线性代数B期末试题
- 格式:doc
- 大小:116.50 KB
- 文档页数:3
线性代数B 期末试题一、判断题(正确填T ,错误填F 。
每小题2分,共10分)1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
( )2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。
( )3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
( ) 4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。
( )5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。
( )二、单项选择题(每小题3分,共15分)1.下列矩阵中,( )不是初等矩阵。
(A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (B)100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C) 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D) 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。
(A )122331,,αααααα--- (B )1231,,αααα+ (C )1212,,23αααα- (D )2323,,2αααα+3.设A 为n 阶方阵,且250A A E +-=。
则1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E +4.设A 为n m ⨯矩阵,则有( )。
(A )若n m <,则b Ax =有无穷多解;(B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;(C )若A 有n 阶子式不为零,则b Ax =有唯一解; (D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( )(A )A 与B 相似 (B )A B ≠,但|A-B |=0(C )A=B (D )A 与B 不一定相似,但|A|=|B|三、填空题(每小题4分,共20分)1.01210n n -。
同济大学课程考核试卷(B 卷)2009—2010学年第一学期命题教师签名: 审核教师签名:课号:122010 课名:线性代数B 考试考查:考试此卷选为:期中考试( )、期终考试( )、重考( √ )试卷(注意:本试卷共七大题,三大张,满分100分.考试时间为 分钟.要求写出解题过程,否则不予计分) 一、填空题(每空3分,共24分)1.已知4阶方阵为()2131,,,A αααβ=, ()1232,2,,B αααβ=, 且 4A =-,2B =-,则行列式 =+B A 6 。
2. 设行列式1131100021034512D =,j i A 是D 中元素j i a 的代数余子式,则=+2414A A -9 .3. 已知矩阵222222a A a a ⎛⎫⎪= ⎪ ⎪⎝⎭,伴随矩阵0≠*A ,且0=*x A 有非零解,则 C .(A) 2=a ; (B ) 2=a 或4-=a ; (C) 4-=a ; (D) 2≠a 且4-≠a .4. 向量组s ααα,,,21)2(≥s 线性无关,且可由向量组s βββ,,, 21线性表示, 则以下结论中不能成立的是 B(A) 向量组s βββ,,,21线性无关; (B) 对任一个j α(1)j s ≤≤,向量组s j ββα,,,2线性相关; (C) 向量组s ααα,,,21与向量组s βββ,,, 21等价. 5. 已知3阶矩阵A 与B 相似且010100001A -⎛⎫⎪= ⎪⎪-⎝⎭, 则201222B A -=300030001⎛⎫- ⎪ ⎪ ⎪⎝⎭. 6. 设0η是非齐次线性方程组Ax b =的特解,12,,,s ξξξ是齐次方程组0Ax =的基础解系,则以下命题中错误的是 B(A) 001020,,,,s ηηξηξηξ---是Ax b =的一组线性无关解向量;(B) 0122s ηξξξ++++是Ax b =的解;(C) Ax b =的每个解均可表为001020,,,,s ηηξηξηξ+++的线性组合.7. 设4阶矩阵A 有一个特征值为2-且满足5T AA E =,||0A >,则其伴随矩阵*A 的一个特征值为 _________8. 已知实二次型2221,231231323(,)2624f x x x x x x ax x x x =++++正定,则常数a 的取值范围为22a -<<.二、(10分)设矩阵A 的伴随矩阵*110011102A -⎛⎫⎪=- ⎪ ⎪-⎝⎭,且0A >, E BA ABA 311+=--。
共4页第页复旦大学期末考试试卷(B 卷)课程名称线性代数A 考试学期19-20-1得分适用专业非电类专业考试形式闭卷考试时间长度120分钟题号一二三四五六七得分一.(30%)填空题(E 表示单位矩阵):1.设03a A b ⎛⎫= ⎪⎝⎭,如果10A O =,则参数,a b 满足条件;2.设0k >,向量(,0,)T k k α=,如果矩阵T A E αα=-是1T B E k αα=+的逆矩阵,则参数k =;3.若,A B 都是n 阶可逆矩阵,则分块矩阵O A B E ⎛⎫ ⎪⎝⎭的逆矩阵为;4.若向量组(1,2,3),(1,,3),(1,2,)T T T x y 线性相关,则参数,x y 满足条件;5.3R 的子空间{}(,,)|0T V x y z x y z =--=的维数是;6.假设3阶矩阵A 的秩是2,123,,ηηη是线性方程组Ax b =的解,若12(2,2,4)T ηη+=,13(1,0,1)T ηη-=,则Ax b =的通解是;7.如果2阶矩阵A 的特征值是2和3,则A 的伴随矩阵*A 的特征值是;8.若2是1114335x y -⎛⎫ ⎪= ⎪ ⎪--⎝⎭A 的二重特征值,且A 相似于对角阵,则(,)x y =;9.如果二次型2212124x tx tx x ++是正定的,则参数t 满足条件;10.如果线性方程组31222393x y zx ay z x y bz +-=⎧⎪+-=⎨⎪++=⎩有3个线性无关的解向量,则(,)a b =。
共4页第页二.(14%)设112100010,020002201A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,求矩阵方程2()AB B X B +=的解。
三.(10%)已知向量组12110,213αα-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭与向量组1231110,,120m n βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的秩相同,并且,3β可以由12,αα线性表示。
《线性代数》期末考试试卷B一、(30分)填空题(E 表示相应的单位矩阵).1. 设3阶矩阵A = (α1, α2, α3)的行列式|A | = 3, 矩阵B = (α2, α3, α1), 则矩阵A − B 的行列式|A − B | =______.解: (法一) |A − B | = |α1−α2, α2−α3, α3−α1| = |α1, α2−α3, α3−α1| + |−α2, α2−α3, α3−α1|= |α1, α2−α3, α3| + |−α2, −α3, α3−α1| = |α1, α2, α3| + |−α2, −α3, −α1| = |α1, α2, α3| − |α2, α3, α1| = |α1, α2, α3| − |α1, α2, α3| = 0.(法二) A − B = (α1−α2, α2−α3, α3−α1) = (α1, α2, α3)101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠= AP ,其中P =101110011−⎛⎞⎜⎟−⎜⎟−⎝⎠, |P | =101110011−−−= 0, 故|A − B | = |AP | = |A ||P | = 0.2. 若矩阵A 满足A 2 = O , 则E +A 的逆矩阵(E +A )−1 = _______.解: A 2 = O ⇒ (E +A )(E −A ) = E 2 −A 2 = E ⇒ (E +A )−1 = E −A .3. 