立体几何中的动点轨迹问题讲解
- 格式:docx
- 大小:563.70 KB
- 文档页数:9
立体几何中的动点轨迹问题是一个常见的问题类型,它涉及到空间几何中的点、线、面等元素的运动和变化。
解决这类问题的关键在于理解运动和变化的过程,并能够通过数学模型进行描述。
解题策略主要包括以下几个方面:
1. **建立空间坐标系**:为了更好地描述空间几何元素的位置和运动,需要建立一个适当的空间坐标系。
坐标系的建立应依据问题的具体情境和需求,通常选择一个固定点作为原点,并确定三个互相垂直的轴。
2. **确定动点的坐标**:在确定了坐标系之后,需要确定动点的坐标。
这可以通过设定动点的坐标变量来实现,例如设动点的坐标为$(x, y, z)$。
3. **分析运动过程**:在确定了动点的坐标后,需要分析动点的运动过程。
这包括了解动点的运动方向、速度、加速度等参数,以及这些参数与坐标变量的关系。
4. **建立数学模型**:通过分析运动过程,可以建立描述动点运动的数学模型。
这通常涉及到物理、几何、代数等多个方面的知识,需要根据具体问题进行选择和应用。
5. **求解数学模型**:建立了数学模型后,需要求解该模型以得到动点的轨迹方程。
这可能涉及到微积分、线性代数、解析几何等多个数学领域的知识,需要根据问题的复杂程度和要求进行选择和应用。
6. **验证答案**:最后,需要对得到的答案进行验证,以确保其正确性和有效性。
这可以通过将答案代入原问题中进行检验,或者通过与其他已知的答案进行比较来进行验证。
综上所述,解决立体几何中的动点轨迹问题需要综合运用空间几何、物理、数学等多个领域的知识,并能够根据具体问题进行选择和应用。
同时,还需要有一定的逻辑思维和分析能力,以更好地理解和解决这类问题。
立体几何中动点轨迹问题
利用三维几何的动点轨迹问题在各行各业有着重要的应用价值。
它在工程、科学技术、数学计算等许多领域有着重要的意义。
三维几何中的动点轨迹是指,当受力作用的粒子穿过物体时,根据物体的几何结构及力场的排列,形成其穿过物体的轨迹。
因此,可以根据这条轨迹来衡量力和物体之间的作用情况,从而可以对物体的几何结构进行各种复杂的计算。
更为重要的是,动点轨迹的计算并不仅仅体现在二维的计算上,而是可以达到真实的三维空间中,进行相对复杂的计算。
可以针对不同的物体及力场结构,研究其动点轨迹的特征,用于研究各种解释力学和其他相关问题。
此外,动点轨迹的计算可以在力学计算、结构分析、宽度计算、流体力学等计算领域大有裨益,可以帮助解决各类技术问题,提高决策效率。
总之,通过三维几何中的动点轨迹问题,可以研究几何结构、探究力学解释、分析流体力学等规律,为各行各业带来重要的实践价值。
立体几何中的轨迹问题在立体几何中,某些点、线、面依一定的规则运动,构成各式各样的轨迹,探求空间轨迹与求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.立体几何中的最值问题一般是指有关距离的最值、角的最值或面积的最值的问题.其一般方法有: 1、 几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;2、 代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等,求出最值.轨迹问题【例1】 如图,在正四棱锥S -ABCD 中,E 是BC 的中点,P 点在侧面△SCD 内及其边界上运动,并且总是保持PE ⊥AC .则动点P 的轨迹与△SCD 组成的相关图形最有可能的是 ( )解析:如图,分别取CD 、SC 的中点F 、G ,连结EF 、EG 、FG 、BD .设AC 与BD 的交点为O ,连结SO ,则动点P 的轨迹是△SCD 的中位线FG .由正四棱锥可得SB ⊥AC ,EF ⊥AC .又∵EG ∥SB∴EG ⊥AC∴AC ⊥平面EFG ,∵P ∈FG ,E ∈平面EFG , ∴AC ⊥PE .另解:本题可用排除法快速求解.B 中P 在D 点这个特殊位置,显然不满足PE ⊥AC ;C 中P 点所在的轨迹与CD 平行,它与CF 成π4角,显然不满足PE ⊥AC ;D 于中P 点所在的轨迹与CD 平行,它与CF 所成的角为锐角,显然也不满足PE ⊥AC .评析:动点轨迹问题是较为新颖的一种创新命题形式,它重点体现了在解析几何与立体几何的知识交汇处设计图形.不但考查了立体几何点线面之间的位置关系,而且又能巧妙地考查求轨迹的基本方法,是表现最为活跃的一种创新题型.这类立体几何中的相关轨迹问题,如“线线垂直”问题,很在程度上是找与定直线垂直的平面,而平面间的交线往往就是动点轨迹.【例2】 (1)如图,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BDD 1.(2) 正方体ABCD —A 1B 1C 1D 1中,P 在侧面BCC 1B 1及其边界上运动,且总保持AP ⊥BD 1,则动点P 的轨迹是 线段B 1C .(3) 正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是棱A 1B 1,BC 上的动点,且A 1E =BF ,P 为EF 的中点,则点P 的轨迹是 线段MN (M 、N 分别为前右两面的中心).(4) 已知正方体ABCD —A 1B 1C 1D 1的棱长为1,在正方体的侧面BCC 1B 1上到点A 距离为233的点的集合形成一条曲线,那么这条曲线的形状是 ,它的长度是 .若将“在正方体的侧面BCC 1B 1上到点A 距离为23 3 的点的集合”改为“在正方体表面上与点A 距离为233的点的集合” 那么这条曲线的形状又是 ,它的长度又是 .1AC C 1AEC C 1A AB1A 1(1)(2)(3)(4)DDA .B .C .D . A【例3】 (1)(04北京)在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是 ( D )A . A 直线B .圆C .双曲线D .抛物线 变式:若将“P 到直线BC 与直线C 1D 1的距离相等”改为“P 到直线BC 与直线C 1D 1的距离之比为1:2(或2:1)”, 则动点P 的轨迹所在的曲线是 椭圆 (双曲线). (2)(06北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交α于点C ,则动点C 的轨迹是 (A )A .一条直线B .一个圆C .一个椭圆D .双曲线的一支解:设l 与l 是其中的两条任意的直线,则这两条直线确定一个平面,且斜线AB 垂直这个平面,由过平面外一点有且只有一个平面与已知直线垂直可知过定点A 与AB 垂直所有直线都在这个平面内,故动点C 都在这个平面与平面α的交线上,故选A . (3)已知正方体ABCD —A 1B 1C 1D 1的棱长为1,M 在棱AB 上,且AM =13,点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹为 抛物线 .(4)已知正方体ABCD —A 1B 1C 1D 1的棱长为3,长为2的线段MN 点一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为 π6. 【例4】 (04重庆)若三棱锥A -BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与△ABC 组成图形可能是:( D )【例5】 四棱锥P -ABCD ,AD ⊥面P AB ,BC ⊥面P AB ,底面ABCD 为梯形,AD =4,BC =8,AB =6,∠APD =∠CPB ,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分 分析:∵AD ⊥面P AB ,BC ⊥平面P AB ∴AD ∥BC 且AD ⊥P A ,CB ⊥PB ∵∠APD =∠CPB ∴tanAPD =tanCPB∴AD P A =CB PB ∴PB =2P A在平面APB 内,以AB 的中点为原点,AB 所在直线为x 轴建立平面直角坐标系,则A (-3,0)、B (3,0),设P (x ,y )(y ≠0),则(x -3)2+y 2=4[(x +3)2+y 2](y ≠0)即(x +5)2+y 2=16(y ≠0) ∴P 的轨迹是(B )BABCDA3P A BC D立体几何中的轨迹问题(教师版)1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为(D ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分 简析 本题主要考查点到直线距离的概念,线面垂直及抛物线的定义.因为B 1C 1⊥面AB 1,所以PB 1就是P 到直线B 1C 1的距离,故由抛物线的定义知:动点的轨迹为抛物线的一段,从而选D .2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为(B ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为(C ).A .线段B .一段椭圆弧C .双曲线的一部分D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是(A ).A .圆或圆的一部分B .抛物线或其一部分C .双曲线或其一部分D .椭圆或其一部分 简析 由条件易知:AC 是平面BB 1D 1D 的法向量,所以EP 与直线AC 成等角,得到EP 与平面BB 1D 1D 所成的角都相等,故点P 的轨迹有可能是圆或圆的一部分.5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为(A ). A .抛物线B .双曲线C .直线D .圆简析在正方体ABCD A B C D -1111中,过P 作PF ⊥AD ,过F 作FE ⊥A 1D 1,垂足分别为F 、E ,连结PE .则PE 2=a 2+PF 2,又PE 2-PM 2=a 2,所以PM 2=PF 2,从而PM =PF ,故点P 到直线AD 与到点M 的距离相等,故点P 的轨迹是以M 为焦点,AD 为准线的抛物线.6.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为__________. 简析 在解题中,我们要找到运动变化中的不变因素,通常将动点聚焦到某一个平面.易证BD 1⊥面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1交线上,故所求的轨迹为线段B 1C .本题的解题基本思路是:利用升维,化“动”为“静”,即先找出所有点的轨迹,然后缩小到符合条件的点的轨迹.7.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.答案 线段MN (M 、N 分别为SC 、CD 的中点)8.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.(除去两点的圆) 9.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是:(D )A A AP PP PB C B C B C B C A B C D简析 动点P 在侧面ABC 内,若点P 到AB 的距离等于到棱BC 的距离,则点P 在∠ABC 的内角平分线上.现在P 到平面BCD 的距离等于到棱AB 的距离,而P 到棱BC 的距离大于P 到底面BCD 的距离,于是,P 到棱AB 的距离小于P 到棱BC 的距离,故动点P 只能在∠ABC 的内角平分线与AB 之间的区域内.只能选D . 10.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是(B ). A .圆 B .椭圆 C .双曲线 D .抛物线解题的要领就是化空间问题为平面问题,把一些重要元素集中在某一个平面内,利 用相关的知识去解答,象平面几何知识、解析几何知识等.11.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________. 