单相电机驱动器说明书
- 格式:docx
- 大小:155.99 KB
- 文档页数:6
M542H(低成本 4.5A,80V)256细分步进驱动器使用手册Version1.0版权所有不得翻印【使用前请仔细阅读本手册,以免损坏驱动器】宁波纳川自动化科技有限公司M542H步进电机驱动器使用说明在使用本品前,请仔细阅读本使用说明书请妥善保管本说明书,以备日后参考本册外观图片仅供参考,请以实物为准安全注意事项本产品为直流电源供电,请确认电源正负极正确后上电。
请勿带电插拔连接线缆。
此产品非密封,请勿在内部混入镙丝、金属屑等导电性异物或可燃性异物,储存和使用时请注意防潮防湿。
驱动器为功率设备,尽量保持工作环境的散热通风。
在连上步进电机,调节好电流后使其连续工作半小时后观察步进电机是否在额定温度后方可进行后续使用,如果电机温度过高请联系制造商。
一、产品简介1.1 产品特点⏹平均电流控制,两相正弦电流驱动输出⏹供电电压可达80VDC⏹输出电流峰值可达4.5A(均值3.2A)⏹静止时电流自动减半⏹可驱动4,6,8线两相、四相步进电机⏹高速光耦隔离信号输入,脉冲响应频率最高可达300KHZ⏹抗高频干扰能力强⏹输出电流1.5A~4.5A。
⏹输出电流设定方便⏹小巧精美外形尺寸(118*75.5*33mm);⏹细分精度2,4,8,16, 32, 64, 128, 256, 5, 10, 25, 50, 100, 125, 250 细分;⏹有过压、欠压、过流、相间短路保护功能1.2 应用领域适合各种中小型自动化设备和仪器,例如:雕刻机、打标机、切割机、激光照排、绘图仪、数控机床、拿放装置等。
在用户期望低成本、小噪声、高速度的设备中效果特佳。
二、电气、机械和环境指标2.1 电气指标说明 M542H最小值 典型值 最大值 单位 输出电流 1.5 - 4.5(均值3A) A 输入电源电压 18 50~80 120(含纹波)VDC 逻辑输入电流 7 10 16 mA 步进脉冲频率 0 - 300 KHZ 绝缘电阻500M Ω2.2 使用环境及参数冷却方式自然冷却使用环境场合 尽量避免粉尘、油雾及腐蚀性气体环境温度0℃-+50℃ 最高工作温度70℃湿度 40-90% RH9 (不能结露和有水珠)震动 5.9m/S2 Max 保存温度 -20℃-125℃ 重量约280克2.3 机械安装图 单位:毫米※:推荐采用侧面安装,散热效果更佳三、驱动器接口及接线介绍:3.1:弱电接线信号接口描述3.2:强电接口描述3.3输入接口描述M542H 内置高速光电耦合器,允许接收长线控制器,集电极开路和PNP 输出电路的信号。
云南一机驱动器说明书第一章:产品介绍1.1 产品概述云南一机驱动器是一种用于控制电机运行的设备,广泛应用于各个领域的机械设备中。
本驱动器采用先进的技术,具有高效、稳定、可靠的特点。
1.2 产品特点1)高效能:采用先进的控制算法和优化设计,提高能源利用率,降低能源消耗。
2)稳定性强:具备良好的电磁兼容性和抗干扰能力,确保电机运行平稳。
3)可靠性高:采用高品质的元器件和严格的生产工艺,提高产品的可靠性和使用寿命。
4)操作简便:采用人性化设计,配备直观的操作界面,方便用户进行操作和监控。
5)安全可靠:具备多种保护功能,如过载保护、短路保护等,保障设备和人员安全。
第二章:安装与调试2.1 安装准备在安装之前,用户需要检查驱动器的外观是否完好,确认所需的安装配件是否齐全。
同时,还需根据实际需要选择合适的安装位置,并确保该位置通风良好、无阻碍,并且远离易燃、易爆等危险物品。
2.2 连接电源将驱动器的电源线与电源接触器的电源输出端相连,并确保连接牢固可靠。
然后,将电源线的另一端插入电源插座中,但在开机之前,必须确保电源开关处于关闭状态。
2.3 连接电机将驱动器的输出端与电机的输入端连接,注意正确连接相位和接线方式。
接线完成后,应检查连接是否牢固,并确保绝缘性能良好,以防电气故障。
2.4 调试设置在连接完成后,用户需要按照说明书中的操作步骤进行相应的调试设置。
根据实际需求,设置驱动器的运行参数、控制模式、速度曲线等,确保驱动器能够满足设备的要求。
第三章:使用与维护3.1 启动与停止在正式使用驱动器之前,用户需要确保所有的连接都正确无误,并按照说明书中的启动步骤进行操作。
启动后,用户可以通过操作界面进行参数调整和监控。
在停止使用驱动器时,用户应先将电机停止运行,然后再关闭驱动器的电源开关。
同时,还需定期进行设备的维护与检查,确保设备的正常运行。
3.2 故障排除在使用过程中,如果发生故障,用户可以根据说明书中的故障排除指南进行相应的处理。
原版操作手册的译本© 2020 Festo SE & Co. KG 保留一切权利1适用文件有关产品的所有文件 è/sp 产品的用户文件使用手册EMCA-EC-DIO-…设备及功能说明书;装配、安装、调试和诊断使用手册EMCA-EC-C-HP-…设备配置文件 FHPP (Festo Handling and Positioning Profile)的说明FCT 插件帮助EMCAFesto Configuration Tool (FCT) 的在线帮助,用于调试和参数设置专项文件EMCA-EC_UL-…根据 Underwriters Laboratories Inc. (UL) 认证在美国和加拿大使用本产品的要求Tab. 12安全–务必注意遵守产品相关文件和其它所用部件文件中的安全和警告注意事项。
–进行装配和安装工作之前,关闭供电电压并采取保护措施,防止其意外重新启动。
在彻底完成装配和安装工作之后,才能重新接通电源。
–禁止在带电情况下插拔插头。
–遵守有关静电敏感部件的操作规程。
–只有当正确安装驱动器并完成全部参数配置之后,才能启用控制器。
–不允许对本设备进行维修。
若损坏,则更换设备。
–除了外壳盖上的 4 颗螺钉,不得松开其他螺钉。
触碰炙热表面有烫伤危险。
接触壳体可能导致烫伤。
由此可能造成人员惊慌,并作出失控反应。
这还可能造成其他损失。
•避免意外触碰壳体。
•告知操作人员和维护人员可能存在的危险。
•进行维修工作之前:使驱动器冷却到 40 °C 以下。
快速旋转的电机轴具有较高的扭矩。
接触电机轴,可能会造成烫伤和擦伤。
•确保不会接触到旋转的电机轴和其上安装的部件。
产生气体,存在火灾危险。
清洁剂与驱动器的高温表面发生接触,可能会产生气体并着火。
•进行清洁工作之前,使驱动器冷却到室温。
2.1按规定使用按照规定,本产品用于驱动和控制机电驱动器。
本产品设计用于安装在机器中。
仅允许在以下情况下使用:–在技术性能完好的状态下–在未作擅自修改的初始状态下;仅允许使用产品随附文件中的扩展–在本产品技术参数规定的极限值内–在工业领域内除工业环境外,例如在商业和住宅混合区等,必须采取措施防止无线电干扰。
YMPC一川电机V 6.0AASD伺服电机驱动器技术手册台州一川电机有限公司安全注意事项为确保安全使用本产品,必须遵守下列安全标志,以免伤害人员,损坏设备。
!警告表示错误操作可引发危险,导致轻度或中度人身伤害,损坏设备,甚至引发火灾。
!危险表示错误操作引发危险,导致伤害或死亡。
表示禁止操作。
!!表示必须操作。
产品到达后,进行确认、安装、配线、运行维护、检查时,以下是必须遵守的重要事项:●安装时注意事项:!警告严禁安装在潮湿及会发生腐蚀的环境、有易燃性气体的环境下、可燃物的附近及灰尘、金属粉末较多的环境,否则有可能会发生触电和火灾。
●配线时的注意事项:!警告◢伺服驱动器的接地端子必须接地,否则,可能会发生触电和火灾。
◢严禁把伺服驱动器的输出端子U,V,W ,连接至三相电源,否则,可能受伤和引发火灾。
◢严禁把220V驱动器连接至380V电源,否则可以触电和引发火灾。
◢务必将电源端子、电机输出端子拧紧,否则有可能会引发火灾。
●运行时的注意事项:!危险◢在运行中,严禁触摸任何旋转部件,否则可能会受伤。
◢在运行中,严禁触摸电机和驱动器,否则可能会烫伤。
!警告◢在运行前,必须选择好正确的电机型号,否则可能人员受到伤害,损伤设备。
◢在运行前,必须设置好与应用场合相适应的用户参数,否则可能受到伤害,损伤设备。
◢在运行前,确认机械是否可随时紧急停止,否则,可能会受伤。
●保养检查时的注意事项:◢严禁触摸伺服驱动器的内部,否则有可能触电。
◢关闭电源后,在5分钟内,严禁触摸端子,否则,残留的电压可能会导致触电。
◢严禁拆装伺服电机,否则有可能触电。
目录第1章产品检查及安装..................................................................................... - 1 -1.1产品检查............................................................................................................ - 1 -1.2产品铭牌............................................................................................................ - 1 -1.3产品前面板........................................................................................................ - 2 -1.4驱动器技术规格 ................................................................................................ - 3 -1.5伺服电机安装 .................................................................................................... - 4 -1.6 电机旋转方向 ................................................................................................... - 