膜分离工程第二章膜材料与制备
- 格式:pptx
- 大小:2.81 MB
- 文档页数:7
《膜科学与技术》思考题第一章导论1.什么是膜分离过程,用图加以解释。
答:膜分离过程以选择透过性膜(固体、液体、气体)为分离介质,当膜两侧存在某种推动力时,原料侧的组分选则性地透过膜以达到分离和提纯的目的。
2.膜分离过程的特点是什么?与传统分离过程相比最明显的优势在哪里?答:1. 是一个高效的分离过程。
分离系数高达80。
2. 能耗低。
被分离物质不发生相变化,分离过程通常在常温下进行。
3. 设备简单,占地面积小,操作十分便捷,可靠度高。
4 放大效应小。
设备的规模和处理能力可在很大程度上变化,而效率、设备的单价和运行费用变化不大。
3.膜分离技术主要的分离过程有哪些?这些过程所分离的对象是属于哪种状态的物质?答:反渗透Reverse Osmosis (RO) : 分离离子例如:海水脱盐、纯水制备超滤Ultra filtration (UF) :分离分子例如:果汁的澄清、含油废水处理微滤Micro filtration (MF) :分离粒子例如:城市污水处理气体分离Gas Permeation (GP) :分离气体分子例如:富集氧气、氢气回收4.画出膜组件的示意图,标出各物流名称。
5.膜组件有哪几种形式?中空纤维膜组件(Hollow Fiber Module螺旋卷式膜组件(Spiral Wound Module)管式膜组件(Tubular Module平板式膜组件(Plate and Frame Module)毛细管式膜组件(Capillary Module)6.60年代,Souriajan –Lone 研制的是什么膜?60年代,Lobe 和Souriajan 共同研制了具有高脱盐率和高透水量的非对称醋酸纤维素(CA)膜,使反渗透过程由实验室转向工业应用.与此同时,这种用相转化技术制备的具有超薄分离皮层膜的新工艺引起了学术和工业界的广泛重视,在它的推动下,随后迅速掀起了一个研究各种分离膜和发展各种膜过程的高潮.7.R O、UF、GS分别代表哪些膜过程?RO—表示反渗透过程UF—表示超滤GS—表示气体分离过程第二章膜材料和膜的制备1.选择膜材料要考虑哪些方面的因素?答:具有良好的成膜性、热稳定性、化学稳定性、耐酸碱性、耐微生物性、耐氧化性。
聚合物薄膜材料的制备及其在膜分离中的应用近年来,膜分离技术在化学、环境保护、能源、生物医药等领域得到广泛应用,其中聚合物薄膜材料是一种应用广泛的膜分离材料。
本文将介绍聚合物薄膜材料的制备方法和在膜分离中的应用。
一、聚合物薄膜材料的制备方法1. 界面聚合法界面聚合法是一种将单体在界面上高效聚合形成聚合物薄膜的方法。
界面聚合法的优点是:制备方便、对应的单体种类丰富、制备薄膜的化学结构可控、可用于制备多种用途的薄膜材料。
在此方法中,单体被溶于油相中,油相和水相的界面上同时存在十一烷基三甲基氯化铵(CTAC),CTAC是在两相之间形成的表面活性剂,用单体在此界面上通过黏附或简单地在油相中进行自由单体聚合,最终形成非常薄的聚合物薄膜。
此方法易于控制单体的聚合反应速度,并利用表面活性剂的作用使薄膜形成速度加快。
此方法可制备具有多种形态的薄膜,包括平滑、微孔、不规则孔洞的聚合物薄膜。
2. 溶液吸附法溶液吸附法是将聚合物颗粒或分子溶解于有机溶剂中,然后再将这种溶液直接涂覆于其它材料的表面,最终通过蒸发掉溶剂,形成聚合物薄膜。
这种方法是快速、简单、易于控制,所得到的聚合物薄膜具有可伸缩性、可拉伸性和柔韧性。