简析以B 为圆心,半径为33且圆心角为π2的圆弧,长度为36π. 12.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 . 提示轨迹的图形是一个平行四边形.13.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,求MN 中点P 的轨迹与正方体的面所围成的几何体的体积.简析 由于M 、N 都是运动的,所以求的轨迹必须化“动”为“静”,结合动点P 的几何性质,连结DP ,因为MN=2,所以PD=1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P 的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即1843163⨯⨯=ππ. 14.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( ) 简析:如图,设点P 在平面β内的射影是O ,则OP 是α、β的公垂线,OP=4.在β内到点P 的距离等于5的点到O 的距离等于3,可知所求点的轨迹是β内在以O 为圆心,3为半径的圆上.又在β内到直线l 的距离等于29的点的集合是两条平行直线m 、n ,它们到点O 的距离都等于32174)29(22<=-,所以直线m 、n 与这个圆均相交,共有四个交点.因此所求点的轨迹是四个点,故选C .16.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( )A .圆B .不完整的圆C .抛物线D .抛物线的一部分简析:因为⊥AD 面PAB ,⊥BC 面PAB ,所以AD//BC ,且︒=∠=∠90CBP DAP . 又8BC ,4AD ,CPB APD ==∠=∠,可得CPB tan PB CB PA AD APD tan ∠===∠,即得2ADCBPA PB == 在平面PAB 内,以AB 所在直线为x 轴,AB 中点O 为坐标原点,建立平面直角坐标系,则A (-3,0)、B(3,0).设点P (x ,y ),则有2y )3x (y )3x (|PA ||PB |2222=+++-=,整理得09x 10y x 22=+++由于点P 不在直线AB 上,故此轨迹为一个不完整的圆,选B .17.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点简析:因为PC AC ⊥,且PC 在α内的射影为BC ,所以BC AC ⊥,即︒=∠90ACB .所以点C 的轨迹是以AB 为直径的圆且去掉A 、B 两点,故选B .18.如图,在正方体1111D C B A ABCD -中,P 是侧面1BC 内一动点,若P 到直线BC 与直线11D C 的距离相等,则动点P 的轨迹所在的曲线是( )A .直线B .圆C .双曲线D .抛物线简析:因为P 到11D C 的距离即为P 到1C 的距离,所以在面1BC 内,P 到定点1C 的距离与P 到定直线BC 的距离相等.由圆锥曲线的定义知动点P 的轨迹为抛物线,故选D .19.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线简析:如图4,以A 为原点,AB 为x 轴、AD 为y 轴,建立平面直角坐标系.设P (x ,y ),作AD PE ⊥于E 、11D A PF ⊥于F ,连结EF ,易知1x |EF ||PE ||PF |2222+=+=又作CD PN ⊥于N ,则|1y ||PN |-=.依题意|PN ||PF |=, 即|1y |1x 2-=+,化简得0y 2y x 22=+- 故动点P 的轨迹为双曲线,选B .20.如图,AB是平面a的斜线段,A为斜足,若点P在平面a内运动,使得△ABP的面积为定值,则动点P的轨迹是()(A)圆(B)椭圆(C)一条直线(D)两条平行直线分析:由于线段AB是定长线段,而△ABP的面积为定值,所以动点P到线段AB 的距离也是定值.由此可知空间点P在以AB为轴的圆柱侧面上.又P在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB是平面的斜线段),得到的切痕是椭圆.P的轨迹就是圆柱侧面与平面a的交线.21.如图,动点P在正方体1111ABCD A B C D-的对角线1BD上.过点P作垂直于平面11BB D D的直线,与正方体表面相交于M N,.设BP x=,MN y=,则函数()y f x=的图象大致是()分析:将线段MN投影到平面ABCD内,易得y为x一次函数.22.已知异面直线a,b成︒60角,公垂线段MN的长等于2,线段AB两个端点A、B分别在a,b上移动,且线段AB长等于4,求线段AB中点的轨迹方程.图5简析:如图5,易知线段AB的中点P在公垂线段MN的中垂面α上,直线'a、'b为平面α内过MN的中点O分别平行于a、b的直线,'a'AA⊥于'A,'b'BB⊥于'B,则P'B'AAB=⋂,且P也为'B'A的中点.由已知MN=2,AB=4,易知,2AP,1'AA==得32'B'A=.则问题转化为求长等于32的线段'B'A的两个端点'A、'B分别在'a、'b上移动时其中点P的轨迹.现以'OB'A∠的角平分线为x轴,O为原点建立如图6所示的平面直角坐标系.A BCDMNPA1 B1C1D1yxOyxOyxOyxO图6设)y ,x (P ,n |'OB |,m |'OA |==, 则)n 21,n 23('B ),m 21,m 23('A - )n m (41y ),n m (43x -=+=222)32()n m (41)n m (43=++- 消去m 、n ,得线段AB 的中点P 的轨迹为椭圆,其方程为1y 9x 22=+.点评:例5和例6分别将立体几何与解析几何中的双曲线与椭圆巧妙地整合在一起,相互交汇和渗透,有利于培养运用多学科知识解决问题的能力.立体几何中的轨迹问题1.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 与到直线B 1C 1的距离相等,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分2.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为2:1,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分3.在正方体ABCD-A 1B 1C 1D 1的侧面AB 1内有一点P 到直线AB 的距离与到直线B 1C 1的距离之比为1:2,则动点P 所在曲线的形状为 ( ) A .线段 B .一段椭圆弧 C .双曲线的一部分 D .抛物线的一部分4.在正方体ABCD-A 1B 1C 1D 1中,E 为AA 1的中点,点P 在其对角面BB 1D 1D 内运动,若EP 总与直线AC 成等角,则点P 的轨迹有可能是 ( ) A .圆或圆的一部分 B .抛物线或其一部分 C .双曲线或其一部分 D .椭圆或其一部分 5.已知正方体ABCD A B C D -1111的棱长为a ,定点M 在棱AB 上(但不在端点A ,B 上),点P 是平面ABCD 内的动点,且点P 到直线A D 11的距离与点P 到点M 的距离的平方差为a 2,则点P 的轨迹所在曲线为( ) A .抛物线B .双曲线C .直线D .圆6.若三棱锥A —BCD 的侧面ABC 内一动点P 到底面BCD 的距离与到棱AB 的距离相等,则动点P 的轨迹与∆ABC 组成的图形可能是 ( ) A A AP PP PB C B C B C B CA B C DA B C D 7.已知P 是正四面体S-ABC 的面SBC 上一点,P 到面ABC 的距离与到点S 的距离相等,则动点P 的轨迹所在的曲线是 ( )A .圆B .椭圆C .双曲线D .抛物线8.已知平面//α平面β,直线l α⊂,点l P ∈,平面α、β间的距离为4,则在β内到点P 的距离为5且到直线l 的距离为29的点的轨迹是( )A .一个圆B .两条平行直线C .四个点D .两个点9.在四棱锥ABCD P -中,⊥AD 面PAB ,⊥BC 面PAB ,底面ABCD 为梯形,AD=4,BC=8,AB=6,CPB APD ∠=∠,满足上述条件的四棱锥的顶点P 的轨迹是( ) A .圆 B .不完整的圆 C .抛物线 D .抛物线的一部分 10.如图,定点A 和B 都在平面α内,定点P ,PB ,α⊥α∉C 是α内异于A 和B 的动点.且AC PC ⊥,那么动点C 在平面α内的轨迹是( )A .一条线段,但要去掉两个点B .一个圆,但要去掉两个点C .一个椭圆,但要去掉两个点D .半圆,但要去掉两个点11.已知正方体1111D C B A ABCD -的棱长为1,点P 是平面AC 内的动点,若点P 到直线11D A 的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是( )A .抛物线B .双曲线C .椭圆D .直线12.如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A .圆B .椭圆C .一条直线D .两条平行直线 13.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( )14.在正方体ABCD A B C D -1111中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________.15.在正四棱锥S-ABCD 中,E 是BC 的中点,点P 在侧面∆SCD 内及其边界上运动,总有PE ⊥AC ,则动点P 的轨迹为_______________.16.若A 、B 为平面α的两个定点,点P 在α外,PB ⊥α,动点C (不同于A 、B )在α内,且PC ⊥AC ,则动点C 在平面内的轨迹是________.17.已知正方体ABCD A B C D -1111的棱长为1,在正方体的侧面BCC B 11上到点A 距离为233的点的轨迹形成一条曲线,那么这条曲线的形状是_________,它的长度为__________.18.已知长方体ABCD A B C D -1111中,AB BC ==63,,在线段BD 、A C 11上各有一点P 、Q ,PQ 上有一点M ,且PM MQ =2,则M 点轨迹图形的面积是 .19.已知棱长为3的正方体ABCD A B C D -1111中,长为2的线段MN 的一个端点在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 中点P 的轨迹与正方体的面所围成的几何体的体积是 .20.已知异面直线a ,b 成︒60角,公垂线段MN 的长等于2,线段AB 两个端点A 、B 分别在a ,b 上移动,且线段AB 长等于4,求线段AB 中点的轨迹方程.ABC D MNP A 1B 1C 1D 1 yxOyxOyxOyx O。
动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。
立体几何中的动点问题一、立体几何中的动点问题嘿,小伙伴们,咱今天来唠唠立体几何里的动点问题哈。
这动点问题就像一个调皮的小怪兽,在立体几何这个大城堡里到处乱窜呢。
你想啊,立体几何本身就已经够让人头疼的了,再加上个动点,那简直是“难上加难”。
比如说一个正方体或者长方体里面,有个点在棱上或者面上动来动去的,你要去研究它的轨迹啦,它和其他点、线、面之间的关系啦,真的是很考验我们的小脑袋瓜。
我给你们举个例子哈,就像有个三棱柱,在它的一条侧棱上有个动点,这个动点和底面三角形的某个顶点连线,然后问你这条连线和底面的夹角怎么随着这个动点的移动而变化。
这时候你就得动用你学过的那些立体几何的知识了,像什么直线和平面的夹角公式啦,向量的方法啦。
而且呢,这个动点问题还常常和空间想象力挂钩。
有时候你光靠在纸上画图还不行,得在脑子里构建出那个立体的模型,想象着那个点是怎么动的。
这就像是你自己在脑子里玩一个3D游戏一样,不过这个游戏可没那么容易通关哦。
还有一种情况也很常见,就是在一个圆锥或者圆柱里面有动点。
圆锥和圆柱本身就是曲线图形,再加上动点,就像是在弯弯绕绕的迷宫里找出口一样。