5 -1.7 伺服单元与电机型号适配................................................................................. - 5 -第2章接线 ....................................................................................................... - 8 -2.1系统组成与接线 ................................................................................................ - 8 -2.1.1 220V伺服驱动器接线图 ................................................................................................... - 8 -2.1.2 380V伺服驱动器接线图 ................................................................................................... - 9 -2.1.3接线说明 .......................................................................................................................... - 10 -2.1.4电线规格 .......................................................................................................................... - 10 -2.1.5强电端子说明 .................................................................................................................. - 11 -2.2 CN1通信接口 .................................................................................................. - 12 -2.3 CN2控制接口 .................................................................................................. - 13 -2.4 CN3编码器接口............................................................................................... - 18 -2.5标准接线.......................................................................................................... - 19 -2.5.1位置控制接线图(标准版) ................................................................................................ - 19 -2.5.2速度/转矩控制接线图(标准版) ....................................................................................... - 20 -第3章显示与操作 .......................................................................................... - 21 -3.1面板组成.......................................................................................................... - 21 -3.1.1显示屏与按键(标准版) .................................................................................................... - 21 -3.2模式功换.......................................................................................................... - 22 -3.3监控模式(Dn)操作............................................................................................ - 22 -3.4辅助模式(Fn)操作 ............................................................................................ - 23 -3.5用户参数模式(Pn)操作..................................................................................... - 33 -第4章Pn功能参数........................................................................................ - 34 -4.1 参数设置面板操作.......................................................................................... - 34 -4.2参数一览表...................................................................................................... - 34 -4.2.1系统控制参数 .................................................................................................................. - 34 -4.2.2位置控制参数 .................................................................................................................. - 37 -4.2.3速度控制参数 .................................................................................................................. - 39 -4.2.4转矩控制参数 .................................................................................................................. - 40 -4.2.5扩展控制参数 .................................................................................................................. - 41 -4.3 参数详解......................................................................................................... - 43 -4.3.1系统参数 ........................................................................................................................ - 43 -4.3.2位置控制参数 ................................................................................................................ - 63 -4.3.3速度控制参数 ................................................................................................................ - 70 -4.3.4转矩控制参数 ................................................................................................................ - 76 -4.3.5扩展控制参数 ................................................................................................................ - 81 -4.4端口功能详解 ................................................................................................. - 