应用溶液吸附法制备的聚合物薄膜其具有较高的机械强度,能够在周围环境变化的情况下承受较大的压力和挤压力。
3. 放电聚合法放电聚合法是电化学聚合的一种形式,是通过印刷机或其它工具,在薄膜表面上刻画出有规律的光栅结构,然后用电场来促进聚合物形成。
单体在外电场的激发下被激励成为一个高反应性的状态,其聚合反应速率也变得更快。
在这个过程中,放电产生的电子会与单体反应,并成功地将单体聚合成聚合物。
这种方法能够制备晶体薄膜、渗透膜、分子筛等无机聚合物,还可以制备氢燃料电池等膜分离材料。
二、聚合物薄膜材料在膜分离中的应用1. 聚合物薄膜的分离性能在物性和化学性方面都具有优异的性能,非常适合用于固液分离、气液分离和液液分离。
聚合物薄膜的分离性能与用途有关,例如,超滤膜可用于清除水中的各种离子和颗粒,电解水处理膜则用于除去各种有毒化合物和农药残留物。
分离膜材料和膜制备技术的研究进展摘要:膜分离技术是当代新型高效的分离技术, 也是二十一世纪最有发展前途的高新技术之一,目前在膜分离过程中, 对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域; 随着膜过程的开发应用, 人们越来越认识到研究膜材料及其膜技术的重要性。
关键词:分离膜制备发展1.膜分离技术的发展简史膜在自然中,特别是在生物体内是广泛而永恒存在的。
可人类对它的认识、利用、模拟以至人工合成的过程却是及其漫长而曲折的。
人们对膜进行科学的研究则是近几十年来的事。
是在1748 年,诺来特(Nollet ) 就注意到水自发通过猪膀胱而扩散到酒精中。
在1864 年, 特劳贝( Traube) 才成功制成人类历史上第一片人造膜—亚铁氰化酮膜。
但直到1960 年洛布(Loeb) 和索利拉金(Souriraja) 研究出具有商业价值的醋酸纤维素非对称(L - S) 膜,确定了L - S 制膜工业,才开创了膜技术的新纪元。
随后的20 年是“膜技术的黄金时代”。
以石油危机和人类环境意识增强为契机。
伴随相关学科的发展,国内外学者对高分子膜的形成、膜结构、物性、性能、过程及应用等开展研究,取得了很大的进展,为以后膜科学的发展、膜技术的产业化奠定了基础。
[1]与传统的分离操作相比,膜分离具有以下特点:(1)膜分离是一个高效分离过程,可以实现高纯度的分离;(2)大多数膜分离过程不发生相变化,因此能耗较低;(3)膜分离通常在常温下进行,特别适合处理热敏性物料;(4)膜分离设备本身没有运动的部件,可靠性高,操作、维护都十分方便。
2.分离膜分类按膜的材料分类,可分为有机膜、无机膜、液膜;按膜的结构分类,可分为对称膜和不对称膜;按作用机理分类,可分为多孔膜和致密膜;按应用范围分类,可分为微滤膜(MF 膜)、超过滤膜(UF 膜)、反渗透膜(RO 膜)、气体分离膜(GS膜)、离子交换膜等。
[2]2.1 无机膜材料无机膜材料通常具有非常好的化学和热稳定性,但无机材料用于制膜还很有限, 目前无机膜的应用大都局限于微滤和超滤领域[3]。
《膜分离技术》教案第一章:膜分离技术概述1、膜科学与基础科学的关系膜科学与基础科学的关系如下图所示。
2、膜的定义及特性所谓的膜,是指在一种流体相内或是在两种流体相之间有一层薄的凝聚相,它把流体相分隔为互不相通的两部分,并能使这两部分之间产生传质作用。
膜的特性:不管膜多薄, 它必须有两个界面。
这两个界面分别与两侧的流体相接触。
膜传质有选择性,它可以使流体相中的一种或几种物质透过,而不允许其它物质透过。