比如说在圆锥的侧面上有个动点,要你求这个动点到圆锥底面圆心的距离的取值范围,你就得考虑圆锥的母线长啦,底面半径啦,还有这个动点的运动范围啦。
其实解决立体几何中的动点问题呢,也有一些小窍门。
一个就是多画图,不同位置的图都画一画,这样你就能比较直观地看到动点的变化了。
再一个就是要善于把立体问题转化成平面问题,利用平面几何的知识来解决。
就像把圆锥展开成扇形,把圆柱展开成长方形,这样可能就会让问题变得简单一些呢。
不过呢,不管有多少小窍门,都得靠我们自己多做练习题,多去思考,这样才能真正掌握这个有点“小狡猾”的动点问题。
加油哦,小伙伴们!。
BC立体几何中的动点问题详解【引例】(2006北京卷4)平面a 的斜线AB 交a 于点B ,过定点A 的动直线l 与AB 垂直,且交a 于点C ,则动点C 的轨迹是( ).(A )一条直线 (B )一个圆 (C )一个椭圆(D )双曲线的一支解法:首先考虑直线AC 的轨迹是过定点A 且与直线AB 垂直的平面,(两个平面相交有且只有一条交线)该平面与平面α的交线即为动点C 的轨迹。
所以动点C 的轨迹是一条直线。
【例1】已知矩形ABCD ,1AB =,BC =ABD 沿矩形的对角线BD 所在的直线进行翻折.(1)求证:在翻折过程中,直线AA 1始终与BD 垂直;证法1:作AE ⊥BD 于点E ,分别连接AA 1、A 1E ∵AE ⊥BD 且∆ABD 翻折得∆A 1BD ∴A 1E ⊥BD∵AE ∩A 1E=E, AE ⊂平面AA 1E, A 1E ⊂平面AA 1E ∴BD ⊥平面AA 1E ∵AA 1⊂平面AA 1E ∴AA 1⊥BD证法2:连接AA 1,取AA 1的中点E ,分别连接BE 、DE ∵∆ABD 翻折得∆A 1BD ∴BA=BA 1,DA=DA 1 ∵点E 是AA 1的中点 ∴AA 1⊥BE, AA 1⊥DE∵BE∩DE=E, BE ⊂平面BDE, DE ⊂平面BDE ∴AA 1⊥平面BDE ∵BD ⊂平面BDE ∴AA 1⊥BD(2)在翻折过程中,以下说法正确的是____________.① 存在某个位置,使得直线1A C 与直线BD 垂直. ② 存在某个位置,使得直线1A B 与直线CD 垂直. ③ 存在某个位置,使得直线1A D 与直线BC 垂直. 解法1:(运动轨迹)点A 1的轨迹在直线BD 的垂面A 1AF 上,而点C 在直线BD 的垂面HGC 上 垂面A 1AF//垂面HGC所以点A 1不在平面HGC 上由于过点C 且垂直于BD 的直线都在平面HGC 上 所以①不成立由于A 1的轨迹可以落在过点B 的直线CD的垂面上,所以②成立又由于A 1的轨迹无法落在过点D 的直线BC 的垂面上,所以③不成立解法2;(借助三垂线定理平面化垂直关系)借助三垂线定理解决(借助正投影把空间垂直转化到平面上解决)点A1在平面ABCD上的正投影为点H,而H的轨迹为线段AA’A C与直线垂直BD是不可能的,因此①不成立由于BH与BD不可能垂直,所以直线1由于点H落在BC上时刚好BH与CD垂直,所以②成立A D与直线垂直BC是不可能的,因此③不成立由于HD与BC不可能垂直,所以直线1解法:3(假设----检验)A C与直线BD垂直,由于A1E⊥BD假设直线1易证得BD⊥平面A1CE所以BD⊥CE(矛盾)因此①不成立A C与直线BD垂直,由于AA1⊥BD假设直线1易证得BD⊥平面AA1C所以BD⊥AC(矛盾)因此①不成立假设直线A1D与直线BC垂直,由于BC⊥CD易证得BC⊥平面A1CD,所以BD⊥A1C又因为AA1⊥BD,易证得BD⊥平面AA1C,所以BD⊥AC(矛盾),因此①不成立解法4:(特殊位置------起始或极端位置)因为CD//AB,所以A1B与CD的夹角问题可以转化成角A1BA的问题折叠前是0度,折叠到上图所示的A与A1关于BD对称的位置时角A1BA的大小是120度由于整个过程时连续变化的,所以必然会经过90度的位置,即②成立因为AD//BC,所以A1D与BC的夹角问题可以转化成角A1DA的问题折叠前是0度,折叠到上图所示的A与A1关于BD对称的位置时角A1DA的大小是60度由于整个过程时连续变化且递增的,所以不可能到达90度的位置,即③不成立上图所示位置A与A1关于BD对称,此时A1C//BD折叠前A1C与BD成角为60度,从60度到0度的过程时连续递减的,所以没有90度的时候,因此①不成立解法5:(构造特殊几何体作参照让运动过程更直观)把矩形ABCD如图放置在一个正方体的对角面处点A会经过点A’和点A’’,显然这两个位置都满足A1B⊥CD,所以②成立。
立体几何中的轨迹问题高考数学有一类学科内的综合题,它们的新颖性、综合性,值得我们重视,在知识网络交汇点处设计试题是高考命题改革的一个方向,以空间问题为为背景的轨迹问题作为解析几何与立体几何的交汇点,由于知识点多,数学思想和方法考查充分,求解比较困难.通常要求学生有较强的空间想象能力,以及能够把空间问题转化到平面上,再结合解析几何方法求解,以下精选几个问题来对这一问题进行探讨,旨在探索题型规律,揭示解题方法。
一、用空间运动的观点来得到点的轨迹。
例1:直线PA 是平面M 的一条斜线,斜足为A ,动直线PB 过点P 且与直线PB 垂直,且交平面M 于点B ,求动点B 的轨迹.解:先探讨直线PB 的运动轨迹,由于直线PB 始终与PA 垂直,可知PB 的运动轨迹应是直线PA 的垂直平面N 。
再结合点B 一定在平面M 内,所以点B 的轨迹应该是两个平面的交线,所以点B 的轨迹是一条直线.针对以上解法,我们对这一问题作一深层次的探讨:若直线PA 与平面M 成α角,直线PB 始终与直线PA 成β角,再来求点B 的轨迹。
由上述解法可知,我们只要得到直线PB 的空间轨迹,再来考察该轨迹与平面M 的交线即可。
由简单的模型模拟即可知,直线PB 的轨迹是一个圆锥面,再用一个平面截圆锥面,这一知识在平面解析几何中圆锥曲线的来历中有提到,即所得曲线可能是圆、椭圆、抛物线、双曲线。
因此,我们在以下命题:直线PA 是平面M 的一条斜线,且与平面M 成α角,斜足为A ,动直线PB 过点P 且与直线PB 成β角,交平面M 于点B,求动点B 的轨迹。
结论: (1)若α=90°,β≠90°,则动点B 的轨迹是一个圆; (2)若α≠90°,β=90°,动点B 的轨迹是一条直线;(3)若α≠90°,β≠90°,则①若90°〉α〉β,则轨迹是椭圆; ②若α=β,则轨迹是抛物线; ③若α<β,则轨迹是双曲线。
微专题19立体几何中的动点及其轨迹问题求空间图形中点的轨迹既是中学数学学习中的一个难点,也是近几年高考的一个热点,是立体几何与解析几何相交汇的问题,既考查空间想象能力,同时又考查如何将空间几何的轨迹问题转化为平面几何的轨迹问题来处理的数学思想,常用方法主要有:(1)定义法(如圆锥曲线定义);(2)解析法;(3)交轨法.类型一定性的研究动点的轨迹立体几何中与动点轨迹有关的问题归根还是利用线面的平行、垂直关系,在此类问题中要么容易看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式.例1 (1)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P 满足∠P AB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支(2)(多选)(2022·济南质检)已知正方体ABCD-A1B1C1D1的棱长为4,M为DD1的中点,N为ABCD所在平面上一动点,则下列命题正确的是()A.若MN与平面ABCD所成的角为π4,则点N的轨迹为圆B.若MN=4,则MN的中点P的轨迹所围成图形的面积为2πC.若点N到直线BB1与直线DC的距离相等,则点N的轨迹为抛物线D.若D1N与AB所成的角为π3,则点N的轨迹为双曲线答案(1)C(2)ACD解析(1)由题可知,当P点运动时,在空间中,满足条件的AP绕AB旋转形成一个圆锥,用一个与圆锥高成60°角的平面截圆锥,所得图形为椭圆.(2)如图所示,对于A,根据正方体的性质可知,MD⊥平面ABCD,所以∠MND为MN与平面ABCD所成的角,所以∠MND=π4,所以DN=DM=12DD1=12×4=2,所以点N的轨迹为以D为圆心,2为半径的圆,故A正确;对于B,在Rt△MDN中,DN=MN2-MD2=42-22=23,取MD的中点E,因为P为MN的中点,所以PE∥DN,且PE=12DN=3,DN⊥ED,所以PE⊥ED,即点P在过点E且与DD1垂直的平面内,又PE=3,所以点P的轨迹为以3为半径的圆,其面积为π·(3)2=3π,故B 不正确; 对于C ,连接NB ,因为BB 1⊥平面ABCD , 所以BB 1⊥NB ,所以点N 到直线BB 1的距离为NB ,所以点N 到点B 的距离等于点N 到定直线CD 的距离, 又B 不在直线CD 上,所以点N 的轨迹为以B 为焦点,CD 为准线的抛物线,故C 正确;对于D ,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (4,0,0),B (4,4,0),D 1(0,0,4),设N (x ,y ,0), 则AB →=(0,4,0),D 1N →=(x ,y ,-4), 因为D 1N 与AB 所成的角为π3, 所以|cos 〈AB →,D 1N →〉|=cos π3, 所以|4y |4x 2+y 2+16=12,整理得3y 216-x 216=1,所以点N 的轨迹为双曲线,故D 正确.训练1 (1)如图,AB 是平面α的斜线段,A 为斜足,若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )A.圆B.椭圆C.一条直线D.两条平行直线(2)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与底面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 内运动,若EP 与AC 成30°角,则点P的轨迹为()A.圆B.抛物线C.双曲线D.椭圆答案(1)B(2)A解析(1)由题意知,点P到线段AB的距离为定值,则点P为在以AB为旋转轴的圆柱表面上一点,故平面α斜截圆柱,所得图形为椭圆.(2)因为在平行六面体ABCD-A1B1C1D1中,AA1与底面A1B1C1D1垂直,且AD=AB,所以该平行六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,连接EF,则EF∥AC.因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面圆周,故选A.类型二定量的研究动点的轨迹当涉及动点轨迹的长度、图形的面积和图形的体积以及体积的最值,一般要用未知变量表示轨迹,然后借助于函数的性质求解.例2 (1)在棱长为22的正方体ABCD-A1B1C1D1中,E,F分别为棱AB,AD的中点,P为线段C1D上的动点,则直线A1P与平面D1EF的交点Q的轨迹长度为()A.2153 B.433C.2133 D.423(2)(多选)(2022·南京质检)如图,在正方体ABCD -A 1B 1C 1D 1中,P 为线段A 1B 上的动点(不包含端点),若正方体棱长为1,则下列结论正确的有( )A.直线D 1P 与AC 所成角的取值范围是⎣⎢⎡⎦⎥⎤π6,π2B.存在P 点,使得平面APD 1∥平面C 1BDC.三棱锥D 1-CDP 的体积为16D.平面APD 1截正方体所得的截面可能是直角三角形 答案 (1)C (2)BC解析 (1)如图,连接B 1D 1,因为E ,F 分别为棱AB ,AD 的中点, 所以B 1D 1∥EF ,则B 1,D 1,E ,F 四点共面.连接A 1C 1,A 1D ,设A 1C 1∩B 1D 1=M ,A 1D ∩D 1F =N ,连接MN , 则点Q 的轨迹为线段MN , 易得A 1D =A 1D 21+DD 21=4,△A 1ND 1∽△DNF ,且A 1D 1FD =2,所以A 1N =23A 1D =83. 易知A 1C 1=C 1D =A 1D =4,所以∠C 1A 1D =60°,又A 1M =2,所以在△A 1MN 中,由余弦定理可得MN 2=A 1N 2+A 1M 2-2A 1N ·A 1M cos ∠MA 1N =529,所以MN =2133,即点Q 的轨迹长度为2133.