85 -4.4.1SigIn输入端口功能详解............................................................................................... - 85 -4.4.2 SigOut输出端口功能详解........................................................................................... - 88 -第5章监控参数与操作................................................................................... - 90 -5.1 监控面板操作 ................................................................................................. - 90 -5.2 监控参数一览表.............................................................................................. - 90 -第6章报警及处理 .......................................................................................... - 92 -6.1报警清除操作 .................................................................................................. - 92 -6.2警报内容与对策 .............................................................................................. - 92 -6.3其它故障现象及处理措施................................................................................ - 97 -第7章Modbus串口通信 .............................................................................. - 99 -7.1 Modbus通信简介 ............................................................................................ - 99 -7.1.2 编码含义 ......................................................................................................................... - 99 -7.1.3 数据结构 ......................................................................................................................... - 99 -7.2通信协议结构 ................................................................................................ - 100 -7.3 常用命令码 ................................................................................................... - 102 -7.3.1读多个寄存器 ................................................................................................................ - 102 -7.3.2写单个寄存器 ................................................................................................................ - 103 -7.3.3 诊断 ............................................................................................................................... - 105 -7.3.4 写多个寄存器 ............................................................................................................... - 106 -7.3.5 校验码计算 ................................................................................................................... - 109 -7.3.6 异常码 ........................................................................................................................... - 111 -7.4 伺服参数、状态信息通信地址 ..................................................................... - 112 -第8章运行与调整 ........................................................................................ - 113 -8.1 点动运行....................................................................................................... - 113 -8.2 按键调速运行 ............................................................................................... - 113 -8.3 增益调谐....................................................................................................... - 114 -8.3.1 系统惯量识别 ............................................................................................................... - 115 -8.3.2 自动增益调整 ............................................................................................................... - 117 -8.3.3手动增益调整 ................................................................................................................ - 118 -8.3.4抑制抖动方法 ................................................................................................................ - 119 -第9章伺服单元控制结构与实例.................................................................. - 120 -9.1 位置控制实例 ............................................................................................... - 120 -9.1.1位置控制结构图 ............................................................................................................ - 120 -9.1.2位置控制举例 ................................................................................................................ - 120 -9.2 速度控制实例 ............................................................................................... - 121 -9.2.1速度控制结构图 ............................................................................................................ - 121 -9.2.2速度控制举例 ................................................................................................................ - 121 -9.3转矩控制实例 ................................................................................................ - 121 -9.3.1转矩控制结构图 ............................................................................................................ - 121 -9.3.2转矩控制举例 ................................................................................................................ - 122 -9.4电子齿轮比计算 ............................................................................................ - 122 -9.5电子齿轮比举例 ............................................................................................ - 124 -9.5.1滚珠丝杆 ........................................................................................................................ - 124 -9.5.2圆台 ................................................................................................................................ - 124 -9.5.3皮带+皮带轮 .................................................................................................................. - 125 -第10章绝对式伺服单元的使用 ................................................................... - 126 -10.1绝对数据信息输出方式................................................................................ - 126 -10.2绝对数据信息收发时序................................................................................ - 127 -10.3ABZ脉冲信号分频输出 ................................................................................. - 130 -10.4绝对式编码器的初始化................................................................................ - 131 -10.5绝对式编码器电池的安装 ............................................................................ - 131 -附录 .............................................................................................................. - 132 -附录A 增益切换................................................................................................. - 132 -附录B 控制模式切换.......................................................................................... - 132 -B.1位置/速度控制模式切换.................................................................................................. - 132 -B.2位置/转矩控制模式切换 .................................................................................................. - 133 -B.3速度/转矩控制模式切换 .................................................................................................. - 135 -附录C伺服驱动器工作时序................................................................................ - 135 -C.1电机静止时的ON/OFF动作时序 .................................................................................... - 135 -C.2电机运转时的ON/OFF动作时序 .................................................................................... - 136 -C.3伺服ON时报警的时序 .................................................................................................... - 136 -附录D电磁制动器 .............................................................................................. - 137 -附录E 再生制动电阻.......................................................................................... - 137 -附录F原点回归 .................................................................................................. - 138 -F1.1原点回归运行步骤 ........................................................................................................ - 138 -F1.2原点回归触发时序 ........................................................................................................ - 138 -F1.3原点回归组合模式时序.................................................................................................. - 140 -附录G 内部位置控制 ......................................................................................... - 145 -附录H 定长位移中断 ......................................................................................... - 147 -第1章产品检查及安装- 1 - 1第1章产品检查及安装1.1产品检查本产品在出厂前均做过完整功能测试,为防止产品运送过程中因疏忽导致产品不正常,拆封后请详细检查下列事项:●检查伺服驱动器与伺服电机型号是否与订购的机型相同。
