限制性核酸内切酶
- 格式:ppt
- 大小:191.00 KB
- 文档页数:16
限制性核酸内切酶限制性核酸内切酶:是识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶。
限制性核酸内切酶的分类:依照限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,别离是第一型(Type I)、第二型(Type II)及第三型(Type III)。
第一型限制酶同时具有修饰(modification)及认知切割(restriction)的作用;还有认知(recognize)DNA 上特定碱基序列的能力,通常其切割位(cleavage site)距离认知位(recognition site)可达数千个碱基之远,并非能准确信位切割位点,因此并非经常使用。
例如:EcoB、EcoK。
第二型限制酶只具有认知切割的作用,修饰作用由其他酵素进行。
所认知的位置多为短的回文序列(palindrome sequence);所剪切的碱基序列通常即为所认知的序列。
是遗传工程上,有效性较高的限制酶种类。
例如:EcoRI、HindIII。
第三型限制酶与第一型限制酶类似,同时具有修饰及认知切割的作用。
可认知短的不对称序列,切割位与认知序列约距24-26个碱基对,并非能准确信位切割位点,因此并非经常使用。
例如:EcoPI、HinfIII。
限制酶在遗传学方面的应用:1、在甚因工程方面利用能产生“粘性结尾”的限制酶, 进行DNA的体外重组, 是较为方便的, 只要用同一限制酶处置不同来源的DNA, 由于所产生的水解片段具有相同的粘性结尾, 能够彼此“粘合”,再经连接酶处置, 就成为重组DNA分子了. 目前, 基因工程上, 限制酶要紧应用于以下两方面(1)目的基因与载体的重组细菌细胞中的限制酶能水解外源DNA , 因此必需通过适当的载体(质粒或噬菌体)的帮忙才能将外源DNA引人受体细胞并在其中增殖和表达。
将供体DNA与载体用一样的限制酶处置, 使载体带上各类各样的外源DNA片断, 然后引人受体细菌细胞增殖, 菌细胞增殖, 再挑选出所需的菌株, 便取得带有某一目的基因的繁衍系.用这种方式, 已成功地将酵母菌的咪哇甘油磷酸脱水酶基因、夕一异丙基苹果酸脱氢酶基因和色氨酸合成酶基因通过几噬菌体转人大肠杆菌,并表达了信息.(2)建造新的基因载体作为基因载体,在引人受体细胞后, 必需有较高的复制率, 以求取得大量的基因产物;必需具有一个选择性标志, 以便挑选;还要有一最多种限制酶的作用位点(每种酶只有一个切口);也要求利用平安。
一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。
2.类型:来自原核生物,有三种类型。
Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。
Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。
另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。
同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。
与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。
常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。
显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。
但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。
Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。
三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。
实验四限制性内切核酸酶的酶切与鉴定一、实验原理限制性内切酶是一类能识别双链DNA分子中特异核苷酸序列的DNA水解酶,主要存在于原核生物中。
根据限制酶的识别切割特性、催化条件及是否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ型三大类。
其中Ⅱ类酶在分子克隆和基因操作中最为有用,是常用的分子生物学工具酶。
限制性内切酶识别序列长度一般为4~8个呈回文序列的特异核苷酸对。
一般情况下,识别序列越长,在同一DNA分子中识别位点出现的频率就越小。
许多限制性内切酶的酶切位点已被确定。
例如EcoRl 酶的识别与切割序列为以下6个碱基对。
5′……GAATTC……3′3′……CTT AAG…… 5′这些末端为互补的,即粘性末端,并可在连接酶的催化下与由EcoR I产生的其它分子末端相连接。
限制性内切酶主要用于基因组DNA的片段化、重组DNA分子的构建与鉴定、载体中目的基因片段的分离与回收以及DNA分子物理图谱的构建等。
根据酶切目的和要求不同,可有单酶切、双酶切或部分酶切等不同方式。
根据酶切反应的体积不同,可分为小量酶切反应和大量的酶切反应。
小量酶切反应主要应用于质粒的酶切鉴定,体积为20 μl, 含0.2~1 μg DNA,大量酶切反应用于制备目的基因片段,体积为50~100 μl,DNA用量在10~30ug。
本实验为EcoR I对质粒pUC18的小量酶切。
在质粒的双链环状DNA分子上有多个限制性内切核酸酶酶切位点。
在用特定的限制性内切核酸酶对质粒进行酶切反应后,通常可采用琼脂糖凝胶电泳进行鉴定酶切效果。
二、仪器与试剂1.仪器:水浴锅、离心管、移液器、吸头、电泳设备等。
2.试剂:质粒pUC18、EcoR I限制性内切核酸酶、内切酶反应缓冲液、琼脂糖、电泳缓冲液、6×上样缓冲液、溴化乙啶染液、无菌水等。