(2)对于A 选项,如图①,连接AC ,D 1P ,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (1,1,0),A 1(1,0,1),D (0,0,0),D 1(0,0,1),C (0,1,0).则有AC →=(-1,1,0),D 1P →=D 1A 1→+λA 1B →=(1,0,0)+λ(0,1,-1)=(1,λ,-λ),λ∈(0,1), 所以|cos 〈AC →,D 1P →〉|=|-1+λ|2·2λ2+1=(1-λ)24λ2+2.令f (λ)=(1-λ)24λ2+2,λ∈(0,1), f ′(λ)=8λ2-4λ-4(4λ2+2)2=4(2λ+1)(λ-1)(4λ2+2)2<0,所以f (λ)=(1-λ)24λ2+2在(0,1)上单调递减.因为f (0)=12,f (1)=0,所以0<|cos 〈AC →,D 1P →〉|<22,又〈AC →,D 1P →〉∈⎣⎢⎡⎦⎥⎤0,π2, 故〈AC →,D 1P →〉∈⎝ ⎛⎭⎪⎫π4,π2,故A 选项错误.图①对于B选项,当P为A1B的中点时,有AP∥C1D,AD1∥C1B,易证平面APD1∥平面C1BD,故B选项正确.对于C选项,三棱锥D1-CDP的体积VD1-CDP=VP-CDD1=13×S△CDD1×AD=1 3×12×1×1×1=16,故C选项正确.对于D选项,设A1B的中点为O,连接AP,AD1,D1P.当P点在线段OB(不包含端点)上时,此时平面APD1截正方体所得的截面为梯形AEFD1,如图②;当P点在O点时,此时平面APD1截正方体所得的截面为正三角形AB1D1;当P点在线段OA1(不包含端点)上时,此时平面APD1截正方体所得的截面为等腰三角形AD1G,如图③,且AG2+D1G2≠AD21,所以该三角形不可能为直角三角形,故D选项错误.故选BC.训练2 (1)如图所示,正方体ABCD-A1B1C1D1的棱长为2,E,F为AA1,AB的中点,点M是正方形ABB1A1内的动点,若C1M∥平面CD1E,则点M的轨迹长度为()A.22 B.1C. 2D.3(2)(多选)(2022·重庆诊断)如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论中,正确的结论是()A.三棱锥A-D1PC的体积不变B.A1P与平面ACD1所成的角大小不变C.DP⊥BC1D.DB1⊥A1P答案(1)C(2)ABD解析(1)如图所示,取A1B1的中点H,B1B的中点G,连接EF,FC,GH,C1H,C1G,EG,HF可得四边形EGC1D1是平行四边形,∴C1G∥D1E,又D1E⊂平面CD1E,C1G⊄平面CD1E,∴C1G∥平面CD1E,同理可得C1H∥CF,又CF⊂平面CD1E,C1H⊄平面CD1E,∴C1H∥平面CD1E,又C1H∩C1G=C1,∴平面C1GH∥平面CD1E,又M点是正方形ABB1A1内的动点,若C1M∥平面CD1E,∴点M在线段GH上,∴M点轨迹的长度GH=12+12= 2.(2)如图,因为BC1∥AD1,AD1⊂平面D1AC,BC1⊄平面D1AC,所以BC1∥平面D1AC,故点P在BC1上运动时,点P到平面D1AC的距离d是定值,所以V A-D1PC =V P-AD1C=13S△AD1C×d是定值,A项正确.连接A1B,A1C1,如图所示.易知平面A1BC1∥平面ACD1,A1P⊂平面A1BC1,所以A1P∥平面ACD1,故A1P与平面ACD1所成的角大小不变,B项正确.易知DP在平面BCC1B1内的射影是CP,若DP⊥BC1,则CP⊥BC1,故点P在BC1上运动时,不一定有DP⊥BC1,C项错误.易知DB1⊥平面A1BC1,而A1P⊂平面A1BC1,所以DB1⊥A1P,D项正确.故选ABD.一、基本技能练1.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与到直线C1D1的距离相等,则动点P的轨迹为()A.直线B.圆C.双曲线D.抛物线答案D解析点P到直线C1D1的距离即为点P到点C1的距离,所以在平面BB1C1C中,点P到定点C1的距离与到定直线BC的距离相等,由抛物线的定义可知,动点P的轨迹为抛物线,故选D.2.如图,正方体ABCD-A1B1C1D1中,P为底面ABCD上的动点.PE⊥A1C于E,且P A=PE,则点P的轨迹是()A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分答案A解析由题意知,△A1AP≌△A1EP,则点P为在线段AE的中垂面上运动,从而与底面ABCD 的交线为线段.3.如图,圆锥的底面直径AB =2,母线VA =3,点C 在母线VB 上,且VC =1,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是( )A.13B.7C.433D.332答案 B解析 在圆锥侧面的展开图中,AA ′=2π,所以∠AVA ′=AA ′︵VA =23π, 所以∠AVB =12∠AVA ′=π3,由余弦定理得AC 2=VA 2+VC 2-2VA ·VC ·cos ∠AVB =32+12-2×3×1×12=7, 所以AC =7.所以这只蚂蚁爬行的最短距离是7,故选B.4.如图所示,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 中点轨迹的面积为( )A.4πB.2πC.πD.π2答案 D解析 易知DD 1⊥平面ABCD ,∠MDN =90°,取线段MN 的中点P ,则DP =12MN =1,所以点P 的轨迹是以D 为球心,1为半径的18球面,故S =18×4π×12=π2. 5.已知MN 是长方体外接球的一条直径,点P 在长方体表面上运动,长方体的棱长分别是1,1,2,则PM →·PN →的取值范围为( )A.⎣⎢⎡⎦⎥⎤-12,0B.⎣⎢⎡⎦⎥⎤-34,0 C.⎣⎢⎡⎦⎥⎤-12,1 D.⎣⎢⎡⎦⎥⎤-34,1 答案 B解析 根据题意,以D 为坐标原点,DA →为x 轴正方向,DC →为y 轴正方向,DD 1→为z 轴正方向,建立空间直角坐标系,如图所示.设长方体外接球球心为O , 则DB 1为外接球的一条直径,设O 为DB 1的中点,不妨设M 与D 重合,N 与B 1重合. 则外接球的直径长为12+12+(2)2=2,所以半径r =1,所以PM →·PN →=(PO →+OM →)·(PO →+ON →)=(PO →+OM →)·(PO →-OM →)=|PO →|2-|OM →|2=|PO →|2-1,由P 在长方体表面上运动,所以|PO →|∈⎣⎢⎡⎦⎥⎤12,1,即|PO →|2∈⎣⎢⎡⎦⎥⎤14,1,所以|PO→|2-1∈⎣⎢⎡⎦⎥⎤-34,0, 即PM →·PN →∈⎣⎢⎡⎦⎥⎤-34,0.6.点P 为棱长是25的正方体ABCD -A 1B 1C 1D 1的内切球O 球面上的动点,点M 为B 1C 1的中点,若满足DP ⊥BM ,则动点P 的轨迹的长度为( ) A.π B.2π C.4π D.25π答案 C解析 根据题意知,该正方体的内切球半径为r =5, 如图,取BB 1的中点N ,连接CN ,则CN ⊥BM , 在正方体ABCD -A 1B 1C 1D 1中,CN 为DP 在平面B 1C 1CB 中的射影,∴点P 的轨迹为过D ,C ,N 的平面与内切球的交线, ∵正方体ABCD -A 1B 1C 1D 1的棱长为25, ∴O 到过D ,C ,N 的平面的距离为1, ∴截面圆的半径为(5)2-1=2,∴点P 的轨迹的长度为2π×2=4π.7.(2022·北京卷)已知正三棱锥P -ABC 的六条棱长均为6,S 是△ABC 及其内部的点构成的集合.设集合T ={Q ∈S |PQ ≤5},则T 表示的区域的面积为( ) A.3π4 B.π C.2π D.3π答案 B解析 设顶点P 在底面上的投影为O ,连接BO ,则O 为△ABC 的中心, 且BO =23×6×32=23, 故PO =36-12=2 6.因为PQ =5,故OQ =1,故Q 的轨迹为以O 为圆心,1为半径的圆,而△ABC 内切圆的圆心为O ,半径为2×34×363×6=3>1,故Q 的轨迹圆在△ABC 内部, 故其面积为π.8.如图,三角形P AB 所在的平面α和四边形ABCD 所在的平面β垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,∠APD =∠CPB ,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分答案 A解析 由条件易得AD ∥BC ,且∠APD =∠CPB ,AD =4,BC =8, 可得tan ∠APD =AD P A =CBPB =tan ∠CPB , 即PB P A =CBAD =2,在平面P AB 内以AB 所在的直线为x 轴,AB 的中点O 为坐标原点,建立直角坐标系(图略),则A (-3,0),B (3,0), 设P (x ,y ),则有PBP A =(x -3)2+y 2(x +3)2+y2=2, 整理可得x 2+y 2+10x +9=0(x ≠0). 由于点P 不在直线AB 上,故此轨迹为圆的一部分,故答案选A.9.已知正方体ABCD -A ′B ′C ′D ′的棱长为1,点M ,N 分别为线段AB ′,AC 上的动点,点T 在平面BCC ′B ′内,则MT +NT 的最小值是( ) A. 2 B.233 C.62 D.1答案 B解析 A 点关于BC 的对称点为E ,M 关于BB ′的对称点为M ′,记d 为直线EB ′与AC 之间的距离,则MT +NT =M ′T +NT ≥M ′N ≥d ,由B ′E ∥D ′C ,d 为E 到平面ACD ′的距离,因为V D ′-ACE =13×1×S △ACE =13×1×1=13,而V D ′-ACE =V E -ACD ′=13×d ×34×(2)2=36d =13,故d =233.10.如图,长方体ABCD -A ′B ′C ′D ′中,AB =BC =2,AA ′=3,上底面A ′B ′C ′D ′的中心为O ′,当点E 在线段CC ′上从C 移动到C ′时,点O ′在平面BDE 上的射影G 的轨迹长度为( )A.2π3B.3π3C.π3D.3π6答案 B解析 如图,以CA ,CC ′分别为x 轴,y 轴正方向建立平面直角坐标系,则有C (0,0),O (1,0),O ′(1,3),设G (x ,y ), 由O ′G ⊥OG ,可得y x -1·y -3x -1=-1,整理可得⎝⎛⎭⎪⎫y -322+(x -1)2=34,所以点O ′在平面BDE 上的射影G 的轨迹是以F ⎝ ⎛⎭⎪⎫1,32为圆心,半径为32的OG ︵.因为tan ∠GOF =O ′C ′OO ′=33, 所以O ′G =O ′O ·sin ∠GOF =32, 所以△O ′GF 是等边三角形, 即∠GFO =2π3,所以圆弧OG 的长l =2π3×32=3π3.11.如图所示,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为是正确的条件即可).答案 DM ⊥PC (或BM ⊥PC )解析 连接AC ,BD ,则AC ⊥BD ,因为P A ⊥底面ABCD ,BD ⊂平面ABCD ,所以P A ⊥BD .又P A ∩AC =A ,所以BD ⊥平面P AC ,PC ⊂平面P AC , 所以BD ⊥PC ,所以当DM ⊥PC (或BM ⊥PC )时,有PC ⊥平面MBD ,PC ⊂平面PCD ,所以平面MBD⊥平面PCD.12.如图,P是棱长为1的正方体ABCD-A1B1C1D1表面上的动点,且AP=2,则动点P的轨迹的长度为________.答案3π2解析由已知AC=AB1=AD1=2,在平面BC1,平面A1C1中,BP=A1P=DP=1,所以动点P的轨迹是在平面BC1,平面A1C1,平面DC1内分别以B,D,A1为圆心,1为半径的三段圆弧,且长度相等,故轨迹长度和为π2×3=3π2.二、创新拓展练13.