Multiple m otors - s ingle d riveIntroductionThis document is to help with the installation and setup of a system with multiple motors that are run on a single drive at the same time. In this type of application, the drive can no longer protect individual motors so there are different system considerations as compared to a single drive/ single motor application. System considerations•Because the drive can’t protect individual motors each motor has to have it own thermal protection device. This device cannot be self-resetting and should be something you can turn off to be able to disconnect the motor if needed. This is normally a manual motor protector. It is not recommended to use fuses on the motor unless the fuses are monitored and will remove all 3 phases if it blows one phase.•When calculating the distance of the output run you have to add all of the cabling together. As an example, let’s say we have a single run between the drive and the distribution box of 100’. From there we go to 5 different motors and each of those runs is 25’. The equivalent output run would be 25+25+25+25+25+100=225’. We would need to protect the output for a 225’ output run. In the minimum any multiple motor system should have an output reactor on it. On the above example we would want to put a DV/DT filter on this to be safe.o0-150’ recommended output reactoro150-700’ recommended DV/DT filtero Above 700’ recommended sine filter (need to spec a sine filter capable of DC braking)•As with any drive installation the output cable should be run with a high quality VFD cable. This is to improve performance and reduce risk of adverse results.•For best results all motors should be the same make and model. These motors need to share the load as well as possible and any differences in the motors could cause an unbalanced load share. Drive setupThe following parameters are what you set for this type of setup:•Motor nameplate current: add all of the motor FLAs together and put this in the drive as nameplate current.•Motor nameplate voltage: this is the voltage off of the rating plate of the motor. If you want to output more or less voltage to the motor, it is better to use voltage at field weakening point and not by changing the motor nameplate voltage. The drive uses the motor nameplate information forcalculating a lot of things in the drive so if you skew this data you will make the drive calculatethings like power, torque and temperature incorrectly. As an example, if you have a 230V motor buta 208V input to the drive do not put the motor nameplate at 208, it should be 230. If you want thevoltage to increase up until the field weakening point we would change the voltage at fieldweakening point. In this case we would divide 208 by 230 which would give you 90%. You would put this in the drive for voltage at field weakening point.Multiple m otors - si ngle d riveApplication Note AP 040212ENEffective A pril 20202 EATON •Motor nameplate frequency: this should be taken directly off of the motor.•Motor nameplate speed: this should be taken directly off of the motor.•Power factor: this is taken directly off of the motor. If you can’t find it on the motor rating plate leave it as the default setting. This could potentially change power and torque calculations but hopefully it is close.•Current limit: should be set somewhere between 110-125%. I would start on the low end of this and increase it if we need more starting torque.•Minimum frequency: this is application specific. This will set the minimum reference you can set to the drive.•Maximum frequency: this is application specific. This is the maximum reference you can set to the drive.•Acceleration time: this is application specific. Preferably you set this to a value that will allow the drive to accelerate the application without going into a current limit.•Deceleration time: this is application specific. Preferably this is set to a value that will allow the drive to slow the application down without going into an overvoltage controller.•Start mode: start mode should be set to ramp to start. On multiple motors you can’t really use flying start because you can’t find magnetizing current on multiple motors at the same time. If there is the possibility of flying motors, we will need to use DC braking at start.•Stop mode: this will be application specific. Most of these applications will be fan banks which generally you will coast to stop. There are other applications where ramp to stop may be more preferable.