若向量组α1 = (1, t , 1), α2 = (1, 1, t ), α3 = (t , 1, 1)的秩为2, 则参数t 满足条件___________.解: 令A = (α1, α2, α3), 则秩(A ) = 秩(α1, α2, α3) = 2 ⇒111111tt t = |A | = 0 ⇒ (t +2)(t −1)2 = 0 ⇒ t = −2或1.当t = −2时, 秩(A ) = 2; 当t = 1时, 秩(A ) = 1. 故t = −2.4. 假设3阶矩阵A 的特征值为1, 2, −1, 矩阵B = E −2A *, 其中A *是A 的伴随矩阵, 则B 的行列式|B |= _______.解: 3阶矩阵A 的特征值为1, 2, −1 ⇒存在P 使得P −1AP =100020001⎛⎞⎜⎟⎜⎟−⎝⎠记为Λ, 而且|A | = 1×2×(−1) = −2.故P −1A −1P = (P −1AP )−1 = Λ−1 =10001/20001⎛⎞⎜⎟⎜⎟−⎝⎠. 由A *A = |A |E 可得A * = |A |A −1 = −2A −1, 于是有|B | = |P |−1⋅|B |⋅|P | = |P −1|⋅|B |⋅|P | = |P −1BP | = |P −1(E −2A *)P | = |P −1EP −2P −1A *P | = |E − 2P −1A *P |= |E + 4P −1A −1P | = |E + 4Λ−1| =500030003−= −45.5. 若矩阵A =10022312x −⎛⎞⎜⎟⎜⎟⎝⎠与矩阵B =03y ⎛⎞⎜⎟⎜⎟⎝⎠相似, 则(x , y ) =________.解: |A | = 2(1−x ), |B | = 0, tr(A ) = 1+x , tr(B ) = 3+y . 因为矩阵A 与B 相似, 所以|A | = |B |, tr(A ) = tr(B ).由此可得x = 1, y = −1. (x , y ) = (1, −1). 6. 设(1, −1, 0)T , (1, 0, −1)T 是3阶实对称矩阵A 的相应于某个非零二重特征值的特征向量. 若A 不可逆,则A 的另一个特征值为______, 相应的一个特征向量为__________.解: 3阶矩阵A 有非零二重特征值而且A 不可逆 ⇒ A 的另一个特征值为0.设ξ为对应于0的特征向量, 则ξ与(1, −1, 0)T , (1, 0, −1)T 正交, 即ξ为12130x x x x −=⎧⎨−=⎩的非零解向量. 由此可得A 的一个对应于0的特征向量为ξ = (1, 1, 1)T .7. 已知3元非齐次线性方程组Ax = b 的系数矩阵的秩为2, 并且α1, α2, α3是Ax = b 的3个解向量, 其中α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T , 则Ax = b 的通解是_______________.解: 3元非齐次线性方程组Ax = b 的系数矩阵的秩为2 ⇒ Ax = 0的基础解系中有且仅有1个解向量.α1, α2, α3是Ax = b 的3个解向量 ⇒ A (α2 + α3 − 2α1) = A α2 + A α3 − 2A α1 = b + b − 2b = 0. α1 = (1, 1, 1)T , α2 + α3 = (2, 4, 6)T ⇒ α2 + α3 − 2α1 = (0, 2, 4)T . 可见ξ = (0, 2, 4)T 是Ax = 0的基础解系,因而Ax = b 的通解是x = k (0, 2, 4)T + (1, 1, 1)T , 其中k 为任意实数. 8. 若4阶方阵A , B 的秩都等于1, 则矩阵A +B 的行列式|A +B | = ________.解: 4阶方阵A , B 的秩都等于1 ⇒ 秩(A +B ) ≤ 秩(A )+秩(B ) = 2 < 4 ⇒ |A +B | = 0. 9. 若矩阵A =211x ⎛⎞⎜⎟⎝⎠与矩阵B =1221⎛⎞⎜⎟−⎝⎠合同, 则参数x 满足条件___________.解: 设λ1, λ2为A 的特征值, µ1, µ2为B 的特征值.µ1µ2 = |B | = −5 < 0 ⇒ µ1, µ2异号 ⇒ B 的秩为2, 正惯性指数为1.A 与B 合同 ⇒ A 的秩为2, 正惯性指数为1 ⇒ λ1, λ2异号 ⇒ 2x − 1 = |A | = λ1λ2 < 0 ⇒ x < 1/2.二、(10分)计算下述行列式的值: D =111+11111+11111111x x x x −−. 解: +1111+111111111111x x x x −−=1111+111111111111x x x −−+1111+11000111111x x x x−−=0000001111x x x−−+ x111+111111x x x −− =000000x x x −−+ x 111+111111x x x −−= x 3 + x 2111+00x x x x x −−= x 3 + x 22111+000x x x x x−= x 3 + (x 4 − x 3) = x 4. 三、(15分)设线性方程组1231231233032314x x x x x x x x x λµ++=⎧⎪++=−⎨⎪−++=⎩. 问: 当参数λ, µ取何值时, 线性方程组有唯一解? 当参数λ, µ取何值时, 线性方程组有无穷多组解? 当线性方程组有无穷多组解时, 求出其通解.解: 该方程组的增广矩阵(A , b ) =1310(3)1323114λµ×−×⎛⎞⎜⎟−⎜⎟−⎝⎠→13100701071λµ⎛⎞⎜⎟−−⎜⎟+⎝⎠→131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠. (1) 当λ ≠ −1, µ为任意实数时, 秩(A ) = 秩(A , b ) = 3, 此时线性方程组有唯一解.(2) 当λ = −1, µ = 1时, 秩(A ) = 秩(A , b ) = 2 < 3, 此时线性方程组有无穷多组解,131007010011λµ⎛⎞⎜⎟−−⎜⎟+−⎝⎠=1713100701()0000⎛⎞⎜⎟−−×−⎜⎟⎝⎠→171310010(3)0000⎛⎞⎜⎟×−⎜⎟⎝⎠→37171010100000−⎛⎞⎜⎟⎜⎟⎝⎠由此可得3137127x x x +=−⎧⎨=⎩, 即3137127x x x =−−⎧⎨=⎩. 故通解为x = k (−1, 0, 1)T + (−37,17, 0)T , 其中k 为任意实数.四、(12分)设矩阵A =101012001⎛⎞⎜⎟−⎜⎟⎝⎠, C =103101⎛⎞⎜⎟−⎜⎟⎝⎠, 矩阵X 满足A −1X = A *C + 2X , 其中A *是A 的伴随矩阵,求X .解: |A | = −1, 在A −1X = A *C + 2X 两边同时左乘以A 得X = −C + 2AX . 故(E −2A )X = −C .(E −2A , −C ) =10210(1)0343100101(1)−−−×−⎛⎞⎜⎟−−⎜⎟−−×−⎝⎠→1021003431001014(2)⎛⎞⎜⎟−−⎜⎟××−⎝⎠→13100120303500101−⎛⎞⎜⎟−×⎜⎟⎝⎠→5312100010100101−⎛⎞⎜⎟−⎜⎟⎝⎠. 由此可得X =5312101−⎛⎞⎜⎟−⎜⎟⎝⎠. 五、(10分)已知向量组η1, η2, η3线性无关, 问: 参数a , b , c 满足什么条件时, 向量组a η1+η2, b η2+η3, c η3+η1线性相关?解: (a η1+η2, b η2+η3, c η3+η1) = (η1, η2, η3)011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠. 令P =011001a b c ⎛⎞⎜⎟⎜⎟⎝⎠, 则|P | = abc + 1. 由条件可知:a η1+η2,b η2+η3,c η3+η1线性相关 ⇔ 秩(a η1+η2, b η2+η3, c η3+η1) < 3 ⇔ 秩(P ) < 3 ⇔ |P | = 0 ⇔ abc = −1. 六、(15分)已知二次型f (x 1, x 2, x 3) = x 12 + 2x 22 + x 32 − 2x 1x 3.1. 写出二次型f 的矩阵;2. 求一正交变换x = Qy , 将f 变成其标准形(并写出f 的相应的标准形);3. 求当x T x = 1时f (x 1, x 2, x 3)的最大值.解: 1. 二次型f 的矩阵A =101020101−⎛⎞⎜⎟⎜⎟−⎝⎠.2. |λE −A | =101020101λλλ−−−= (λ−2)2λ, 可见A 的特征值为λ1 = λ2 = 2, λ3 = 0.