在棱长为3的正方体ABCD-A1B1C1D1中,E是AA1的中点,P是底面ABCD 所在平面内一动点,设PD1,PE与底面ABCD所成的角分别为θ1,θ2(θ1,θ2均不为0),若θ1=θ2,则三棱锥P-BB1C1体积的最小值是()A.92 B.52C.32 D.54答案C解析以D为坐标原点建立如图所示空间直角坐标系,因为正方体的棱长为3, 则E ⎝ ⎛⎭⎪⎫3,0,32,D 1(0,0,3),设P (x ,y ,0)(x ≥0,y ≥0),则PE →=⎝ ⎛⎭⎪⎫3-x ,-y ,32,PD 1→=(-x ,-y ,3). 因为θ1=θ2,平面ABCD 的一个法向量z =(0,0,1), 所以|PE →·z ||PE →|·|z |=|PD 1→·z ||PD 1→|·|z |,得32(3-x )2+y 2+94=3x 2+y 2+9,整理得x 2+y 2-8x +12=0, 即(x -4)2+y 2=4(0≤y ≤2), 则动点P 的轨迹为圆的一部分, 所以点P 到平面BB 1C 1的最小距离为1,所以三棱锥P -BB 1C 1体积的最小值是13×12×3×3×1=32.14.(多选)(2022·武汉模拟)如图,设正方体ABCD -A 1B 1C 1D 1的棱长为2,E 为A 1D 1的中点,F 为CC 1上的一个动点,设由点A ,E ,F 构成的平面为α,则( )A.平面α截正方体的截面可能是三角形B.当点F 与点C 1重合时,平面α截正方体的截面面积为26C.当点D 到平面α的距离的最大值为263D.当F 为CC 1的中点时,平面α截正方体的截面为五边形 答案 BCD解析 如图,建立空间直角坐标系,延长AE 与z 轴交于点P ,连接PF 并延长与y 轴交于点M , 则平面α由平面AEF 扩展为平面APM . 由此模型可知A 错误.当点F 与点C 1重合时,截面是一个边长为5的菱形,该菱形的两条对角线长度分别AC 1=22+22+22=23和22+22=22,则此时截面的面积为12×23×22=2 6.当F 为CC 1的中点时,平面α截正方体的截面为五边形,B ,D 正确.D (0,0,0),A (2,0,0),P (0,0,4),设点M 的坐标为(0,t ,0)(t ∈[2,4]), DA →=(2,0,0),AM →=(-2,t ,0),P A →=(2,0,-4), 则可知点P 到直线AM 的距离为d =|P A →|2-⎪⎪⎪⎪⎪⎪⎪⎪P A →·AM →|AM →|2=20t 2+644+t2, S △APM =12t 2+4·d =5t 2+16.S △P AD =12×2×4=4, 设点D 到平面α的距离为h ,利用等体积法V D -APM =V M -P AD ,即13·S △APM ·h =13·S △P AD ·t ,可得h =4t 5t 2+16,则h =45+16t 2, 由h =45+16t 2在t ∈[2,4]上单调递增,所以当t =4时,h 取到最大值为263.故选BCD.15.已知面积为23的菱形ABCD 如图①所示,其中AC =2,E 是线段AD 的中点.现沿AC 折起,使得点D 到达点S 的位置,此时二面角S -AC -B 的大小为120°,连接SB ,得到三棱锥S -ABC 如图②所示,则三棱锥S -ABC 的体积为________;若点F 在三棱锥的表面运动,且始终保持EF ⊥AC ,则点F 的轨迹长度为________.答案 32 3+32解析 依题意,12AC ·BD =BD =23,点S 到平面ABC 的距离为3sin 60°=32,△ABC 的面积为12×23=3,则三棱锥S-ABC的体积为13×3×32=32.如图,取AC边上靠近点A的四等分点G,取BA的中点为H,连接EH,EG,GH,故点F的轨迹长度即为△EHG的周长,又EG=GH=32,EH=12SB=32,故点F的轨迹长度为3+32.16.如图,三棱锥S-ABC的所有棱长均为1,SH⊥底面ABC,点M,N在直线SH上,且MN=33,若动点P在底面ABC内,且△PMN的面积为212,则动点P的轨迹长度为________.答案6π12解析设P到直线MN的距离为d,由题易得d=6 6,易知H为△ABC的中心,又MN⊥平面ABC,当点P在平面ABC内时,其轨迹是以H为圆心,66为半径的圆.∵△ABC内切圆的半径为3 6,∴圆H的一部分位于△ABC外,结合题意得,点P的轨迹为圆H位于底面△ABC 内的三段相等的圆弧(利用正三角形的性质判断出圆H有一部分在△ABC外,才能正确得到点P的轨迹),如图,过点H作HO⊥AC,垂足为O,则HO=36,记圆H与线段OC的交点为K,连接HK,可得HK=66,∴cos∠OHK=OHHK=3666=22,∴∠OHK=π4,∴点P的轨迹长度为圆H周长的14(利用圆及正三角形的对称性分析求解),∴点P的轨迹长度为14×2π×66=6π12.。
§7.10立体几何中的动态、轨迹问题重点解读“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.题型一平行、垂直中的动态轨迹问题例1如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,N 分别是CC 1,C 1D 1,DD 1,CD ,BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥平面A 1BD ,则点M 轨迹的长度是()A.3aB.2aC.3a 2D.2a 2答案D 解析连接HN ,GN (图略),∵在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,N 分别是CC 1,C 1D 1,DD 1,CD ,BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄平面A 1BD ,BA 1⊂平面A 1BD ,∴GH ∥平面A 1BD ,同理可证得NH ∥平面A 1BD ,又GH ∩HN =H ,GH ,HN ⊂平面GHN ,∴平面A 1BD ∥平面GHN ,又∵点M 在四边形EFGH 上及其内部运动,MN ∥平面A 1BD ,则点M 在线段GH 上运动,即满足条件,又GH =22a ,则点M 轨迹的长度是2a 2.思维升华动点轨迹的判断一般根据线面平行、线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程.跟踪训练1正四棱锥S -ABCD 的底面边长为2,高为2,E 是边BC 的中点,动点P 在正四棱锥表面上运动,并且总保持PE ⊥AC ,则动点P 的轨迹的周长为()A.6+2B.6-2C .4D.5+1答案A 解析如图,设AC ,BD 交于O ,连接SO ,由正四棱锥的性质可得SO ⊥平面ABCD ,因为AC ⊂平面ABCD ,故SO ⊥AC .又BD ⊥AC ,SO ∩BD =O ,SO ,BD ⊂平面SBD ,故AC ⊥平面SBD .由题意,PE ⊥AC 则动点P 的轨迹为过E 且垂直AC 的平面与正四棱锥S -ABCD 的交线,即平面EFG ,则AC ⊥平面EFG .由线面垂直的性质可得平面SBD ∥平面EFG ,又由面面平行的性质可得EG ∥SB ,GF ∥SD ,EF ∥BD ,又E 是边BC 的中点,故EG ,GF ,EF 分别为△SBC ,△SDC ,△BCD 的中位线.由题意BD =22,SB =SD =22+2=6,故EG +EF +GF =12×(6+6+22)=6+ 2.即动点P 的轨迹的周长为6+ 2.题型二距离、角度有关的动态轨迹问题例2已知长方体ABCD -A 1B 1C 1D 1的外接球的表面积为5π,AA 1=2,点P 在四边形A 1ACC 1内,且直线BP 与平面A 1ACC 1所成的角为π4,则长方体的体积最大时,动点P 的轨迹长为()A .πB.2π2C.π2D.2π4答案C解析因为长方体ABCD -A 1B 1C 1D 1的外接球的表面积为5π,设外接球的半径为R ,所以4πR 2=5π,解得R =52R =-52(舍去),即外接球的直径为5,设AB =a ,BC =b ,则a 2+b 2+22=5,可得a 2+b 2=1,所以V =2ab ≤a 2+b 2=1,当且仅当a =b =22时,等号成立.如图,设AC ,BD 相交于点O ,因为BO ⊥AC ,BO ⊥AA 1,AC ∩AA 1=A ,AC ,AA 1⊂平面A 1ACC 1,所以BO ⊥平面A 1ACC 1,因为直线BP 与平面A 1ACC 1所成的角为π4,所以∠BPO =π4,故OP =12,则点P 的轨迹是以O 为圆心,半径r =12的半圆弧,所以动点P 的轨迹长为πr =π2.思维升华距离、角度有关的轨迹问题(1)距离:可转化为在一个平面内的距离关系,借助于圆锥曲线定义或者球和圆的定义等知识求解轨迹.(2)角度:直线与面成定角,可能是圆锥侧面;直线与定直线成等角,可能是圆锥侧面.跟踪训练2已知三棱锥P -ABC 的外接球O 的半径为13,△ABC 为等腰直角三角形,若顶点P 到底面ABC 的距离为4,且三棱锥P -ABC 的体积为163,则满足上述条件的顶点P 的轨迹长度是________.答案43π解析设底面等腰直角三角形ABC 的直角边的边长为x (x >0),∵顶点P 到底面ABC 的距离为4且三棱锥P -ABC 的体积为163,∴13×12x 2×4=163,解得x =22,∴△ABC 的外接圆半径为r 1=12×2×22=2,∴球心O 到底面ABC 的距离d 1=R 2-r 21=13-22=3,又∵顶点P 到底面ABC 的距离为4,∴顶点P 的轨迹是一个截面圆的圆周(球心在底面ABC 和截面圆之间)且球心O 到该截面圆的距离d 2=1,∵截面圆的半径r 2=R 2-d 22=13-1=23,∴顶点P 的轨迹长度是2πr 2=2π×23=43π.题型三翻折有关的动态轨迹问题例3在矩形ABCD 中,E 是AB 的中点,AD =1,AB =2,将△ADE 沿DE 折起得到△A ′DE ,设A ′C 的中点为M ,若将△ADE 沿DE 翻折90°,则在此过程中动点M 形成的轨迹长度为________.答案2π8解析如图,设AC 的中点为M 0,△ADE 沿DE 翻折90°,此时平面A ′DE ⊥平面ABCD ,取CD 中点P ,CE 中点Q ,PQ 中点N ,连接PQ ,MP ,MQ ,MN ,M 0P ,M 0Q ,M 0N .MP =M 0P =12AD =12,MQ =M 0Q =12AE =12,PQ =12DE =22,△MPQ 和△M 0PQ 是等腰直角三角形,且在旋转过程中保持形状大小不变,故动点M 的轨迹是以N 为圆心,12PQ 为半径的一段圆弧,又MP ∥A ′D ,MP ⊄平面A ′DE ,A ′D ⊂平面A ′DE ,∴MP ∥平面A ′DE ,同理MQ ∥平面A ′DE ,又∵MP ∩MQ =M ,∴平面MPQ ∥平面A ′DE ,又平面A ′DE ⊥平面ABCD ,故平面MPQ ⊥平面ABCD ,又平面MPQ ∩平面ABCD =PQ ,MN ⊥PQ ,故MN ⊥平面ABCD ,又M 0N ⊂平面ABCD ,∴MN ⊥M 0N ,故动点M 形成的轨迹长度为14π·PQ =2π8.思维升华翻折有关的轨迹问题(1)翻折过程中寻找不变的垂直的关系求轨迹.(2)翻折过程中寻找不变的长度关系求轨迹.(3)可以利用空间坐标运算求轨迹.跟踪训练3(2024·连云港模拟)在矩形ABCD 中,AB =3,AD =1,点E 在CD 上,现将△AED 沿AE 折起,使平面AED ⊥平面ABC ,当E 从D 运动到C 时,求点D 在平面ABC 上的射影K 的轨迹长度为()A.22 B.223 C.π2 D.π3答案D解析由题意,将△AED 沿AE 折起,使平面AED ⊥平面ABC ,在平面AED 内过点D 作DK ⊥AE ,垂足K 为D 在平面ABC 上的射影,连接D ′K ,由翻折的特征知,则∠D ′KA =90°,故K 点的轨迹是以AD ′为直径的圆上一段弧,根据长方形知圆半径是12,如图当E 与C 重合时,∠D ′AC =60°,所以AK =12,取O 为AD ′的中点,得到△OAK 是正三角形.故∠KOA =π3,所以∠KOD ′=2π3,射影K 的轨迹长度为12×2π3=π3.课时精练一、单项选择题1.在正方体ABCD -A 1B 1C 1D 1中,Q 是正方形B 1BCC 1内的动点,A 1Q ⊥BC 1,则Q 点的轨迹是()A .点B 1B .线段B 1C C .线段B 1C 1D .