3、膜的分离过程原理膜分离过程原理:以选择性透膜为分离介质,通过在膜两边施加一个推动力(如浓度差、压力差或电位差等)时,使原料侧组分选择性地透过膜,以达到分离提纯的目的。
通常膜原料侧称为膜上游,透过侧称为膜下游。
4、分离膜的种类5、膜分离技术发展简史高分子膜的分离功能很早就已发现。
1748年,耐克特(A. Nelkt )发现水能自动地扩散到装有酒精的猪膀胱内,开创了膜渗透的研究。
1861年,施密特(A. Schmidt )首先提出了超过滤的概念。
他提出,用比滤纸孔径更小的棉胶膜或赛璐酚膜过滤时,若在溶液侧施加压力,使膜的两侧产生压力差,即可分离溶液中的细菌、蛋白质、胶体等微小粒子,其精度比滤纸高得多。
这种过滤可称为超过滤。
按现代观点看,这种过滤应称为微孔过滤。
然而,真正意义上的分离膜出现在20世纪60年代。
1961年,米切利斯(A. S. Michealis )等人用各种比例的酸性和碱性的高分子电介质混合物以水—丙酮—溴化钠为溶剂,制成了可截留不同分子量的膜,这种膜是真正的超过滤膜。
美国Amicon 公司首先将这种膜商品化。
50年代初,为从海水或苦咸水中获取淡水,开始了反渗透膜的研究。
1967年,DuPont 公司研制成功了以尼龙—66为主要组分的中空纤维反渗透膜组件。
同一时期,丹麦DDS 公司研制成功平板式反渗透膜组件。
反渗透膜开分离膜高分子膜液体膜生物膜带电膜非带电膜阳离子膜阴离子膜过滤膜精密过滤膜 超滤膜 反渗透膜纳米滤膜始工业化。
新型膜分离材料的制备和应用研究Introduction:膜技术是一种通过选择适当的、高性能的材料,制成一种过滤和分离介质——膜的工艺技术。
近年来,膜技术因其高效、节能、环保等特点,被广泛应用于水处理、生物工程、食品工业、药物制造等领域。
然而,传统膜材料存在着不足之处,如机械耐用性差、易被水化等问题,这些不足导致了膜使用寿命短、运行成本高的情况。
为此,近年来,新型膜分离材料的制备和应用研究备受关注,下面将从几个方面分析这种材料的制备与应用。
Body:1. 新型膜分离材料的材料选择膜分离材料要求操作稳定、不易泄漏、屏蔽性好等特点,因此常用的材料有聚酰胺、聚碳酸酯、聚醚酰胺、聚四氟乙烯等。
此外,随着人们对生态环保的要求越来越高,可降解、可生物降解的材料也开始逐渐被应用于制备膜分离材料中。
2. 制备方法的创新在制备新型膜分离材料过程中,制备方法也非常关键。
传统的制备方法中,常采用的是湿法、干法的方法,但这两种方法存在产物纯度较低、过程复杂等问题。
而近年来,在制备方法创新方面,仿生学、纳米技术、奇异凝聚物等技术不断地被运用于制备新型膜分离材料中,这些新技术的应用大大提高了膜的性能和过程的效率。
3. 新型膜分离材料在水处理中的应用膜技术一直是水处理领域的利器,但是传统膜分离材料存在使用寿命短、易被侵蚀等问题。
新型膜分离材料的出现将大大提高膜的使用寿命和过滤效率,在水处理中将更加广泛地应用于中水回用、终端净水、海水淡化等领域。
4. 新型膜分离材料在生物医药领域的应用新型膜分离材料具有高效、可控、低剂量等特点,成为生物医药领域的研究重点。
其中,生物医药领域中的基因治疗、疫苗提纯等领域将更加需要高效的膜分离技术。
Conclusion:新型膜分离材料的研究和应用,将会为我们提供更好的环保产品、药物和饮用水等,大大地促进我们社会的可持续发展。
在未来的发展过程中,膜分离技术有望实现更高效、高性能等目标,成为环境、生物及医疗领域中不可或缺的技术。