解(2E −A )x = 0得对应于λ1 = λ2 = 2的两个正交的特征向量ξ1 = (1, 0, −1)T , ξ2 = (0, 1, 0)T ,解(0E −A )x = 0得对应于λ3 = 0的一个特征向量ξ3 = (1, 0, 1)T .令Q = (11||||ξξ,22||||ξξ,33||||ξξ) =1/00101/0⎛⎜⎜⎜−⎝, 则正交变换x = Qy 将f 变成标准形2y 12 + 2y 22.3. x T x = 1 ⇔ (Qy )T (Qy ) = 1 ⇔ y T Q T Qy = 1 ⇔ y T y = 1 ⇔ y 12 + y 22 + y 32 = 1, 此时y 12 + y 22 ≤ 1. 故当x T x = 1时f (x 1, x 2, x 3) = 2y 12 + 2y 22的最大值为2.七、(8分)证明题.1. 设向量组α1, α2, α3, α4中, α1, α2, α3线性相关, α2, α3, α4线性无关, 证明: α1能由α2, α3, α4线性表示. 证明: 因为α1, α2, α3线性相关, 所以α1, α2, α3, α4线性相关.又因为α2, α3, α4线性无关, 所以α1能由α2, α3, α4线性表示.2. 设A 是n 阶正定矩阵, 证明: 矩阵A +A −1−E 也是正定矩阵.证明: 设λ1, …, λn 为A 的特征值, Λ =1n λλ⎛⎞⎜⎟⎜⎟⎝⎠O . A 是n 阶正定矩阵 ⇒ 存在可逆矩阵P 使得P −1AP = Λ, 其中λ1, …, λn > 0⇒ P −1(A +A −1−E )P = P −1AP + P −1A −1P − P −1EP = Λ + Λ−1 − E =111111n n λλλλ+−⎛⎞⎜⎟⎜⎟⎜⎟+−⎝⎠O, 其中 λ1+11λ−1, …, λn +1n λ−1> 0 ⇒ A +A −1−E 也是正定矩阵.。
西南交通大学2007-2008 学年第(一)学期考试试卷课程代码 2100024 课程名称 线性代数B 考试时间 120 分钟阅卷教师签名:注意:1.答题前,请在密封线内清楚、正确地填写班级、学号、姓名;2.请将填空题和选择题的答案填写在指定的位置,写在其它地方不得分。
一、填空题(每空4分,共24分)1.设(111),(111)T T αβ==-,则T βα= ; 2.设{}V =X |AX =0,则V (是/不是)向量空间; 3.已知 3 阶方阵A 有特征值 -1,1,2,则2*2A A E +-= ; 4.设矩阵1234(,,,),A =αααα其中234,,ααα线性无关,且12332ααα=-,1234=+++βαααα,则 AX β= 的通解为: ;5.设3250326120531614A ⎛⎫⎪-- ⎪= ⎪- ⎪-⎝⎭,则A 的列向量组的一个最大线性无关组为: , ()A R = 。
二、选择题(每小题4分,共24分)班 级 学 号 姓 名密封装订线 密封装订线 密封装订线6.行列式 001100010020100003A ⎛⎫⎛⎫⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭求1A -=( )(A ) 100010121⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1001002103⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ (C ) 001010100⎛⎫ ⎪ ⎪ ⎪⎝⎭ (D ) 00110021003⎛⎫ ⎪ ⎪⎪⎪ ⎪⎝⎭7.设 21201123()132013x x x f x x x x--=,则()f x 中3x 的系数为( )。
(A) -1 ; (B) 1 ; (C) -17 ; (D) 17 。
8.设 A B 、 均为 n 阶可逆方阵,下列各式正确的是( )。
(A) ||||A A λλ=; (B) 111()AB B A ---=; (C) ()T T T AB A B =; (D)||||||A B A B +=+。
2007—2008学年第二学期《线性代数B》期末试卷答案2008年6月24日一、填空题(共6小题,每小题 3 分,满分18分.把答案填在题中横线上)1.设12-103524-1A 轾犏犏=犏犏臌,*A 是A 的伴随矩阵,则*A = 9 .2.设3维向量组α1=(1,2,3),α2=(2,5,6),α3=(3,6,k )线性相关,则k = 9 .3.已知3阶矩阵A 满足A 2-E =O ,则秩R(A )= 3 .4.设实二次型22212312123(,,)3322f x x x =x x tx x x+++正定,则t 的取值范围是 |t |<3 .5.已知矩阵⎥⎦⎤⎢⎣⎡=513a A 只有一个线性无关的特征向量,则=a-1 .6.设⎥⎦⎤⎢⎣⎡=000111E ,⎥⎦⎤⎢⎣⎡=001012E ,⎥⎦⎤⎢⎣⎡=010021E ,⎥⎦⎤⎢⎣⎡=100022E 为数域F 上的线性空间22⨯F 的一组基,向量⎥⎦⎤⎢⎣⎡-=3102α在这组基下的坐标为 (2,0,-1,3)T .二、选择题(共6小题,每小题3分,满分18分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)2.与矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=900042021A 等价的矩阵是[ B ].(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000001;(B) 100010000轾犏犏犏犏臌; (C) 100010001轾犏犏犏犏臌;(D) 000000000轾犏犏犏犏臌. 1.设A 是4×3矩阵,列向量组线性无关,B 为3阶可逆矩阵,则秩R(AB ) 为[ C ].(A) 1 ; (B) 2;(C) 3; (D) 4.3.线性方程组b Ax =的系数矩阵A 是4×5矩阵,且A 的行向量组线性无关,则错误的命题是[ D ].(A) 齐次线性方程组0=x A T只有零解;(B) 齐次线性方程组A T Ax =0必有非零解;(C) 对任意向量b ,非齐次线性方程组Ax =b 必有无穷多解;(D) 对任意向量b ,非齐次线性方程组b x A =T必有无穷多解.4.设A 是n 阶实对称矩阵,P 是n 阶可逆矩阵,已知n 维列向量α是A 的属于特征值λ的特征向量,则矩阵P -1AP 属于特征值λ的特征向量是[ A ].(A) P -1α; (B) P T α;(C) P α; (D) α.5.下列矩阵中,正定矩阵是[ D ].(A) 120250003轾犏犏犏犏-臌;(B) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡624293431;(C)123257370轾-犏犏犏犏臌;(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----2115222.6.设3阶矩阵A的特征值为-1,-2,3,则A的迹为[ A ].(A)0;(B) 1;(C) 2;(D) 3.三、解答题(共5小题,每小题9分,满分45分)1.求向量组α1=(1,2,-1,1)T,α2=(0,-4,5,-2)T ,α3=(2,0,4,0)T ,α4=(3,-2,8,-1)T的秩和一个极大无关组.解 令A =(α1, α2,α3,α4),则102310231024020448011~~1548056110011120103470000⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦A .………(5分)所以R(A )=3,且α1, α2,α3是α1, α2,α3,α4的一个极大无关组. ………(9分)2.已知α=(2,1,4),β=(1,2,-3),令A =αT β,求A n .解 由于A =αT β=22461(1,2,3)123.44812-⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦ ………(4分)所以A n =αT β αT β αT β… αT β=(-8) n -1A =1246(8)1234812n --⎡⎤⎢⎥--⎢⎥⎢⎥-⎣⎦. ……(9分)3.设矩阵A 的伴随矩阵A *=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-420010001,且0>A ,E BA ABA 3-1-1+=,其中E 为3阶单位矩阵,求矩阵B . 