正余弦定理复习课(第1课时)
- 格式:ppt
- 大小:495.50 KB
- 文档页数:13
正弦定理、余弦定理及应用复习课学习目标:1、理解用向量的数量积证明正弦定理、余弦定理的方法。
2、掌握正弦定理、余弦定理的变形形式。
3、灵活运用正弦定理、余弦定理解决三角形中的有关问题。
了解感知1.三角形边角关系:设△ABC 的三边为a 、b 、c ,对应的三个角为A 、B 、C .1)正弦定理 R Cc B b A a 2sin sin sin ===(R 为外接圆半径) 变式1:a = 2R sinA ,b= 2R sinB ,c= 2R sinC变式2:R Cc B b A a C B A c b a 2sin sin sin sin sin sin ====++++ 变式3:b a B A =sin sin ,c a C A =sin sin ,c b C B =sin sin2)余弦定理 c 2 = a 2+b 2-2bccosC ,b 2 = a 2+c 2-2accosB ,a 2 = b 2+c 2-2bccosA .变式1:bca cb A 2cos 222-+=;=C cos .;=B cos . . 2 三角形面积公式:2)(sin 2121r c b a C ab ah S ++===∆(其中r 为内切圆半径) 3、解三角形常见题型及解法(1)已知两角A 、B 与一边a ,由A +B +C =180°可求出角C ,由正弦定理再依次求出b 、c .(2)已知三边a 、b 、c ,由余弦定理可求出角A 、B 、C .(3) 已知两边a 、b 及其中一边的对角A ,由正弦定理求出另一对角B (注意:角的取舍),由C =π-(A +B )求出C ,再由正弦定理求出c 。
(4)已知两边b ,c 与其夹角A ,由余弦定理求出a ,再由正弦定理依次求出角B 、C (注意:角的取舍)。
4、常用的三角形内角恒等式:①由A =π-(B +C )可得出: sinA =sin (B +C ),cosA =-cos (B +C ). ②由222C B A +-=π.有: 2cos 2sin C B A +=,2sin 2cos C B A +=.深入学习例1、在△ABC 中,(1)已知︒===30,8,4B c b ,求a A C ,,;(2)已知2,2,30==︒=c b B ,求a C A ,,;(3)已知10:)13(:)13(sin :sin :sin -+=C B A ,求最大角。