平面B 1BCC 1答案B 解析如图,连接A 1C ,因为BC 1⊥A 1Q ,BC 1⊥A 1B 1,A 1Q ∩A 1B 1=A 1,A 1Q ,A 1B 1⊂平面A 1B 1Q ,所以BC 1⊥平面A 1B 1Q ,又B 1Q ⊂平面A 1B 1Q ,所以BC 1⊥B 1Q ,又BC 1⊥B 1C ,所以点Q 在线段B 1C 上.2.(2023·佛山模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 为正方形A 1B 1C 1D 1内的动点,满足直线BP 与下底面ABCD 所成角为60°的点P 的轨迹长度为()A.33B.3π6 C.3 D.3π2答案B 解析直线BP 与下底面ABCD 所成的角等于直线BP 与上底面A 1B 1C 1D 1所成的角,连接B 1P ,如图,因为BB 1⊥平面A 1B 1C 1D 1,PB 1⊂平面A 1B 1C 1D 1,所以BB 1⊥PB 1,故∠BPB 1为直线BP 与上底面A 1B 1C 1D 1所成的角,则∠BPB 1=60°,因为BB 1=1,所以PB 1=BB 1tan 60°=33,故点P 的轨迹为以B 1为圆心,33为半径,位于平面A 1B 1C 1D 1内的14圆,故轨迹长度为14×2π×33=3π6.3.如图,在三棱柱ABC -A 1B 1C 1中,M 为A 1C 1的中点,N 为侧面BCC 1B 1上的一点,且MN ∥平面ABC 1,若点N 的轨迹长度为2,则()A .AC 1=4B .BC 1=4C .AB 1=6D .B 1C =6答案B 解析如图,取B 1C 1的中点D ,BB 1的中点E ,连接MD ,DE ,ME ,由MD ∥A 1B 1∥AB ,DE ∥BC 1,又MD ⊄平面ABC 1,AB ⊂平面ABC 1,所以MD ∥平面ABC 1,同理可得DE ∥平面ABC 1,又MD ∩DE =D ,MD ,DE ⊂平面MDE ,所以平面MDE ∥平面ABC 1,又MN ∥平面ABC 1,故点N 的轨迹为线段DE ,又由DE =12BC 1=2,可得BC 1=4.4.已知四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 为正方形,侧棱与底面垂直,点P 是侧棱DD 1上的点,且DP =2PD 1,AA 1=3,AB =1.若点Q 在侧面BCC 1B 1(包括其边界)上运动,且总保持AQ ⊥BP ,则动点Q 的轨迹长度为()A.3B.2C.233D.52答案D 解析如图,在侧棱AA 1上取一点R ,使得AR =2RA 1,连接PR ,BR ,过点A 作AN ⊥BR 交BR 于点M ,交BB 1于点N ,连接AC ,CN ,BD ,由PR ∥AD ,可知PR ⊥AN ,BR ,PR ⊂平面BPR ,BR ∩PR =R ,从而AN ⊥平面BPR ,BP ⊂平面BPR ,所以BP ⊥AN ,又由BP 在平面ABCD 内的射影BD ⊥AC ,所以BP ⊥AC ,AN ,AC ⊂平面ACN ,AN ∩AC =A ,知BP ⊥平面ACN ,CN ⊂平面ACN ,所以BP ⊥CN ,所以动点Q 的轨迹为线段CN ,在Rt △ABN ,Rt △RAB 中,∠BAN =∠ARB ,所以Rt △ABN ∽Rt △RAB ,则BN AB =AB RA ,得BN =12,易得CN =BN 2+BC 2=122+12=52.5.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱AD ,B 1C 1的中点.若点P 为侧面正方形ADD 1A 1内(含边界)动点,且B 1P ∥平面BEF ,则点P 的轨迹长度为()A.12B .1C.52D.π2答案C 解析取A 1D 1的中点M ,连接AM ,B 1M ,AB 1,EM ,FM ,如图所示,在正方体ABCD -A 1B 1C 1D 1中,AD ∥B 1C 1且AD =B 1C 1,因为E ,F 分别是棱AD ,B 1C 1的中点,则AE ∥B 1F 且AE =B 1F ,所以四边形AB 1FE 为平行四边形,则AB 1∥EF ,因为AB 1⊄平面BEF ,EF ⊂平面BEF ,所以AB 1∥平面BEF ,同理可证AM ∥平面BEF ,因为AB 1∩AM =A ,AB 1,AM ⊂平面AB 1M ,所以平面AB 1M ∥平面BEF ,因为AM ⊂平面AA 1D 1D ,若P ∈AM ,则B 1P ⊂平面AB 1M ,所以B 1P ∥平面BEF ,所以点P 在侧面AA 1D 1D 内的轨迹为线段AM ,由勾股定理可得AM =AA 21+A 1M 2=52.6.已知菱形ABCD 边长为2,∠ABC =60°,沿对角线AC 折叠成三棱锥B ′-ACD ,使得二面角B ′-AC -D 为60°,设E 为B ′C 的中点,F 为三棱锥B ′-ACD 表面上动点,且总满足AC ⊥EF ,则点F 轨迹的长度为()A .23B .33 C.3 D.332答案D 解析连接AC ,BD 交于点O ,连接OB ′,四边形ABCD 为菱形,∠ABC =60°,所以AC ⊥BD ,OB ′⊥AC ,△ABC ,△ACD ,△AB ′C 均为正三角形,所以∠B ′OD 为二面角B ′-AC -D 的平面角,于是∠B ′OD =60°,又因为OB ′=OD ,所以△B ′OD 为正三角形,所以B ′D =OB ′=OD =2×32=3,取OC 的中点P ,取CD 的中点Q ,连接EP ,EQ ,PQ ,所以PQ ∥OD ,EP ∥OB ′,所以AC ⊥EP ,AC ⊥PQ ,EP ∩PQ =P ,所以AC ⊥平面EPQ ,所以在三棱锥B ′-ACD 表面上,满足AC ⊥EF 的点F 轨迹为△EPQ ,因为EP =12OB ′,PQ =12OD ,EQ =12B ′D ,所以△EPQ 的周长为3×32=332,所以点F 轨迹的长度为332.二、多项选择题7.(2024·济南模拟)已知正方体ABCD -A 1B 1C 1D 1的各顶点均在表面积为12π的球面上,P 为该球面上一动点,则()A .存在无数个点P ,使得PA ∥平面A 1B 1C 1D 1B .当平面PAA 1⊥平面CB 1D 1时,点P 的轨迹长度为2πC .当PA ∥平面A 1B 1CD 时,点P 的轨迹长度为2πD .存在无数个点P ,使得平面PAD ⊥平面PBC答案ACD 解析因为该球的表面积为4πr 2=12π,故半径r =3,且正方体的棱长满足(2r )2=3a 2=12,故棱长a =2,选项A ,由题意可知平面ABCD ∥平面A 1B 1C 1D 1,且PA ∥平面A 1B 1C 1D 1,故PA ⊂平面ABCD ,则P 的轨迹为正方形ABCD 的外接圆,故有无数个点P 满足,故A 正确;选项B ,易知AC 1⊥平面CB 1D 1,且平面PAA 1⊥平面CB 1D 1,PA ⊂平面PAA 1,故P 的轨迹为矩形AA 1C 1C 的外接圆,其周长为2πr =23π,故B 错误;选项C ,因为PA ∥平面A 1B 1CD ,设过PA 且与平面A 1B 1CD 平行的平面为α,则P 的轨迹为α与外接球的交线,其半径为a 2=1,周长为2π,故C 正确;选项D ,若平面PAD ⊥平面PBC ,则点P 在以四边形ABCD 为轴截面的某个圆柱面上,该圆柱面与球面交线为曲线,故有无数个点P 满足,故D 正确.8.(2023·长沙模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为正方体表面上的动点,N 为线段AC 1上的动点,若直线AM 与AB 的夹角为π4,则下列说法正确的是()A .点M 的轨迹确定的图形是平面图形B .点M 的轨迹长度为π2+22C .C 1M 的最小值为2-1D .当点M 在侧面BB 1C 1C 上时,33AN +MN 的最小值为1答案BCD 解析如图,建立空间直角坐标系,则D (0,1,0),C 1(1,1,1),∵直线AM 与AB 的夹角为π4,当点M 在侧面AA 1D 1D 上时,AB ⊥AM ,不合题意;当点M 在底面A 1B 1C 1D 1和侧面CC 1D 1D (不包含边界)上时,点M 到直线AB 的距离大于AB 的长度,此时,AM 与AB 的夹角大于π4;当点M 在侧面AA 1B 1B 和底面ABCD 上时,可知线段AB 1,AC 满足题意;当点M 在侧面BCC 1B 1上时,由AB ⊥BM ,可知BM =AB ,此时弧B 1C 为所求.∴M 点的轨迹为线段AC ,AB 1,弧B 1C ,显然线段AC ,AB 1,弧B 1C 不共面,∴A 错误;对于B ,点M 的轨迹长度为π2+22,∴B 正确;对于C ,若M 在线段AC 上,则C 1M 的最小值为1,同理,若M 在线段AB 1上,则C 1M 的最小值也为1,若M 在弧B 1C 上,则C 1M 的最小值为C 1B -1=2-1,∴C 正确;对于D ,M (1,y ,z )(0≤y ≤1,0≤z ≤1),且y 2+z 2=1,由题意设N (λ,λ,λ),λ∈[0,1],则33AN +MN =λ+(1-λ)2+(y -λ)2+(z -λ)2≥λ+(1-λ)2=λ+(1-λ)=1,当且仅当y =z =λ,且y 2+z 2=1,即y =z =λ=22时,等号成立,∴D 正确.三、填空题9.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 为棱B 1C 1的中点,N 为底面正方形ABCD上一动点,且直线MN 与底面ABCD 所成的角为π3,则动点N 的轨迹长度为________.答案43π9解析如图所示,取BC 中点G ,连接MG ,NG ,由正方体的特征可知,MG ⊥底面ABCD ,故MN 与底面ABCD 的夹角即为∠MNG ,所以∠MNG =π3,则MG NG =tan π3⇒NG =233,故点N 在以G 为圆心,233为半径的圆上,又N 在底面正方形ABCD 上,即点N 的轨迹为图示中的圆弧 EF ,易知BG EG =1233=32⇒∠EGB =π6⇒∠EGF =π-π6-π6=2π3,所以动点N 的轨迹长度为233×2π3=43π9.10.如图所示,在平行四边形ABCD 中,E 为AB 中点,DE ⊥AB ,DC =8,DE =6.沿着DE 将△ADE 折起,使A 到达点A ′的位置,且平面A ′DE ⊥平面ADE .设P 为△A ′DE 内的动点,若∠EPB =∠DPC ,则点P 的轨迹长度为______.答案4π3解析建立如图所示的空间直角坐标系,则D (0,0,0),C (0,8,0),E (6,0,0),B (6,4,0),设P (x ,0,z ),则PD →=(-x ,0,-z ),PC →=(-x ,8,-z ),PE →=(6-x ,0,-z ),PB →=(6-x ,4,-z ),∴cos ∠EPB =cos 〈PE →,PB →〉=PE →·PB →|PE →||PB |→=(6-x )2+z 2(6-x )2+z 2(6-x )2+16+z 2,cos ∠DPC =cos 〈PD →,PC →〉=PD →·PC →|PD →||PC |→=x 2+z 2x 2+z 2x 2+64+z 2,∵∠EPB =∠DPC ,∴cos ∠EPB =cos ∠DPC ,∴(6-x )2+z 2(6-x )2+z 2(6-x )2+16+z 2=x 2+z 2x 2+z 2x 2+64+z 2,整理化简得x 2+z 2-16x +48=0,即(x -8)2+z 2=16,∴点P 的轨迹为圆弧,所在圆交A ′E 于P 1(6,0,23),交DE 于P 2(4,0,0),则|P 1P 2—→|=(6-4)2+(0-0)2+(23-0)2=4,∴ 12PP 所对应的圆心角α=π3,∴弧长l =αr =π3×4=4π3,即点P 的轨迹长度为4π3.。