解 在ABA -1=BA -1+3E 等号的两边左乘矩阵A *,右乘矩阵A ,且|A |=2,得2B =A *B +6E,………(3分)即2B -A *B =6E ,亦即(2E -A *)B =6E ,故B =6(2E -A *)-1, ………(6分)即 11006006010060022063-⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦B . ………(9分)4.验证1231231,1,1032ααα轾轾轾犏犏犏犏犏犏=-==犏犏犏犏犏犏臌臌臌为R 3的基,并将507β轾犏犏=犏犏臌用这个基线性表示.解 设A =(α1,α2,α3),要证α1,α2,α3是R 3的一个基,只须证A E 即可.由于123512351235(,)~1110~0345~0345032703270022120812081002 ~0309~0103~0103001100110011⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦A β(5分)显然,A E ,所以α1,α2,α3是R 3的一个基.且 ……………(7分)β=2α1+3α2-α3. ……………(9分)5.求一组3维列向量α1,α2,使之与α3=(1,1,1)T正交,并把α1,α2,α3化成两两正交的单位向量. 解 设所求的向量为x ,依题意得(x , α3)=0,即x 1+x 2+x 3=0,解之得 1232233,,.x x x x x x x =--⎧⎪=⎨⎪=⎩ 即121231110,01x x k k x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k 1,k 2为任意常数.取12111,001--⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦αα,则α1,α2与α3正交. ………(5分)对α1,α2施行施密特标准正交化,令b 1=α1,单位化得11110-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦e . b 2=α2-2111(,)( ,) αe e e e 1=11122-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦.单位化得21112-⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦e . 将α3单位化,得31111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦e . 则e 1,e 2,e 3即为所求的两两正交的单位向量. ………(9分)四、(满分11分)已知非齐次线性方程组1234123412341,32420,31x x x x x x x x ax x x bx +++=-⎧⎪++-=⎨⎪+++=⎩ 有3个线性无关的解。
,考试作弊将带来严重后果!期末考试《 线性代数》试卷A1. 考前请将密封线内填写清楚;所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷;单项选择题(每小题2分,共30分)。
.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=6 35 24 1C ,6 5 43 2 1B ,4 32 1A ,则下列矩阵运算无意义的是【 】A . BAC B. ABC C . BCA D. CAB设n 阶方阵A 满足A 2–E =0,其中E 是n 阶单位矩阵,则必有 【 】A. A=A -1B. A=-EC. A=ED. det(A)=1设A 为3阶方阵,且行列式det(A)=12-,则*A = 【 】 A. 14-B. 14C. 1-D. 1 设A 为n 阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】A.必存在一个行向量为零向量B.必存在两个行向量,其对应分量成比例C. 存在一个行向量,它是其它n-1个行向量的线性组合D. 任意一个行向量都是其它n-1个行向量的线性组合.设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 3121,,a a a a +6.向量组(I): )3(,,1≥m a a m 线性无关的充分必要条件是 【 】A.(I)中任意一个向量都不能由其余m-1个向量线性表出B.(I)中存在一个向量,它不能由其余m-1个向量线性表出C.(I)中任意两个向量线性无关D.存在不全为零的常数0,,,111≠++m m m a k a k k k 使7.设a 为n m ⨯矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是【 】A .A 的行向量组线性相关B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组⎩⎨⎧=++=++00332211332211x b x b x b x a x a x a的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C.332211b a b a b a == D. 02131= b b a a 9.方程组⎪⎩⎪⎨⎧=++=++=++ax x x x x x x x x 32132132123 3 12 12 有解的充分必要的条件是【 】A. a=-3B. a=-2C. a=3D. a=210. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】A. 可由η1,η2,η3线性表示的向量组B. 与η1,η2,η3等秩的向量组C.η1-η2,η2-η3,η3-η1D. η1,η1+η3,η1+η2+η3 11. 已知非齐次线性方程组的系数行列式为0,则【 】A. 方程组有无穷多解B. 方程组可能无解,也可能有无穷多解C. 方程组有唯一解或无穷多解D. 方程组无解12. n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】A.互不相同的特征值B.互不相同的特征向量C.线性无关的特征向量D.两两正交的特征向量13. 下列子集能作成向量空间R n 的子空间的是 【 】A. }0|),,,{(2121=a a a a a nB. }0|),,,{(121∑==ni in aa a aC. 121{(,,,)|1}n a a a a = D. }1|),,,{(21∑=n inaa a a14. 下列矩阵中为正交矩阵的是 【 】A. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1- 1 01 1 00 0 1 B. ⎥⎦⎤⎢⎣⎡1- 22 151C. 1 -10 -1⎡⎤⎢⎥⎣⎦ D. 1 00 -1⎡⎤⎢⎥⎣⎦15.若矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8020001 a a A 正定,则实数a 的取值范围是 【 】 A .a < 8 B. a >4 C .a <-4 D .-4 <a <4二、填空题(每小题2分,共20分)。
2008 -2009学年第二学期《线性代数 B 》试卷量组1,2, ,m , 的秩为5. 设A 为实对称阵,且AI M 0,则二次型f =x T A x 化为f =y T A -1 y 的线性变换是x= __________ .T6. 设 R 3 的两组基为 a 11,1,1 ,a 2 1,0, 1 ,a 3 1,0,1 ;2,3,4 , 3 3,4,3 ,则由基 a !,a 2,a 3到基 1, 2, 3的过渡矩阵为、单项选择题(共6小题,每小题3分,满分18 分)一一一-二二 -三四五六总分(共 0 0 12. A 为n 阶方阵,AA T = E 且A 0,则A E |.3•设方阵A1 2 24 t 3 , B 为三阶非零矩阵,且AB=O,则t 3114.设向量组m线性无关,向量 不能由它们线性表示,贝U 向1(1,2,1,)T ,22009年6月22日6小题,每小题3分,满分18分)、填空题 1 0 0 10 01.设D n 为n 阶行列式,则D n = 0的必要条件是[]. (A) D n 中有两行元素对应成比例; (B) D n 中各行元素之和为零; (C) D n 中有一行元素全为零;(D)以D n 为系数行列式的齐次线性方程组有非零解.2.若向量组 ,,线性无关,,, 线性相关,则[](A)必可由,, 线性表示; (B)必可由,, 线性表示; (C)必可由,, 线性表示; (D)必可由,,线性表示.3.设3阶方阵A 有特征值0,— 1,1,其对应的特征向量为P i , P 2,P 3, 令1 亠( P 1, P 2, P 3),则 P —1AP =[ ].1 0 00 0 0(A) 01 0 ;(B) 01 0 ;0 0 0 0 0 10 01 0(C) 0 10 ;(D) 0 00 .0 0 —10 0—14. 设 a 1, a, a 线性无关,则下列向量组线性相关的是[](A) a, a, a - a ;(B) a 1,a + a, a 1+ a ;(C) a +( 也, a + a, a + a ; (D) a 1- a, a - a, a - a .5. 若矩阵A a x 4有一个3阶子式不为0,则A 的秩R ( A )=[]. (A) 1; (B) 2; (C) 3;(D) 4.6. 实二次型f 二X T A X 为正定的充分必要条件是[].(A) A 的特征值全大于零; (B) A 的负惯性指数为零;(C)AI > 0 ;(D) R(A) = n .、解答题(共5小题,每道题8分,满分40分)。