•DC brake current: this is the current that you would use during DC braking. If we have the potential of flying motors when we start, we want to bring them to a stop before starting. I would start with about 30% of the combined FLA of all motors for this value. You do not want to go too high with this value in case motors are removed from the circuit you don’t want to put too much current to theremaining motors. If you go too low you may not be able to slow down the motors. The rough range would be between 30% to 75% of the combined FLA. If you go too high with this value you do not want to remove too many motors from the circuit without lowering this value.•Start DC brake time: this is going to depend on the application. We will use this in combination with the DC brake current to bring the motors to a stop before we start them. A good starting point would be about 60 seconds.•Voltage at field weakening point: this is the setting that you will use if you want the drive to output higher than motor nameplate voltage. If the input voltage is higher than the motor nameplate voltage you may want to use this voltage. You do this by increasing this number above 100%. As anexample, let’s say your input voltage is typically 490VAC. Your motor nameplate is 460V. With default settings the drive will output 460VAC at 60Hz. If we want to output the 490VAC at 60Hz instead of 460V we would take our input voltage and divide it by our motor nameplate voltage and put this in for this value. 490/460=106%Setup of b raking at s tartIf you have an application where it is possible for the motors to be moving when the drive starts you will need to use DC braking at start. You can’t use flying start because the motors are not synced with each other so the drive will not be able to find what speed the motors are at because they are all at different speeds. The way to set this up is to do the following:•The best way to watch the system is normally using the trendplotter on the HMAX or SVX series of drives or the powerexpert tool for DG1 series. This way you can look at multiple readings at once on your laptop. You can do this through the keypad but on the SVX and HMAX series you can record the readings which makes it easier to look at all the data.•Set DC braking current to about 30% of FLA.*•Set DC braking time at start to 60 sec.*•If you are using ramp to stop change to coast to stop.•Start the application with all of the motors attached. Ramp up to full speed if possible.Multiple m otors - s ingle d rive Application Note AP 040212ENEffective A pril 2020EATON 3•Stop the application and then immediately restart it. Time how long it takes the motors to come to a stop.•If the motors did not come to a complete stop before the drive tried to start the motors, you should either increase the braking current or increase the braking time. The caution with this is if you have to go high in braking current you have to be cautious about removing motors. Motors will take more than 100% current for a short period of time but as an example if you have 6 motors in the bank and you have braking set to 75% of the combined FLA you probably would not want to remove more than 3 of the motors from the circuit without changing this current. If you removed 3of the motors from the circuit when you would start you would be putting 150% of FLA to the motors for the length of time you have the braking set for. This won’t hurt for motor for theamount of time we should be using for braking but if you remove 1 more motor that percentage now goes to 225% of FLA. This is getting into an area that you shouldn’t be running and if you go down to 1 motor you will now be at 450% of FLA. This will heat the motor and start to degrade the motor insulation along with the cabling insulation going to the individual motor.•If the motors stopped well before the drive restarts the motors, you will probably want to decrease the braking time. I would recommend setting this about 5 to 10 seconds longer than it takes to stop the motors. This way if system characteristics change we have some leeway in the system.•Retry this after adjusting these settings to make sure everything looks okay while starting and stopping the application.•If you need ramp to stop change back to ramp to stop.