限制性核酸内切酶百科名片其3′→5′外切酶活性使双链DNA分子产生出单链区,经过这种修饰的DNA 再配合使用Klenow酶,同时加进带放射性同位素的核苷酸,便可以制备特异性的放射性探针。
核酸内切酶核酸内切酶(endonuclease)在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。
从对底物的特异性来看,可分为DNaseⅠ、DNaseⅡ等仅分解DNA的酶;脾脏RNase、RNaseT1等仅分解RNA的酶。
如链孢霉(Neurospora)的核酸酶就是既分解DNA又分解RNA的酶。
一般来说,大都不具碱基特异性,但也有诸如脾脏RNase、RNaseT1等或限制性内切酶那种能够识别并切断特定的碱基或碱基序列的酶。
[1]寡核苷酸,是一类只有20个以下碱基对的短链核苷酸的总称(包括脱氧核糖核酸DNA或核糖核酸RNA内的核苷酸),寡核苷酸可以很容易地和它们的互补对链接,所以常用来作为探针确定DNA或RNA的结构,经常用于基因芯片、电泳、荧光原位杂交等过程中。
RNA聚合酶科技名词定义中文名称:RNA聚合酶英文名称:RNA polymerase定义1:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:生物化学与分子生物学(一级学科);酶(二级学科)定义2:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:细胞生物学(一级学科);细胞遗传(二级学科)定义3:以DNA或RNA为模板合成RNA的酶。
所属学科:遗传学(一级学科);分子遗传学(二级学科)本内容由全国科学技术名词审定委员会审定公布RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。
是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。
因为在细胞内与基因DNA的遗传信息转录为RNA有关,所以也称转录酶。
限制性核酸内切酶名词解释限制性核酸内切酶(RestrictionNucleases,RNases)是一类重要的核酸分子分析工具,是由胞壁杆菌和放线菌等微生物中编码的特定核酸酶类别。
它可以特异性的切割DNA和RNA的特定序列,对研究DNA和RNA的结构和功能有着重要的作用。
限制性核酸内切酶的分子结构基本上是由多聚腺苷酸(polypeptide)和双聚腺苷酸(dipeptide)组成的。
此外,它们还包含辅酶(cofactor),例如Mg2+或Ca2+、K+等,并且需要这些辅酶才能激活其具有酶活性。
一个限制性核酸内切酶在一次反应中可以检测出多个DNA序列,而且能够辨识具有同系特征特异性碱基对,尽量减少大量的氧化废物产生。
与其他核酸分子分析工具不同的是,限制性核酸内切酶具有单端可切或双端可切的特性,可以选择性地切割DNA分子的特定序列,其切割后的片段可以进一步用于分子生物学技术,如DNA测序、PCR及DNA杂交等。
例如,细菌DNA内切酶BamHI以TGT^AAT为切割位点,能有效地将DNA分子切断,切割后可以得到二条内切片段,分别以TGT和AAT为3端,以及一条5末端非切片段;而HpaII以C^CGG为切割位点,切割后可以得到二条内切片段,分别以C和CGG为5端,以及一条3末端的非切片段。
此外,限制性核酸内切酶还可用于检测DNA片段的克隆和定位,以及调控基因表达,控制蛋白质翻译等用途,因此,它们在遗传学、分子生物学研究中起着重要的作用。
它们能够解析特定DNA序列,同时保留它们的原始特征,有助于研究者对其进行详细的调查。
在生物技术的应用中,使用限制性核酸内切酶可以改变DNA序列,实现重组DNA的目的,创造各种抗性等目的。
因此,限制性核酸内切酶的重要性不言而喻。
它们是研究 DNARNA 构和功能的重要工具,同时也是实现技术转化的重要基础。
它们可以用于检测DNA片段,改变序列,以及调控基因表达等多种用途,同时也可以做出有意义的蛋白质和重要生物体系。
一、实验目的1. 理解并掌握限制性核酸内切酶(RE)的原理及其在分子生物学中的应用。
2. 掌握质粒DNA的提取方法。
3. 学习并实践质粒DNA的酶切技术。
4. 掌握琼脂糖凝胶电泳技术及其在DNA分析中的应用。
5. 分析酶切结果,鉴定目的基因。
二、实验原理限制性核酸内切酶(RE)是一类能够识别特定的DNA序列并在该序列处切割双链DNA的酶。
它们在分子生物学中具有广泛的应用,如基因克隆、基因编辑、基因表达调控等。
质粒DNA是常用的克隆载体,其提取方法主要有碱裂解法、盐析法等。
本实验采用碱裂解法提取质粒DNA。
酶切是将质粒DNA切割成大小不同的片段,通过琼脂糖凝胶电泳技术分离这些片段,从而鉴定目的基因。
琼脂糖凝胶电泳是一种常用的DNA分析技术,其原理是利用DNA分子在琼脂糖凝胶中的迁移速率差异进行分离。
在电场作用下,DNA分子带负电荷,会向正极移动。
DNA分子的大小与其迁移速率成反比,因此,通过比较不同片段的迁移距离,可以鉴定DNA片段的大小。
三、实验材料1. 质粒DNA2. 限制性核酸内切酶(RE)3. 琼脂糖凝胶4. TAE缓冲液5. DNA marker6. 电泳仪7. 显色剂8. 紫外灯四、实验步骤1. 质粒DNA提取- 将含有质粒DNA的菌液接种于含有抗生素的LB培养基中,37℃培养过夜。
- 取适量菌液,加入等体积的碱裂解液,混匀,室温放置5分钟。
- 加入等体积的异丙醇,混匀,室温放置10分钟。
- 12,000 rpm离心5分钟,弃上清。
- 加入700 μL 70%乙醇,混匀,室温放置5分钟。
- 12,000 rpm离心5分钟,弃上清。
- 加入50 μL无菌水,混匀,即得质粒DNA。
2. 酶切- 取10 μL质粒DNA,加入10 μL限制性核酸内切酶缓冲液,混匀。
- 加入1 μL限制性核酸内切酶,混匀。
- 37℃水浴反应3小时。
3. 琼脂糖凝胶电泳- 配制琼脂糖凝胶,加入适量的DNA marker。