线性代数B期末试卷及答案2008 – 2009学年第⼆学期《线性代数B 》试卷⼀⼆三四五六总分⼀、填空题(共6⼩题,每⼩题 3 分,满分18分)1。
设??-=*8030010000100001A ,则A =。
2。
A 为n 阶⽅阵,T AA =E 且=+3.设⽅阵12243,311t -??=-A B 为三阶⾮零矩阵,且AB=O ,则=t . 4。
设向量组m ααα,,,21 线性⽆关,向量不能由它们线性表⽰,则向量组,,,,21m ααα的秩为。
5.设A 为实对称阵,且|A |≠0,则⼆次型f =x T A x 化为f =y T A —1 y 的线性变换是x = .6.设3R 的两组基为()T11,1,1a =,()21,0,1a T=-,()31,0,1a T=;),1,2,1(1=βT ,()()232,3,4,3,4,3ββ==T T,则由基123,,a a a 到基123,,βββ的过渡矩阵为 .得分6⼩题,每⼩题3分,满分18分)1.设D n为n阶⾏列式,则D n=0的必要条件是[ ].(A)D n中有两⾏元素对应成⽐例;(B) D n中各⾏元素之和为零;(C) D n中有⼀⾏元素全为零;(D)以D n为系数⾏列式的齐次线性⽅程组有⾮零解.2.若向量组,,线性⽆关,,,线性相关,则[ ].(A)必可由,,线性表⽰;(B) 必可由,,线性表⽰;(C)必可由,,线性表⽰;(D)必可由,,线性表⽰.3.设3阶⽅阵A有特征值0,-1,1,其对应的特征向量为P1,P2,P3,令P=(P1,P2,P3),则P-1AP=[ ]。
(A)100010000-;(B)000010001-;(C)000010001-; (D)100000001-.4.设α1,α2,α3线性⽆关,则下列向量组线性相关的是[ ].(A)α1,α2,α3 - α1;(B)α1,α1+α2,α1+α3;(C)α1+α2,α2+α3,α3+α1; (D)α1-α2,α2—α3,α3—α1.5.若矩阵A3×4有⼀个3阶⼦式不为0,则A的秩R(A) =[ ].(A) 1; (B)2;(C)3; (D)4.6.实⼆次型f=x T Ax为正定的充分必要条件是[].(A) A的特征值全⼤于零;(B) A的负惯性指数为零;(C)|A| > 0 ; (D) R(A) = n .得分三、解答题(共5⼩题,每道题8分,满分40分)1。
一、填空题(共 6 题,每题 3 分,共 18分)1. n 阶行列式122222222222322222122222n n−的值为______.2. 设矩阵001110123010,010,023*********A C D −⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且3阶方阵B 满足ABC D =,则1B −=______. 3. 已知2R 中两组基为ααββ===−=1212(1,1),(0,1);(1,1),(1,2),T TTT则从基αα12,到基ββ12,的过渡矩阵是 , 已知α在基αα12,下的坐标为(3,0)T ,则α在基ββ12,下的坐标为 .4.设111101,1101a A b α−−⎛⎫⎛⎫ ⎪ ⎪=−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭为A 的属于特征值2−的特征向量,则a =______,b =______.5.设3阶实对称矩阵A 的秩()2r A =且A 满足22A A O −=(O 表示零矩阵),则4I A −=______.6. 已知实二次型22212312313(,,)2f x x x x ax x x x =+++经正交变换x Py =可化为标准型221223f y y =+,则a =______.二、选择题(共 8题,每题 3分,共 24分) 1. 下列(2)n n ≥阶行列式的值必为0的是( ).(A) 行列式主对角线上的元素均为0 (B) 行列式零元素的个数多于n 个 (C) 行列式零元素的个数多于2n n −个 (D) 行列式非零元素的个数比+1n 少2. 将2阶方阵A 的第二列加到第一列得方阵B ,再交换B 的第一行与第二行得单位矩阵, 则A =( ).(A )0111⎛⎫ ⎪⎝⎭ (B )0111⎛⎫ ⎪−⎝⎭ (C )1110⎛⎫ ⎪⎝⎭ (D )1110−⎛⎫ ⎪⎝⎭3.设A 是n 阶矩阵,O A =3,则 =−−1)(A I ( ).(A )2A A I +− (B )2A A I ++ (C )2A A I −+ (D )2A A I −−4. 齐次线性方程组2123123123000x x x x x x x x x λλλλ⎧++=⎪++=⎨⎪++=⎩的系数矩阵记为A ,若存在3阶非零矩阵B 使得AB O =,则( ).中国海洋大学《线性代数》2017-2018学年第一学期期末试卷B卷(A )2λ=−且0B = (B )2λ=−且0B ≠ (C )1λ=且0B = (D )1λ=且0B ≠ 5. 已知12,ββ是方程组Ax b =的两个不同解,12,αα是对应齐次方程组0Ax =的基础解系, 则Ax b =的一般解是( ).(A )1211212()2k k ββααα−+++ (B )1211221()2k k ββααα++−+(C )1211212()2k k ββαββ−+++ (D )1211212()2k k ββαββ++−+6.下列矩阵中不能对角化的是( ).(A )1101⎛⎫ ⎪⎝⎭ (B) 1102⎛⎫ ⎪⎝⎭ (C) 1112⎛⎫ ⎪⎝⎭ (D )1212⎛⎫ ⎪⎝⎭注:以下两道为多选题 7. 对向量组12,,,m ααα,其中,1,2,,n i R i m α∈=,下列说法正确的是( ).(A)设A 为n 阶方阵,若12,,,m ααα线性相关,则12,,,m A A A ααα也线性相关 (B) 设A 为n 阶方阵,若12,,,m ααα线性无关,则12,,,m A A A ααα也线性无关(C) 12,,,m ααα线性相关的充要条件是其中至少有一个向量可由其余向量线性表出 (D) 若12,,,m ααα中有一个是零向量,则此向量组线性相关(E)零向量可由12,,,m ααα线性表出8. 下列说法正确的是( ).(A)对矩阵A 不管施行初等行变换还是初等列变换都不会改变矩阵的秩的值 (B)若A 、B 均可逆,则()()r ACB r C =(C)若n 阶方阵A 的秩()1r A n =−,则*()0r A =,其中*A 为A 的伴随矩阵 (D)若1212=(,,,),=(,,,),m n a a a b b b αβ,其中,i j a b (1,2,,;1,2,,i m j n ==)均非零,则()1T r αβ=三、计算题 (共 3题,共24分)1.(8分)已知4阶行列式42134102315211152D =−,ij A 表示第i 行第j 列元素ij a 的代数余子式,求1323432A A A ++的值。
河海大学2019–2020学年第二学期期末考试《线性代数》试题(B)卷考核方式:闭卷课程性质:必修课适用对象:2018级、2019级相关专业题号一二三四总分复核人满分102016得分一、填空题(将正确答案填在题中横线上。
每小题2分,共10分)1、设1D =3512,2D =345510200,则D =12D D O O=_____________。
2、四阶方阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶方阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶方阵A 满足关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