*If you are doing this on an HMAX drive you do not have DC braking at start. You will need to use pre-magnetizing current and pre-magnetizing time to get the same results.Motor p rotection d evice Each motor on the system has to be protected individually because the drive cannot tell the difference between motors and know where all of the current is going on the output.This protection has to be something that will not auto-reset. We do not want the motor to bereconnected to a drive that is running. This will cause a lot of current to be drawn off of the drive and will trip the drive. Normally manual motor protectors (MMP) are used for this because you can also manually remove the motor from the circuit if you need to. Fuses should not be used to protect the motors unless there is something that will recognize a blown fuse and remove the other 2 phases to the motor.When you set the protection devices you do not set them for the service factor of the motor. The service factor of the motor is for a clean sinusoidal output. The drive does not put out a cleansinusoidal output so there are harmonics involved. This makes the service factor of the motor 1.0 due to the extra heating. This is what you would set your protection devices for. You may want to give it a little extra to stop any false tripping, but you do not want to use the service factor rating of the motor.Multiple m otors - s ingle d rive Application Note AP040212ENEffective A pril 2020Additional h elpIn the US or Canada: please contact the Technical Resource Center at 1-877-ETN-CAREor 1-877-326-2273 option 2, option 6.All other supporting documentation is located on the Eaton web site at /DrivesEaton1000 Eaton BoulevardCleveland, OH 44122 USA© 2020 EatonAll Rights ReservedPrinted in USAPublication No. AP040212ENApril 2020Eaton is a registered trademark.All other trademarks areproperty of their respectiveowners.。
1SPECIFICATIONSAC Input Voltage: ±10% of rated line voltage Acceleration: 0.5 seconds Amps–DC Output130xx12 and 132xx25: 500 mA to 1.2 ADC 130LC100 and 132LC200: 500 mA to 5.5 ADC* 130HC100 and 132HC200: 500 mA to 10 ADC Controller Overload Capacity: 200% for one minute Current Limit Trimpot RangeModels 130xx100 and 132xx200: 1 to 18 ADC Deceleration: 0.5 seconds Dimensions:L C Models: 126.16 W x 107.95 L x 68.27 mm D (4.96 x 4.25 x 2.68") H C Models: 158.75 W x 177.8 L x 103.2 mm D (6.25 x 7.0 x 4.06")Weight:LC Models: 489.87 g (1.08 lb) HC Models: 1496.80 g (3.30 lb)ReveRsing DC MotoR speeD ContRoll P rovides DC Motor Speed Control withReversing Capability l S peed Regulation is ±1% of Base Speed l A djustable Minimum/Maximum Speed l A djustable Current Limit l S peed Adjustment Using 5 k Ω Speedpot or 0 to 10 Vdc Analog Input Signal l O nboard Dynamic Braking Resistor l 5K Speed Pot with 8" Leads, Dial and Knob Included l 50:1 Speed Range130 SeriesThe 130 Series reversing speed control is designed to provide instant reversing, quick precise stopping or rapid cycling for a wide range of DC motor applications. The 130 Series reversing control outperforms other dynamic braking and reversing controls by utilizing unique zero-speed detect and dynamic braking circuits. These circuits eliminate the contact arcing and failed braking problems associated with other reversing and dynamic braking controls. The zero speed detect circuit also eliminates motor plug reversing problems. In the event of a power loss or emergency stop condition, the 130 Series control will drop into a dynamic brake condition to safely and quickly bring the motor to a stop and remain there until power is reapplied and a run condition is recognized.Applicationsl D oor Openers l F eeders l T apping MachinesDrive Service Factor: 1.0Efficiency: 85% typicalInput Frequency: 50 or 60 Hz Trimpot Speed Range Maximum: 60 to 110% of base speed Minimum: 0 to 30% of maximum speed Power Devices: Isolated case tabShunt Field Voltage: 100 Vdc for 120 Vac input; 200 Vdc for 240 Vac inputShunt Field Current: 1 amp DC maximumSpeed Control: Via 5 k Ω 0.5 W potentiometer or 0 to 10 Vdc isolated signalSpeed Range: 50:1Speed Regulation: ±1% of base speedTemperature Range: -10 to 45°C ambient (15 to 115°F)Terminal Block Torque Setting: 4.4 in. lb. maximum or 0.05 NmTransient Protection: G-Mov Trigger: Opto-isolatorStart/Brake Cycle Per Minute LC Models: 3 per min** HC Models: 30 per min**Operating ConditionsTemperature: -10 to 45°C (14 to 113°F) AC Input Voltage: ±10% rated line voltage Input Frequency: 50/60 Hz* With suitable external heat sink (where 130 extrusion temperature does not exceed 70°C), maximum rating for output amps can be increased to 10 amps D.C.** Cycles per minute are based on typical inertia type loads. Higher cycle per minute rates may be achieved with constant torque or low inertia type loads. Lower cycle rates may be required for very high inertia type loads.l P umpsl S creen Presses l C onveyorsOMDC-130LC100 shown smaller than actual size.2Comes complete with manual, speedpot kit, dial and knob.* Up to 10A continuous current output at 1 HP 90 Vdc with heat sink. ** Up to 10A continuous current output at 2 HP 180 Vdc with heat sink.Ordering Example: OMDC-130LC100,reversing DC drive speed control.。
