数学文化欣赏
- 格式:ppt
- 大小:283.50 KB
- 文档页数:35
数学文化欣赏课程设计一、引言数学文化是指数学思想、数学方法、数学知识和数学应用在人类文化传统及日常生活中产生的一系列现象。
随着社会的发展和人们文化素质的提高,越来越多的人开始关注数学文化的价值和魅力,对于普及和推广数学文化,特别是在教育领域,具有深远的意义。
为了进一步推广数学文化,提高青少年的数学文化素养,设计一门数学文化欣赏课程是非常必要和有益的。
二、课程目标本课程旨在通过数学文化的欣赏和学习,提高学生的数学文化素养、培养学生的数学审美意识和发现问题的能力,激发学生对于数学的兴趣和热爱,让学生体验到数学的美和智慧。
三、课程内容1.数学文化相关介绍。
•数学文化的定义、历史和发展。
•数学文化在我们的日常生活中的应用。
2.数学名家及其作品欣赏。
•欣赏古代数学家如欧几里得、牛顿、拉格朗日等名家的代表作品。
•欣赏现代数学家如庞加莱、黎曼、图灵、华罗庚等名家的相关作品。
3.数学文化的艺术表现。
•探究数学与艺术之间的联系和共性。
•欣赏数学在绘画、音乐、舞蹈等艺术形式中的应用。
4.数学文化的重要事件。
•探究数学史上的重要事件,如创造零、发现无穷、解决哥德尔定理等。
•了解这些事件对于数学与科学的发展和进步所起的重要作用。
5.数学文化的实践应用。
•讨论数学与实际应用的关系,如数学在地图制图、金融投资、工程建设等领域中的应用。
•探究数学在各个领域中的应用价值和作用。
四、教学方法与手段1.多媒体辅助教学:通过图片、声音和视频等多媒体手段,生动形象地呈现数学文化的相关内容,增强学生的学习兴趣和学习体验。
2.互动式授课:针对每个课堂内容设置趣味性测试、问答环节或小组活动,促进学生与教师、学生与学生之间的互动,提高学生的学习效果和教学质量。
3.实践性教学:针对每个课堂内容设计相关实验或实践课程,让学生在实践中感受数学文化的真正魅力和价值,拓展学生的认知视野和思维方式。
五、评价方法1.课堂表现:包括主动参与课堂讨论、认真听讲、积极回答问题、互动能力等方面。
对数学的认识(一)概念:数学是研究数量、结构、变化以及空间模型等概念的一门学科。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
(二)数学发展划分为以下五个时期:数学萌芽期(公元前600年以前);初等数学时期(公元前600年至17世纪中叶);变量数学时期(17世纪中叶至19世纪20年代);近代数学时期(19世纪20年代至第二次世界大战);现代数学时期(20世纪40年代以来)。
(三)数学与其它学科的关系。
数学是一种语言,是一种科学的共同语言,可用来描述宇宙。
任一门科学只有使用了数学,才成为一门科学,否则就是不完善与不成熟的。
宇宙和人类社会就是用数学语言写成的一本大书。
数学是打开科学大门的钥匙,凡是有意义的科学理论与实践成就,无一例外地借助于数学的力量。
数学是一种思维的工具,自然哲学认为任何事物都是量和质的统一体,数学就是研究量的科学。
数学是一门创造性艺术。
美是艺术的一种追求,美也是数学中一种公认的评价标准。
(四)数学史上一共爆发了三次数学危机:第一次:无理数的发现。
毕达哥拉斯学派认为自然界的任何数都可以由整数或整数之比表示,但其学派成员发现了直角边长均为1的直角三角形的斜边不能表示成整数或整数之比(不可通约),该悖论触犯了毕氏学派的根本信条,导致了第一次数学危机产生。
第二次:无穷小是零吗?在微积分蓬勃发展时一位哲理学家指出应用无穷小量究竟是不是零?无穷小及其分析是否合理?由此引发了第二次数学危机。
第三次:悖论的出现。
在19世纪,集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑,史称第三次数学危机。
(五)数学是美丽的。
其代表有A.完美数,它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
B.素数质数又称素数。
指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
数学文化欣赏数学是什么1. 恩格斯的数学定义: 数学是研究现实世界中的数量关系与空间形式的一门科学2.古今数学家的说法(美)R·柯朗:“数学,作为人类智慧的一种表达形式,反映生动活泼的意念,深入细致的思考,以及完美和谐的愿望,它的基础是逻辑和直觉,分析和推理,共性和个性。
徐利治教授:数学是“实在世界的最一般的量与空间形式的科学,同时又作为实在世界中最具有特殊性、实践性及多样性的量与空间形式的科学”。