思路探寻cos A ),则c =sin A -cos A >0,则sin A >cos A ,若A ∈éëöøπ2,π,则sin A >0,cos A ≤0,显然sin A >cos A 成立,若A ∈æèöø0,π2,则cos A >0,则tan A >1=tan π4,所以A ∈æèöøπ4,π2,可得A ∈æèöøπ4,π.故ΔABC 的面积S =12b sin A =12∙2∙()sin A -cos A ⋅sin A =sin A ()sin A -cos A =sin 2A -sin A cos A=1-cos 2A 2-12sin 2A =12æèöø2A +π4.因为A ∈æèöøπ4,π,所以2A +π4∈æèöø3π4,9π4,当2A +π4=3π2,即A =5π8时,ΔABC 的面积取得最大值.解答本题,需要运用正余弦定理、三角形的面积公式.各关系式中均含有正弦、余弦、正切函数式,需利用同角的三角函数关系:tan α=sin αcos α和sin 2α+cos 2α=1进行弦切互化,最后将目标式化为只含有正弦函数的式子,便可根据正弦函数的有界性求三角形面积的最值.三、变换常数在进行三角函数运算、证明时,往往需要将常数转化为特殊角的三角函数值,如1=sin 2α+cos 2α=sin π2=tan π4、sin π3=cos π4=这样便可直接运用两角的和差公式、二倍角公式、和差化积公式、积化和差公式、辅助角公式解题.例4.已知a =1+sin 48°+1-sin 48°,b =tan 95°-tan 35°-3tan 95°tan 35°,c =4sin 31°sin 59°,则a ,b ,c 的大小关系是().A.a <b <cB.a <c <bC.b <c <aD.c <b <a 解:因为a =1+sin 48°+1-sin 48°=sin 224°+cos 224°+2sin 24°cos 24°+sin 224°+cos 224°-2sin 24°cos 24°=sin 24°+cos 24°-sin 24°+cos 24°=2cos 24°,又tan 60°=tan ()95°-35°=tan 95°-tan 35°1+tan 95°∙tan 35°=3,故b =tan 95°-tan 35°-3tan 95°tan 35°=3;又c =4sin 31°sin 59°=4sin 31°cos 31°=2sin 62°,故a =2cos 24°>2cos 28°=2sin 62°>2sin 60°=3;综上所述:b <c <a .故选C 项.要比较三个三角函数式的大小,需先“化异为同”,将a 、b 、c 的表达式分别化成只含有同一种三角函数名称的式子,于是将其中的常数“1”用1=sin 224°+cos 224°,常数“3”用3=tan 60°代换,从而将问题转化为正弦函数的单调性问题来求解.四、变幂变幂是指变换指数幂,包括升幂和降幂.对于指数次数不一的三角函数式,通常要进行变幂.对于高次式,需运用半角公式将函数式作降幂处理;对于低次式,需运用二倍角公式将函数式作升幂处理.例5.已知函数f ()x =2()sin x +cos x 2+43cos 2x-23.(1)求f ()x 的对称轴方程;(2)若x ∈éëùû0,π2,求函数f ()x 的值域.解:(1)由题意可得:f ()x =2()sin x +cos x 2+43cos 2x -23=2()1+2sin x cos x +43×1+cos 2x 2-23=2sin 2x +23cos 2x +2=4sin æèöø2x +π3+2,令2x +π3=k π+π2,k ∈Z ,解得x =k π2+π12,k ∈Z,所以f ()x 对称轴的方程为x =k π2+π12,k ∈Z.(2)因为x ∈éëùû0,π2,则2x +π3∈éëùûπ3,4π3,可得sin æèöø2x +π3∈éëêùûú,所以f ()x ∈[]2-23,6,故函数f ()x 的值域为[]2-23,6.该函数式中含有二次式,为了求得函数的最值,需将函数中的二次式降次,于是运用半角公式cos 2x =1+cos 2x 2,将二次式化为一次式.再运用辅助角公式求得问题的答案.由此可见,进行三角恒等变换,要先仔细观察题目中角、函数名称、幂是否统一;然后选用合适的公式变角、变函数名称、变换常数、变幂,以将函数式化为只含一个角、一种函数名称、幂相同的式子,这样便于求得问题的答案.(作者单位:云南师范大学附属中学)48思路探寻蒋雪3。
微重点 立体几何中的动态问题“动态”问题是高考立体几何问题最具创新意识的题型,它渗透了一些“动态”的点、线、面等元素,给静态的立体几何题赋予了活力,题型更新颖.同时,由于“动态”的存在,也使立体几何题更趋多元化,将立体几何问题与平面几何中的解三角形问题、多边形面积问题以及解析几何问题之间建立桥梁,使得它们之间灵活转化.知识导图考点一:动点轨迹问题考点二:折叠、展开问题考点三:最值、范围问题考点分类讲解考点一:动点轨迹问题规律方法 解决与几何体有关的动点轨迹问题的方法(1)几何法:根据平面的性质进行判定.(2)定义法:转化为平面轨迹问题,用圆锥曲线的定义判定或用代数法进行计算.(3)特殊值法:根据空间图形线段长度关系取特殊值或位置进行排除.1(2024·浙江温州·一模)如图,所有棱长都为1的正三棱柱ABC -A 1B 1C 1,BE =2EC,点F 是侧棱AA 1上的动点,且AF =2CG,H 为线段FB 上的动点,直线CH ∩平面AEG =M ,则点M 的轨迹为()A.三角形(含内部)B.矩形(含内部)C.圆柱面的一部分D.球面的一部分【答案】A【分析】根据题意首先保持H 在线段FB 上不动(与F 重合),研究当点F 运动时M 的轨迹为线段MN ,再根据H 点在线段FB 上运动的轨迹即可得出点M 的轨迹为△MNE 及其内部的所有点的集合.【详解】如下图所示:首先保持H 在线段FB 上不动,假设H 与F 重合根据题意可知当F 点在侧棱AA 1上运动时,若F 点在A 1点处时,G 为CC 1的中点,此时由AF =2CG 可得满足FM =2MC,当F 点运动到图中F 1位置时,易知AF 1 =2CG 1,取AG 1∩CF 1=P ,可得F 1P =2PC ,取棱AC 上的点N ,满足AN =2NC,根据三角形相似可得M ,N ,P 三点共线,当点F 在侧棱AA 1上从A 1点运动到A 点时,M 点轨迹即为线段MN ;再研究当点H 在线段FB 上运动,当点H 在线段FB 上从点F 运动到点B 时,M 点的轨迹是线段ME ,当点H 在线段F 1B 上从点F 1运动到点B 时,M 点的轨迹是线段PE ,因此可得,当点F 是侧棱AA 1上运动时,H 在线段FB 上运动时,点M 的轨迹为△MNE 及其内部的所有点的集合;即可得M 的轨迹为三角形(含内部).故选:A2(多选)(23-24高三上·贵州安顺·期末)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点E 、F 、G 、H 分别为棱CC 1、C 1D 1、A 1D 1、AB 的中点,点M 为棱A 1B 1上动点,则()A.点E 、F 、G 、H 共面B.GM +MH 的最小值为1+5C.点B 到平面AB 1C 的距离为233D.DE ⊥A 1H【答案】ACD【分析】根据题意建立空间之间坐标系,利用平面向量基本定理可对A 判断,利用向量的垂直表示可对D 判断;利用正方体面展开图可对B 判断;利用等体积法可对C 判断.【详解】如图,以D 为原点,建立空间直角坐标系,则D 0,0,0 ,E 0,2,1 ,F 0,1,2 ,G 1,0,2 ,H 2,1,0 ,对A :EF =0,-1,1 ,EG =1,-2,1 ,EH =2,-1,-1 ,设EF =λEG +μEH ,即0,-1,1 =λ1,-2,1 +μ2,-1,-1 ,解得λ=23,μ=-13,所以EF ,EG ,EH共面,故A 正确.对B :将正方体沿AB 剪开展开如下图,连接GH 交A 1B 1于一点,此点为M 点,此时GM +MH 为最小值32+22=13,故B 错误;对C :由等体积法可知V B -AB 1C =V B 1-ABC ,即13·S △AB 1C ·d =13·S △ABC ·BB 1 ,由S △AB 1C =12×2×2×sin π3=32,S △ABC =12×2×2=2,求解得d =233,故C 正确.对D :D 0,0,0 ,A 12,0,2 ,DE =0,2,1 ,A 1H=0,1,-2 DE ·A 1H =2-2=0,则DE ⊥A 1H ,所以DE ⊥A 1H ,故D 正确.故选:ACD .3(2023·贵州·一模)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M ,N ,P 分别为棱AA 1,CC 1,AD 的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的轨迹围成图形的面积为.【答案】33【分析】根据题意找出点Q 的轨迹围成图形为正六边形PENFGM 即可求解.【详解】如图,取CD ,B 1C 1,A 1B 1的中点分别为EFG ,则点Q 的轨迹围成图形为正六边形PENFGM ,且边长为面对角线的一半,即2,所以点Q 的轨迹围成图形的面积为6×122×2 2-222=33,故答案为:3 3.4(2023·宁波联考)正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 满足BP =λBC+μ-→BB 1(λ,μ∈R ),则下列说法正确的有()A.若λ+μ=1,则A 1P ⊥AD 1B.若λ+μ=1,则三棱锥A 1-PDC 1的体积为定值C.若点P 总满足PA ⊥BD 1,则动点P 的轨迹是一条直线D.若点P 到点A 的距离为3,则动点P 的轨迹是一个面积为π的圆【答案】ABC【解析】对于A ,因为BP =λBC +μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知,点B 1,C ,P 共线,如图,连接AD1,A 1C ,BC 1,B 1C ,在正方体ABCD -A 1B 1C 1D 1中,B 1C ⊥BC 1,A 1B 1⊥平面BB 1C 1C ,因为BC 1⊂平面BB 1C 1C ,所以A 1B 1⊥BC 1,又B 1C ∩A 1B 1=B 1,所以BC 1⊥平面A 1B 1C ,在BC 1上任取一点P ,连接A 1P ,则A 1P ⊂平面A 1B 1C ,所以BC 1⊥A 1P ,在正方体ABCD -A 1B 1C 1D 1中,因为AB ∥D1C 1,且AB =D 1C 1,所以四边形ABC 1D 1为平行四边形,所以AD 1∥BC 1,则AD 1⊥A 1P ,故选项A 正确;对于B ,如图,连接A 1C 1,C 1D ,A 1D ,B 1C ,因为BP =λBC+μ-→BB 1(λ,μ∈R )且λ+μ=1,由向量基本定理可知点B 1,C ,P 共线,即点P 在直线B 1C 上,在正方体ABCD -A 1B 1C 1D 1中,因为A 1B 1∥DC ,且A 1B 1=DC ,所以四边形A 1B 1CD 为平行四边形,所以A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,BC 1⊄平面A 1C 1D ,所以B 1C ∥平面A 1C 1D ,则直线B 1C 上任意一点到平面A 1C 1D 的距离相等,又因为△A 1C 1D 的面积为一定值,所以三棱锥A 1-PDC 1的体积为定值,故选项B 正确;对于C ,如图,连接AC ,BD ,AB1,BD 1,B 1C ,B 1D 1,在正方体ABCD -A 1B 1C 1D 1中,AC ⊥BD ,BB 1⊥平面ABCD ,因为AC ⊂平面ABCD ,所以BB 1⊥AC ,又BB 1∩BD =B ,所以AC ⊥平面BB 1D 1D ,BD 1⊂平面BB 1D 1D ,所以AC ⊥BD 1,同理AB 1⊥BD 1,又AB 1∩AC =A ,所以BD 1⊥平面AB 1C ,因为点P 满足BP =λBC +μ-→BB 1(λ,μ∈R ),所以点P 在侧面BB 1C 1C 所在的平面上运动,且PA ⊥BD 1,所以动点P 的轨迹就是直线B 1C ,故选项C 正确;对于D ,因为点P 到点A 的距离为3,所以点P 的轨迹是以A 为球心,3为半径的球面与平面BB 1C 1C 的交线,即点P 的轨迹为小圆,设小圆半径为r ,因为球心A 到平面BB 1C 1C 的距离为1,则r =(3)2-1=2,所以小圆的面积S =πr 2=2π,故选项D 错误考点二:折叠、展开问题规律方法 画好折叠、展开前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.1(2024·河南·模拟预测)为体现市民参与城市建设、共建共享公园城市的热情,同时搭建城市共建共享平台,彰显城市的发展温度,某市在中心公园开放长椅赠送点位,接受市民赠送的休闲长椅.