二、单项选择题(每小题2分,共20分)1、若方程13213602214x x xx -+-=---成立,则x 是()(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2;2、设A 、B 均为n 阶方阵,则下列正确的公式为()(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶方阵,则()**A=()54100(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪一个是初等矩阵()(A )100002⎛⎫ ⎪⎝⎭;(B )100010011⎛⎫⎪ ⎪ ⎪⎝⎭;(C )011101001-⎛⎫ ⎪- ⎪ ⎪⎝⎭;(D )010002100⎛⎫ ⎪- ⎪ ⎪⎝⎭;5、下列命题正确的是()(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,mα线性无关;(B )向量组1,α2α, ,mα若其中有一个向量可由向量组线性表示,则1,α2α, ,m α线性相关;(C )向量组1,α2α, ,m α的一个部分组线性相关,则原向量组本身线性相关;(D )向量组1,α2α, ,m α线性相关,则每一个向量都可由其余向量线性表示。
上海海洋大学试卷诚信考试承诺书本人郑重承诺:我已阅读且透彻理解了“上海海洋大学学生考场规则”和“上海海洋大学学生违反校纪校规处理规定”,承诺在考试中自觉遵守,如有违反,按有关条款接受处理。
承诺人签名: 日 期:考生姓名: 学号: 专业班名:一、选择题(每题4分,共20分)1.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1001110001100011的元素12a 的代数余子式值为( ).A. 1B. 1-C. 2D. 2-2.已知3阶矩阵A 的行列式为1,则A 2的行列式为( ).A. 2B. 3C. 4D. 8 3.设n 阶方阵A 不可逆,则必有( ).A. A 的秩小于nB. A 的秩等于1n -C. 0A =D. 线性方程组0=Ax 只有零解4.已知34⨯阶矩阵A 的列向量组线性无关,则T A 的秩为( ).A. 1B. 2C. 3D. 45. 设Ax=b 是一非齐次线性方程组,12,ηη是其任意2个解,则下列结论错误的是( ) A. 12ηη-是Ax=0的一个解 B.121122ηη+是Ax=b 的一个解 C. 12ηη+是Ax=0的一个解D. 122ηη-是Ax=b 的一个解二、填空题(每题4分,共20分)1.设矩阵⎥⎦⎤⎢⎣⎡--=3211A ,⎥⎦⎤⎢⎣⎡--=1111B ,则AB = . 2.已知向量组)3,1,2(1-=α,)6,,4(2-=k α线性相关,则=k .3.设3阶矩阵A 的秩为2,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020001P ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=001010100Q ,则PAQ 的秩为 . 4.设3151A ⎛⎫= ⎪-⎝⎭,则A 的特征值为 .5.设3阶可逆方阵A 与它的伴随矩阵*A 相等,则=A . 三、计算题(共54分)1. (8分)计算行列式1234112331101205---,并求1121314122A A A A +-+。
2.(8分)已知⎥⎦⎤⎢⎣⎡=1101A ,求n A .3.(8分)已知100025013A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求1-A .4.(10分)设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101020101A ,且X A AX +=,求X .5.(10分)求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡422222323101的秩及其列向量组的一个极大无关组,并将不属于这个极大无关组的列向量用极大无关组线性表示.6.(10分)求线性方程组12341234123423222547x x x x x x x x x x x x +++=⎧⎪++-=⎨⎪+++=⎩的通解.四、证明题(6分)证明:若方阵A 的行列式0 A ,则A 可逆.课程考试标准答案和评分标准一、选择题(每题4分,共20分) 1. B 2. D 3. A 4. C 5. C 二、填空题(每题4分,共20分)1. 2255-⎡⎤⎢⎥-⎣⎦. 2. 2- .3. 2 . 4. 122,4λλ=-= . 5. 1 三、计算题(共54分)1. (8分)计算行列式1234112331101205---,并求1121314122A A A A +-+。
线性代数b期末考试题一、单项选择题(每题3分,共30分)1. 以下哪个矩阵是可逆的?A. \(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\)B. \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\)C. \(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\)D. \(\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\)2. 若矩阵A的行列式为0,则矩阵A是:A. 可逆的B. 不可逆的C. 正定的D. 负定的3. 向量\(\alpha = \begin{bmatrix} 1 \\ 2 \end{bmatrix}\)和\(\beta = \begin{bmatrix} 2 \\ 4 \end{bmatrix}\)是否线性相关?A. 是B. 否4. 线性方程组\(Ax = b\)有解的条件是:A. \(A\)是可逆的B. \(b\)在\(A\)的列空间中C. \(A\)是对称的D. \(A\)是正交的5. 矩阵\(A\)的特征值是指:A. 矩阵\(A\)的对角线元素之和B. 矩阵\(A\)的对角线元素之积C. 满足\(\det(A - \lambda I) = 0\)的\(\lambda\)D. 矩阵\(A\)的迹6. 若\(A\)和\(B\)是同阶方阵,则\(AB\)和\(BA\)的行列式关系是:A. \(\det(AB) = \det(A)\)B. \(\det(AB) = \det(A) \cdot \det(B)\)C. \(\det(AB) = \det(BA)\)D. \(\det(AB) = \det(A) + \det(B)\)7. 向量\(\alpha\)和\(\beta\)的内积定义为:A. \(\alpha \cdot \beta = \sum_{i=1}^{n} \alpha_i \beta_i\)B. \(\alpha \cdot \beta = \sum_{i=1}^{n} \alpha_i / \beta_i\)C. \(\alpha \cdot \beta = \sum_{i=1}^{n} \alpha_i - \beta_i\)D. \(\alpha \cdot \beta = \sum_{i=1}^{n} \alpha_i \times\beta_i\)8. 矩阵\(A\)的秩是指:A. \(A\)中非零行的数量B. \(A\)中非零列的数量C. \(A\)的行空间的维数D. \(A\)的列空间的维数9. 若\(A\)是\(n \times n\)矩阵,\(\lambda\)是\(A\)的一个特征值,则\(\lambda^n\)是:A. \(A^n\)的一个特征值B. \(A^T\)的一个特征值C. \(A^{-1}\)的一个特征值D. \(A^*\)的一个特征值10. 线性变换\(T: \mathbb{R}^n \rightarrow \mathbb{R}^m\)的矩阵表示依赖于:A. 定义域\(\mathbb{R}^n\)的选择基B. 值域\(\mathbb{R}^m\)的选择基C. 定义域\(\mathbb{R}^n\)和值域\(\mathbb{R}^m\)的选择基D. 线性变换\(T\)的定义二、填空题(每题4分,共20分)1. 若矩阵\(A\)和\(B\)相似,则\(\det(A) = \det(B)\)。