3.两种针锋相对的说法(法)E·波莱尔:“数学是我们确切知道我们在说什么,并肯定我们说的是否对的唯一的一门科学。
”(英)伯特兰·罗素:“数学是所有形如p蕴含q的命题的类”,而最前面的命题p是否对,却无法判断。
因此“数学是我们永远不知道我们在说什么,也不知道我们说的是否对的一门学科。
”4. 关于数学是什么还有以下说法•1)哲学说: 数学是一种哲学,哲学说来自古希腊,代表人物有亚里士多德(前384—前322年)、欧几里得等人。
亚里士多德曾说:“新的思想家把数学和哲学看作是相同的。
”的确,古希腊的许多数学家也同时是哲学家。
《几何原本》:点是没有部分的那种东西;线是没有宽度的长度直线是同各点看齐的线……牛顿在《自然哲学之数学原理》的序言中说,他是把这本书“作为哲学的数学原理的著作”,“在哲学范围内尽量把数学问题呈现出来”。
这也可以看作数学的哲学说•2)符号说:是说数学是一种高级语言,是符号的世界。
•3)科学说:是说数学是精密的科学,”数学是科学的皇后“。
•4)工具说:是说”数学是其他所有知识工具的源泉“。
•5)逻辑说:是说数学推理依靠逻辑,“数学为其证明所具有的逻辑性而骄傲。
”•6)创新说:是说数学是一种创新,如发现无理数,提出微积分,创立非欧几何。
•7)直觉说:是说数学的基础是人的直觉,数学主要是由那些直觉能力强的人们推进的。
•8)集合说:是说数学各个分支的内容都可以用集合论的语言表述。
数学文化欣赏课程调研报告一、课题背景及界定数学作为文化的一种,它承载了人类文明的发展。
在当前数学教育中,数学素质被曲解成数学的应试水平。
这个现实使得数学在学生的心目中越来越空洞乏味,逐步开始对数学产生厌倦心理,觉得数学太枯燥乏味。
让他们觉得数学就是加减乘除的堆砌,就是解题的工具而已。
二、理论依据及意义国家《数学课程标准》明确指出,数学是人类生活的工具;数学是人类用于交流的语言;数学能赋予人创造性;数学是一种人类文化,等等。
可见数学是人类文明的重要组成部分。
而数学文化作为教材的组成部分,应渗透在整套教材中。
教材能够适时地介绍相关背景知识,包括数学在自然与社会中的应用、数学发展史的相关材料,协助学生了解数学在人类文明发展中的作用,激发学习数学的兴趣,感受数学家治学的严谨,欣赏数学的优美。
三、研究的目标、内容、方法、步骤及过程研究的目标1.通过本课题的研究和实践,使广大数学教师对数学教学中渗透数学文化的意义有更深入的理解,形成一套数学文化渗透的策略。
2.通过本课题的研究和实践,明确在数学教学中渗透数学文化对学生的学业水平产生的影响,努力使学生具有浓厚的学习兴趣、稳定的学习情绪、较高的学习动机、恰当的学习自信心、端正的学习态度、灵活的学习方法等,使学生真正成为学习的主人,为他们的可持续发展,为他们的终生学习奠定扎实的基础。
研究的内容1.数学文化的理论探讨。
2.在数学教学中有机渗透数学文化的案例研究。
3.在数学教学中渗透数学文化的教学策略研究。
4.渗透数学文化对学生数学学习效率的影响与作用的研究。
研究的方法1.文献资料法。
2.案例分析法。
3.行动研究法。
4.经验总结法。
研究的步骤及过程:(一)精心选题,持续完善研究方案。
1.了解数学的悠久历史,体现数学文化的人文价值.2.对师生实行了调查、访谈,并以问卷形式对学生数学学习情况实行相关调研,分析、统计数据,为课题的展开作好充分准备.(二)增强学习,增强课题研究水平。
数学文化欣赏美妙的数学
数学文化欣赏美妙的数学
美的事物充斥在我们生活当中,不断学习对完美人性有着极为深刻的意义。
下面将为大家带来有关欣赏美妙的数学的相关内容,希望能够带给您帮助。
长期以来,一个令人困惑的现象是:一些同学视数学如畏途,兴趣淡漠,导致数学成绩普遍低于其他学科。
这使一些教师、家长乃至专家、学者大伤脑筋!
兴趣是最好的老师。
对任何事物,只有有了兴趣,才能产生学习钻研的动机。
兴趣是打开科学大门的钥匙。
对数学不感兴趣的根本原因是没有体会到蕴含于数学之中
的奇趣和美妙。
一个美学家说:美,只要人感受到它,它就存在,不被人感受到,它就不存在。
对数学的认识也是这样。
有人说:数学真枯燥,十个数字来回转,加、减、乘、除反复用,
真乏味!有人却说:数学真美好,十个数字颠来倒,变化无穷最奇妙!认为枯燥,是对数学的误解;感到了兴趣,才能体会到数学的奥妙。
其实,数学确实是个最富有魅力的学科。
它所蕴含的美妙和奇趣,
是其他任何学科都不能相比的。
尽管语文的优美词语能令人陶醉,历史的悲壮故事能使人振奋,然
而,数学的逻辑力量却可以使任何金刚大汉为之折服,数学。