Manual of 2-phase hybrid stepper motor driver DM542
Introduction:
DM542 is a type of two-phase hybrid stepping motor driver, The drive voltage of which is from 18VDC to 50VDC. It is designed for use with 2-phase hybrid stepper motor of all kinds with 42mm to 86mm outside diameter and less than 4.0A phase current. This circuit that it adopts is similar to the circuit of servo control which enables the motor run smoothly almost without noise and vibration. Hording torque when DM542 run under high speed is also significantly higher than the other two-phase driver, what’s m ore, the positioning accuracy is also higher. It is widely used in middle and big size numerical control devices such as curving machine, CNC machine, Computer embroider machine, packing machines and so on. Features:
●High performance, low price
●Average current control, 2-phase sinusoidal output current drive
●Supply voltage from 18VDC to 50VDC
●Opto-isolated signal I/O
●Overvoltage, under voltage, overcorrect, phase short circuit protection
●15 channels subdivision and automatic idle-current reduction
●8 channels output phase current setting
●Offline command input terminal
●Motor torque is related with speed, but not related with step/revolution
●High start speed
●High hording torque under high speed
Electrical specification:
1.
1) Connector Pins Configurations
2) Pins wiring diagram:
PC’s control signals can be active in high and low electrical level. When the high electrical level is active, all control negative signals will be connected together to GND. When low electrical level is active, all control positive signals will be connected together to public port. Now give two examples( Open collector &PNP), please check them:
Fig 1. Input port circuit (Yang connection)
PC open connector output
Fig. 2 Input port circuit ( Yin connection)
PC PNP output
Note: When VCC=5V, R=0
When VCC=12V, R=1K, >1/8W
When VCC=24V, R=2K,>1/8W
R must connect in the control signal part .
3.Function choice ( Using DIP pins to achieve this function)
1) Micro step resolution is set by SW 5,6,7,8 of the DIP switch as shown in the following table: :
2) Standstill current setting
SW4 is used for this purpose. OFF meaning that the standstill current is set to be half of the selected dynamic current and ON meaning that standstill is set to be the same as the selected dynamic current.
3) Output current setting:
The first three bits (SW 1, 2, 3)of the DIP switch are used to set the dynamic current. Select a setting
Closest to your motor’s required current
4) Semi-flow function:
Semi-flow function is that there is not step pulse after 500 ms, the driver output current automatically reduced to 70% of rated output current, which is used to prevent motor heat. 4. Power connections
(1)+V、GND:Power Supply.
+V: Power supply, 16~50 VDC, Including voltage fluctuation and EMF voltage. The max current is 5A.
(2) A+ A- B+ B-:Connecting 2 phase stepper motors.
The driver & 2-phase hybrid stepping motor use four-wire connection, the motor can be connected in parallel & series bipolar. As for bipolar connection, it is higher performance with high-speed, but the current of driv er is larger (it is 1.73 times more than the motor’s winding current).
Connecting in series, the driver’s current is equal to the motor winding one.
5. Fixing
There should be 20mm of space, it can’t be placed next to other heating devices, to avoid dust, oil mist, corrosive gas, humidity and strong vibration places.
(Unit=mm)
Picture 3
6. Troubleshooting
1, the status on light’s indication
RUN: green, normal work light.
ERR: red, failure light, the motor with phase short-circuit, overvoltage and undervoltage protection.
2 Troubles
7. Driver Wiring
A complete stepper motor control system should contain stepper drives, DC power supply and controller (pulse source). The following is a typical system wiring diagram。