西南交通大学2012-2013学年第(1)学期考试试卷课程代码 6010500 课程名称 线性代数B 考试时间 120 分钟阅卷教师签字:一、 选择题(共4小题,每题4分,总计16分)1. 设A 为n 阶矩阵,且2=A ,令T B A A =,则B =( ). (A )n2 (B )12-n (C )12+n (D )42. 设向量组1α,2α,3α,4α线性无关,则向量组12αα+,23αα+,34αα+,41αα+ ( ). (A )线性相关 (B )线性无关(C )既可能线性相关也可能线性无关 (D )是否线性相关与向量的维数有关 3. 设A 是n m ⨯矩阵,b 为n 维非零列向量,则下列结论正确的是( ). (A )若0=Ax 仅有零解,则b Ax =必有唯一解 (B )若0=Ax 有非零解,则b Ax =必有无穷多个解 (C )若b Ax =有无穷多个解,则0=Ax 仅有零解 (D )若b Ax =有无穷多个解,则0=Ax 必有非零解4. 若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则( ). (A )A 与B 相似 (B )B A ≠,但0=-B A (C )B A = (D )A 与B 不相似,但B A =二、填空题(4小题,每题4分,共16分)5. 设矩阵123456111A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,1224510110B ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,初等矩阵P 满足AP B =,则P = .6. 设A 为三阶可逆阵,1100220321A -⎛⎫⎪= ⎪ ⎪⎝⎭,则*A = .7. 设A 为86⨯的矩阵,已知它的秩为4,则0=Ax 的解空间维数为 .8. 若31212322212232x x x tx x x x f -+++=为正定二次型,则t 的取值范围是 .班 级 学 号 姓 名密封装订线 密封装订线 密封装订线三、解答下列各题(共3小题,每题8分,总计24分)9. 计算n 阶行列式011111011111011111011111D =.10. 设n 阶方阵A 满足0422=--E A A .证明3A E -可逆,并求1(3)A E --.11. 齐次线性方程组12341234123423503240230x x x x x x x x x x x x ⎧⎪⎨⎪⎩-++=-++-=--++=的一个基础解系及其通解.四、解答题(共3小题,每题8分,总计24分)12. 求向量组11211α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦--,22521α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-,33574α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦--,416179α⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦-的秩及一个极大线性无关组,并将其余向量通过该极大线性无关组表示出来.13. 设矩阵),,,(4321a a a a A =,其中432,,a a a 线性无关,3212a a a -=,1234b a a a a =+++,求方程组b Ax =的通解.14. 设三阶矩阵A 的特征值为1,1,2-. 求矩阵E A A B -+=2*的行列式B .五、解答下列各题(共3小题,总计20分)15. (12分)用正交变换x Py =化二次型323121232221321844552),,(x x x x x x x x x x x x f --+++=为标准形,并求出正交变换矩阵P .这里,T T x x x x ),,(321=,T T y y y y ),,(321=.16. (4分)用特征值定义证明:n 阶实对称的正交矩阵A 的特征值只能是1±.17. (4分)已知3阶矩阵A 与3维列向量α,若2,,A A ααα线性无关,且3232A A A ααα=-。
8.设A 为三阶方阵, 且3=A , 则 12-=A .一、填空题(每小题2分,共20分)1.行列式=-203297302233241.2.设014111112--=D ,则=++333231A A A .3.设 , 231102 ⎪⎪⎭⎫ ⎝⎛-=A , 102324171⎪⎪⎪⎭⎫ ⎝⎛-=B 则= )( TAB . 4.设052=-+I A A ,则=+-1)2(I A .5.已知矩阵⎪⎪⎪⎭⎫⎝⎛-=100120121A ,*A 是A 的伴随矩阵,则=-1*)(A .6.A 、A 分别为线性方程组b AX =的系数矩阵与增广矩阵,则线性方程组b AX =有解的充分必要条件是 .7.设⎪⎪⎪⎭⎫ ⎝⎛-=30511132a A ,且秩(A )=2,则=a .9.向量组1(1,2,1,1),T α=-,)0,3,0,2(2T=αT )1,4,2,1(3--=α的秩等于 . 10.设21,αα是)3(≥n n 元齐次线性方程组OAX =的基础解系,则=)(A r .二、选择题(每小题2分,共20分)1.已知101yxy x aA =,则A 中元素a 的代数余子式11A 等于( ).A.1- B .1 C .a - D .a2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为1,1,2,3-,则=A ( ).A .3B .3-C .5D .5-3.B A ,均为n 阶矩阵,且2222)(BAB AB A ++=+,则必有( ).A.B A = B .I A = C .I B = D .BA AB =4.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ).A.0=+B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B5.设33⨯阶矩阵),,(1γβα=A ,),,(2γβα=B ,其中γβαα,,,21均为3维列向量,若2=A ,1-=B ,则=+B A ( ).A.4 B .4- C .2 D .16.设B AX =为n 个未知数m 个方程的线性方程组,,)(r A r =下列命题中正确的是( ).A .当n m =时,B AX =有唯一解 B .当n r =时,B AX =有唯一解C .当m r =时,B AX =有解D .当n r <时,B AX =有无穷多解7.若齐次线性方程组⎪⎩⎪⎨⎧=λ++=+λ+=++λ000321321321x x x x x x x x x 有非零解,则=λ( ).A .1或2B .1或-2C .-1或2D .-1或-28.n 阶矩阵A 的秩r n =的充分必要条件是A 中( ).A.所有的r 阶子式都不等于零 B .所有的1r +阶子式都不等于零 C.有一个r 阶子式不等于零 D .有一个r 阶子式不等于零, 且所有1r +阶子式都等于零9.设向量组,),,1(21T a a =α,),,1(22T b b =αT c c ),,1(23=α,则321,,ααα线性无关的充分必要条件是 ( ).A.c b a ,,全不为0 B .c b a ,,不全为0 C .c b a ,,互不相等 D .c b a ,,不全相等10.已知21,ββ为b AX =的两个不同的解,21,αα为其齐次方程组0A X =基础解系,21,k k 为任意常数,则方程组b AX =的通解可表成( ).A.2)(2121211ββααα-+++k kB .2)(2121211ββααα++-+k k线性代数期末试题答案一、填空题(每小题2分,共20分)1.52.03. ⎪⎪⎪⎭⎫⎝⎛-1031314170 4. )(31I A - 5.1/211/2011/2001/2-⎛⎫⎪⎪ ⎪⎝⎭6.)()(A r A r =7.6=a8. 38 9.2 10.2-n二、选择题(每小题2分,共20分)1.B2.C3.D4.D5.A6.C7.B8.D9.C 10.B 三、(8分)解:3211324-824823592373(1)373125212412411131D -===-----18361836(1)1313241=-=-=-四、(10分)解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-=14191269629303212114321011324TAA (2)⎪⎪⎪⎭⎫⎝⎛-----=--461351341)2(1E A (3) 由XA AX2+=,得A XE A =-)2(A E A X 1)2(--=⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫⎝⎛-----=9122692683321011324461351341五、(12分)解:将方程组的增广矩阵A 用初等行变换化为阶梯矩阵:22112411411242110228018211240134(1)(4)00(4)2k k k k k k k k k k k ⎡⎤⎢⎥----⎡⎤⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎣⎦⎣⎦+-⎢⎥-⎣⎦A所以,⑴ 当1k≠-且4k ≠时,()()3r r ==A A ,此时线性方程组有唯一解.