 1.51 1.5151.5157050l --='---解得2309.746mml '=,所以最后在空气中成的像在第二面顶点后309.746mm 的位置。
习题1:一个双薄透镜L 1、L 2构成的光学系统,L 1透镜的焦距为801='f mm ,通光口径401=D mm ,L 2透镜的焦距302='f mm ,通光口径402=D mm ,L 2在L 1的后面50mm 位置处,现有一束平行于光轴的光射入:(1)试判断系统的孔径光阑;(2)求系统出瞳的大小和位置。
1L 2L解:(1)试判断系统的孔径光阑将L 1的边框经过前面的光学系统成像到系统的物空间,由于前面没有成像元件,故L 1边框的像就是自身,即401='D mm 。
将L 2的边框经过前面的光学系统L 1成像到系统的物空间,设像为1l ',则由高斯公式有:3.133801501111111111='⇒-=-'⇒'=-'l l f l l mm 即1l '位于L 1右侧约133.3mm 处。
1072503.133202111111='='⇒='⇒'='=D y y l l y y βmm 即1l '的大小为107mm 。
由于401='D mm 小于1072='D mm ,故L 1自身对入射光束起到最大的限制作用,为系统入瞳,透镜L 1的边框即为系统的孔径光阑。
(2)求系统出瞳的大小和位置根据高斯公式及出瞳的定义有:75301501111122222='⇒=--'⇒'=-'l l f l l mm602507520222222='='⇒-='⇒'='=出D y y l l y y βmm 即系统的出瞳位于L 2右侧75mm 处,口径为60mm 。
习题2:已知两点光源S 1,S 2相距5.1=r m ,光源的发光强度分别为35I 1=cd ,95I 2=cd ,现将一白色的光屏置于S 1,S 2之间,且光屏的法线方向与S 1,S 2连线的夹角为i 。
第一章习题1、已知真空中的光速c=3×108 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
1. (1)用作图法找出图示显微镜的物、像方焦点,以及物方主平面和像方主平面的位置。
答案:(2)已知一对共轭点A 和A '的位置,以及像方焦点F '的位置,并假定物、像方空间介质的折射率相同。
试用作图法找出光学系统的物方焦点,以及物方主平面和像方主平面的位置。
答案:2. 三、一光学系统由一透镜和平面镜组成,如图所示。
平面镜MN 与透镜光轴交于D点,透镜前方离平面镜600mm 处有一物体AB ,经过透镜和平面镜后,所成虚像A "B "至平面镜的距离为150mm ,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
AA 'F '答案:令物AB 经透镜成像为A ’B ’,经平面镜成像为A ’’B ’’根据平面镜成像性质,A ’B ’与A ’’B ’’关于平面镜对称,即大小相等,且与平面镜等距。
由此可得'600150450mm AA =-=。
对透镜成像,可得如下关系'450'/1/2l l l l β-+=⎧⎨==⎩解得300mm l =-,'150mm l =。
(4)根据成像公式'1''f f l lf f⎧+=⎪⎨⎪=-⎩ 解得'100mm f f =-=。
因此,该透镜为正透镜,焦距为100mm 。
放在物与平面镜之间且距离平面镜300mm 处。
(5)光路图如图所示标注。
(3)3. 一玻璃棒(n=1.5)长500mm ,两端面为半球面,半径分别为r 1=50mm 和r 2=100mm 。
一物高y=1mm ,垂直位于左端球面顶点之前200mm 处的轴线上,如图所示。
试求(1)物经玻璃棒成像后的位置和垂轴放大率为多少?(2)试求其共轴理想光学系统的基点和基面的位置,以及焦距的大小,并在图中简要的标出。
答案:(1)首先求物经入射球面的成像。
根据成像公式,有1111111'''n n n n l l r --=将n 1=1, n 1’=1.5, l 1=-200mm, r 1=50mm 代入求得1'300m m l =,11111'/'1n l n l β==- ………………………………(4) 再经出射球面成像,由成像公式2222222'''n n n n l l r --=将n 2=1.5, n 2’=1, l 2=l 1’-d=-200mm, r 2=-100mm 代入求得2'400m m l =-,12222'/'3n l n l β==所以,物经玻璃棒成像位于出射球面顶点前方400mm 处,垂轴放大率为123βββ==- (6)(2)根据已知条件,可分别求得 111100mm 1f r n =-=--,11'150mm 1n f r n ==- 22300mm 1n f r n =-=--,221'200mm 1f r n==-12'50mm d f f ∆=-+=,根据牛顿成像公式,可分别求得物像方焦距为 12600mm f f f ==∆,12'''600mm f f f =-=-∆物像方焦点位置11'300mm F f f x ==-∆,22''1200mm F f f x =-=∆物像方主平面位置900mm H F x x f =-=-,'''1800mm H F x x f =-= (7)(3) 系统的基点与基面在图中的位置如图标注。