⑵ 当1k =-时,()2=A r ,()3=A r ,此时线性方程组无解.⑶ 当4k=时,()()2==A A r r ,此时线性方程组有无穷多组解.此时,原线性方程组化为132334x x x x =-⎧⎨=-⎩ 因此,原线性方程组的通解为13233334x x x x x x=-⎧⎪=-⎨⎪=⎩或者写为123034101x x C x -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦x (C R)∈六、(10分)解:记向量组4321,,,αααα对应矩阵为A 并化为行阶梯形矩阵为12341223122324130212(,,,)12030013062300002634000A αααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪ ⎪ ⎪==→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭所以向量组4321,,,αααα的秩为3且它的一个最大无关组为:123,,ααα或124,,ααα1004101020013000000A -⎛⎫⎪ ⎪- ⎪→⎪ ⎪ ⎪ ⎪⎝⎭41231432αααα=--+ 七、(12分)解:(1).⎪⎪⎪⎪⎪⎭⎫⎝⎛--------→⎪⎪⎪⎪⎪⎭⎫⎝⎛--------=61826239131039131024511810957245113322311312A⎪⎪⎪⎪⎪⎭⎫⎝⎛----→0000000039131015801为自由未知量。
一、选择题(每小题3分,共18分)1.设行列式 111222333a b c a b c d a b c =,则111111222222333333223223223c b c a b c c b c a b c c b c a b c ++++++=+++( )。
A .2d -; B .d -; C .d ; D .2d 。
2.已知A 为n 阶非零方阵,E 为n 阶单位矩阵,若3A O =,则( )。
A .A E +不可逆,E A -不可逆;B .A E -不可逆,A E +可逆;C .A E +可逆,E A -可逆;D .AE +不可逆,E A -可逆。
3.向量1α,2α,3α线性无关,则下列向量组线性相关的是( )。
A .12αα+,23αα+,31αα+; B .1α,12αα+,123ααα++; C .12αα-,23αα-,31αα-; D .12αα+,232αα+,313αα+。
4.若3阶方阵2E A -及E A +,3A E -都不可逆,则A 的特征多项式中常数项为( )。
A .23; B .2 ; C .23-; D .43。
5.下列命题错误的是( )。
A .相似矩阵有相同的特征多项式; B .1n +个n 维向量必线性相关;C .矩阵Q 是n 阶正交矩阵的充分必要条件是1T QQ -=;D .若矩阵A 的秩是r ,并且存在1r -阶子式,则其所有的1r -阶子式全为0。
6.下列命题正确的是( )。
A .若A ,B 为同阶方阵,且TA A =,则TB AB 也是对称阵;厦门大学《线性代数》课程试卷学院___年级__姓名____学号____主考教师: 试卷类型:(B 卷) 2017.06.28B .若AX AY =,且A O ≠,其中O 为零矩阵,则X Y =;C .齐次线性方程组AX O =(A 是m n ⨯矩阵)有唯一解的充分必要条件是()r A m =;D .设非齐次线性方程组AX b =有无穷多解,则相应的齐次线性方程组AX O =有唯一解。
线性代数B 期末试题
一、判断题(正确填T ,错误填F 。
每小题2分,共10分)
1. A 是n 阶方阵,R ∈λ,则有A A λλ=。
( )
2. A ,B 是同阶方阵,且0≠AB ,则111)(---=A B AB 。
( )
3.如果A 与B 等价,则A 的行向量组与B 的行向量组等价。
( )
4.若B A ,均为n 阶方阵,则当B A >时,B A ,一定不相似。
( )
5.n 维向量组{}4321,,,αααα线性相关,则{}321,,ααα也线性相关。
( )
二、单项选择题(每小题3分,共15分)
1.下列矩阵中,( )不是初等矩阵。
(A )001010100⎡⎤⎢⎥⎢⎥⎢⎥⎣
⎦ (B)100000010⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ (C) 100020001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦(D) 100012001⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 2.设向量组123,,ααα线性无关,则下列向量组中线性无关的是( )。
(A )122331,,αααααα--- (B )1231,,αααα+
(C )1212,,23αααα- (D )2323,,2αααα+
3.设A 为n 阶方阵,且250A A E +-=。
则
1(2)A E -+=( ) (A) A E - (B) E A + (C) 1()3A E - (D) 1()3A E +
4.设A 为n m ⨯矩阵,则有( )。
(A )若n m <,则b Ax =有无穷多解;
(B )若n m <,则0=Ax 有非零解,且基础解系含有m n -个线性无关解向量;
(C )若A 有n 阶子式不为零,则b Ax =有唯一解;
(D )若A 有n 阶子式不为零,则0=Ax 仅有零解。
5.若n 阶矩阵A ,B 有共同的特征值,且各有n 个线性无关的特征向量,则( )
(A )A 与B 相似 (B )A B ≠,但|A-B |=0
(C )A=B (D )A 与B 不一定相似,但|A|=|B|
三、填空题(每小题4分,共20分)
1.01
2
1
0n n
- 。
2.A 为3阶矩阵,且满足=A 3,则1-A =______,*3A = 。
3.向量组1111α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2025α⎛⎫ ⎪= ⎪ ⎪⎝⎭,3247α⎛⎫ ⎪= ⎪ ⎪⎝⎭,
4120α⎛⎫ ⎪= ⎪ ⎪⎝⎭是线性 (填相关或无关)的,它的一个极大线性无关组是 。
4. 已知123,,ηηη是四元方程组Ax b =的三个解,其中A 的秩()R A =3,
11234η⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭,234444ηη⎛⎫ ⎪ ⎪+= ⎪ ⎪ ⎪⎝⎭,则方程组Ax b =的通解为 。
5.设
23111503A a -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且秩(A )=2,则a = 。
四、计算下列各题(每小题9分,共45分)。
1.已知A+B=AB ,且
121342122A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求矩阵B 。
2.设(1,1,1,1),(1,1,1,1)αβ=--=--,而
T A αβ=,求n A 。
3.已知方程组有无穷多解,求a 以及方程组的通解。
4.求一个正交变换将二次型化成标准型
32312123222132184422),,(x x x x x x x x x x x x f ++---=
5. A ,B 为4阶方阵,AB+2B =0,矩阵B 的秩为2且|E+A |=|2E -A |=0。
(1)
求矩阵A 的特征值;(2)A 是否可相似对角化?为什么?;(3)求|A+3E |。
五.证明题(每题5分,共10分)。
1.若A 是对称矩阵,B 是反对称矩阵,AB BA -是否为对称矩阵?证明你的结
论。
2.设A 为m n ⨯矩阵,且的秩()R A 为n ,判断T A A 是否为正定阵?证明你的结论。