其中观景草坪上一架长椅因其造型简单别致,颇受人们喜欢(如图1).已知AB 和CD 是圆O 的两条互相垂直的直径,将平面ABC 沿AB 翻折至平面ABC ,使得平面ABC ⊥平面ABD (如图2)此时直线AB 与平面C BD 所成角的正弦值为()A.13B.33C.22D.32【答案】B【分析】根据给定条件,建立空间直角坐标系,利用空间向量求出线面角的正弦值.【详解】依题意,OC ⊥AB ,OD ⊥AB ,而平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,又OC ⊂平面ABC ,OD ⊂平面ABD ,则OC ⊥平面ABD ,OD ⊥OC ,因此直线OD ,OB ,OC 两两垂直,以点O 为原点,直线OD ,OB ,OC 分别为x ,y ,z 轴建立空间直角坐标系,令圆半径OD =1,则O (0,0,0),D (1,0,0),B (0,1,0),C (0,0,1),OB =(0,1,0),BC=(0,-1,1),BD =(1,-1,0),设平面C BD 的一个法向量n =(x ,y ,z ),则n ⋅BC=-y +z =0n ⋅BD=x -y =0,令y =1,得n =(1,1,1),设直线AB 与平面C BD 所成的角为θ,则sin θ=|cos ‹n ,OB ›|=|n ⋅OB ||n ||OB |=11×3=33,所以直线AB 与平面C BD 所成角的正弦值为33.故选:B2(22-23高三上·浙江·开学考试)如图,矩形ABCD 中,AD =2,AB =3,AE =2EB,将△ADE 沿直线DE 翻折成△A 1DE ,若M 为线段A 1C 的点,满足CM =2MA 1,则在△ADE 翻折过程中(点A 1不在平面DEBC 内),下面四个选项中正确的是()A.BM ⎳平面A 1DEB.点M 在某个圆上运动C.存在某个位置,使DE ⊥A 1CD.线段BA 1的长的取值范围是5,3【答案】ABD【分析】由已知,选项A ,在DC 上取一点N ,令CN =2ND ,可通过面面平行的判定定理证明平面BMN ∥平面ADE ,从而证明BM ∥平面A 1DE ;选项B ,可通过∠A 1DE =∠MNB =π4,NM =43,EB =22,借助余弦定理可知BM 为定值,从而确定M 点的轨迹;选项C ,可先假设DE ⊥A 1C 成立,然后借助线面垂直的判定定理和性质定理得到DE ⊥CH ,然后在△DHC 中,利用勾股定理验证是否满足,即可做出判断;选项D ,可通过点A 1运行轨迹,分别找出最大值和最小值点,然后求解即可做出判断.【详解】如上图所示,在DC 上取一点N ,令CN =2ND,连接NB ,在矩形ABCD 中,AB =CD 且AB ∥CD ,又因为AE =2EB ,CN =2ND,所以EB =ND 且EB ∥ND ,所以四边形EBND 为平行四边形,所以NB ∥ED ,又因为NB ⊄平面ADE ,DE ⊂平面ADE ,所以NB ∥平面ADE ,又因为CN =2ND ,CM =2MA 1,所以NM ∥A 1D ,又因为NM ⊄平面ADE ,DA 1⊂平面ADE ,所以NM ∥平面ADE ,又因为NM ∩NB =N 且NM 、NB ⊂平面BMN ,所以平面BMN ∥平面ADE ,又因为MB ⊂平面BMN ,所以BM ∥平面A 1DE ,选项A 正确;由NB ∥ED ,NM ∥A 1D ,AD =AE =2,可得∠A 1DE =∠MNB =π4,由CN =2ND ,CM =2MA 1 可知,NM =23A 1D =43,而EB =ND =22,由余弦定理可知,BM 为定值,而B 为定点,故M 在以B 为圆心,BM 为半径的圆上运动,故选项B 正确;取ED 的中点H ,连接HA 1、HC ,在△A 1DE 中,AD =AE =2,所以DE ⊥A 1H ,假设DE ⊥A 1C 成立,A 1H 、A 1C ⊂平面A 1HC ,所以DE ⊥平面A 1HC ,又因为CH ⊂平面A 1HC ,所以DE ⊥CH ,而,在△DHC 中,DH =2,DC =3,CH =5,所以∠DHC ≠π2,故DE ⊥CH 不成立,所以假设不成立,该选项C 错误;在DC 上取一点A 2,令DA 2 =2A 2C,在△ADE 翻折过程中, 线段BA 1的最大值是A 1与A 点重合,此时BA 1=3,线段BA 1的最小值是A 1与A 2点重合,此时BA 1=5,又因为点A 1不在平面DEBC 内,所以线段BA 1的长的取值范围是5,3 ,选项D 正确;故选:ABD3(2024高三·全国·专题练习)如图1,在等边△ABC 中,点D 、E 分别为边AB 、AC 上的动点且满足DE ⎳BC ,记DEBC=λ.将△ADE 沿DE 翻折到△MDE 的位置,使得平面MDE ⊥平面DECB ,连接MB ,MC ,如图2,N 为MC 的中点.(1)当EN ⎳平面MBD 时,求λ的值.(2)随着λ的值的变化,二面角B -MD -E 的大小是否改变?若是,请说明理由;若不是,请求出二面角B -MD -E 的正弦值.【答案】(1)λ=12(2)不是,255【分析】(1)取MB 的中点为P ,连接DP ,PN ,推出NP ∥BC ,证明NEDP 为平行四边形,利用比例关系求解即可.(2)取DE 的中点O ,如图建立空间直角坐标系,求出平面BMD 的法向量,平面EMD 的法向量,利用空间向量的数量积求解二面角的余弦函数值然后求解即可.【详解】(1)如图,取MB 的中点P ,连接DP ,PN .因为N 为MC 的中点,所以NP ⎳BC ,NP =12BC .又DE ⎳BC ,所以NP ⎳DE ,即N ,P ,D ,E 四点共面.因为EN ⎳平面MBD ,EN ⊂平面NEDP ,平面NEDP ∩平面MBD =DP ,所以EN ⎳DP ,即四边形NEDP 为平行四边形,所以NP =DE ,即DE =12BC ,所以λ=12.(2)取ED 的中点O ,连接MO ,则MO ⊥DE .因为平面MDE ⊥平面DECB ,平面MDE ∩平面DECB =DE ,MO ⊂平面MDE ,所以MO ⊥平面DECB .如图,建立空间直角坐标系,不妨设BC =2,则M 0,0,3λ ,D λ,0,0 ,B 1,31-λ ,0 ,所以MD =λ,0,-3λ ,DB =1-λ,31-λ ,0 .设平面MBD 的一个法向量为m=(x ,y ,z ),则MD ⋅m=λx -3λz =0,DB ⋅m =1-λ x +31-λ y =0,即x =3z ,x =-3y , 令x =3,所以m =3,-1,1 .由题意可知n=(0,1,0)为平面MDE 的一个法向量.设二面角B -MD -E 的平面角为θ,则cos θ =cos m ,n =m ⋅n m n =55,因此sin θ=1-cos 2θ=255,所以二面角B -MD -E 的正弦值为255.4(2023·邵阳模拟)如图所示,在矩形ABCD 中,AB =3,AD =1,AF ⊥平面ABCD ,且AF =3,点E 为线段CD (除端点外)上的动点,沿直线AE 将△DAE 翻折到△D ′AE ,则下列说法中正确的是()A.当点E 固定在线段CD 的某位置时,点D ′的运动轨迹为球面B.存在点E ,使AB ⊥平面D ′AEC.点A 到平面BCF 的距离为32D.异面直线EF 与BC 所成角的余弦值的取值范围是1313,1010【答案】 D【解析】选项A ,当点E 固定在线段CD 的某位置时,线段AE 的长度为定值,AD ′⊥D ′E ,过D ′作D ′H ⊥AE 于点H ,H 为定点,D ′H 的长度为定值,且D ′H 在过点H 与AE 垂直的平面内,故D ′的轨迹是以H 为圆心,D ′H 为半径的圆,故A 错误;选项B ,无论E 在CD (端点除外)的哪个位置,AB 均不与AE 垂直,故AB 不与平面AD ′E 垂直,故B 错误;选项C ,以AB ,AD ,AF分别为x ,y ,z 轴的方向建立如图所示的空间直角坐标系,则A (0,0,0),F (0,0,3),B (3,0,0),C (3,1,0).BC =(0,1,0),BF =(-3,0,3),AB =(3,0,0),设平面BCF 的法向量为n =(x ,y ,z ),则n ·BC=y =0,n ·BF =-3x +3z =0, 取n =(3,0,1),则点A 到平面BCF 的距离d =n ·ABn=32,故C 错误;选项D ,设E (3λ,1,0),λ∈(0,1),BC=(0,1,0),EF=-3λ,-1,3 ,设EF 与BC 所成的角为θ,则cos θ=EF ·BCEF BC=13λ2+10∈1313,1010 ,故D 正确.考点三:最值、范围问题规律方法 在动态变化过程中产生的体积最大、距离最大(小)、角的范围等问题,常用的解题思路是(1)直观判断:在变化过程中判断点、线、面在何位置时,所求的量有相应最大、最小值.(2)函数思想:通过建系或引入变量,把这类动态问题转化为目标函数,从而利用代数方法求目标函数的最值.1(多选)(2023·鞍山模拟)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,P 是线段BC 1上的动点,则下列结论正确的是()A.四面体PA 1D 1A 的体积为定值B.AP +PC 的最小值为22C.A 1P ∥平面ACD 1D.直线A 1P 与AC 所成的角的取值范围是0,π3【答案】ACD【解析】对于A ,由正方体可得平面DAA 1D 1∥平面BCC 1B 1,且B ,P ∈平面BCC 1B 1,所以点B 到平面DAA 1D 1的距离等于点P 到平面DAA 1D 1的距离,所以四面体PA 1D 1A 的体积V P -A 1D 1A =VB -A 1D 1A =13S △A 1D 1A ×1=13×12×1×1×1=16,所以四面体PA 1D 1A 的体积为定值,故A 正确;对于B ,当P 与B 重合时,AP +PC =AB +BC =2<22,所以AP +PC 的最小值不为22,故B 错误;对于C ,连接A 1C 1,A 1B ,由正方体可得AA 1=CC 1,AA 1∥CC 1,所以四边形AA 1C 1C 是平行四边形,所以AC ∥A 1C 1,因为AC ⊂平面ACD 1,A 1C 1⊄平面ACD 1,所以A 1C 1∥平面ACD 1,同理可得BC 1∥平面ACD 1因为A 1C 1∩BC 1=C 1,A 1C 1,BC 1⊂平面A 1C 1B ,所以平面A 1C 1B ∥平面ACD 1,因为A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,故C 正确;对于D ,因为AC ∥A 1C 1,所以∠PA 1C 1(或其补角)为直线A 1P 与AC 所成的角,由图可得当P 与B 重合时,此时∠PA 1C 1最大为π3,当P 与C 1重合时,此时∠PA 1C 1最小为0,所以直线A 1P 与AC 所成的角的取值范围是0,π3,故D 正确.2(2023·青岛模拟)三面角是立体几何的基本概念之一,而三面角余弦定理是解决三面角问题的重要依据.三面角P -ABC 是由有公共端点P 且不共面的三条射线PA ,PB ,PC 以及相邻两射线间的平面部分所组成的图形,设∠APC =α,∠BPC =β,∠APB =γ,二面角A -PC -B 为θ,由三面角余弦定理得cos θ=cos γ-cos α·cos βsin α·sin β.在三棱锥P -ABC 中,PA =6,∠APC =60°,∠BPC =45°,∠APB =90°,PB +PC=6,则三棱锥P -ABC 体积的最大值为()A.2724B.274C.92D.94【答案】C【解析】如图所示,作BD 垂直于CP 于点D ,设点B 在平面APC 中的射影为M ,连接BM ,MD ,由题意得V P -ABC =13·S △APC·BM .设二面角A -PC -B 为θ,则cos θ=0-12×2232×22=-33,θ∈(0,π),∴sin ∠BDM =63,BM =BD ·sin ∠BDM =63BD =63·PB ·sin ∠BPC =33·PB ,S △APC =12·PA ·PC ·sin ∠APC =332·PC ,∴V P -ABC =13·S △APC ·BM =12·PB ·PC =12·PB (6-PB )=-12PB 2+3PB=-12(PB -3)2+92,当PB =3时,V P -ABC 的最大值为92.3(23-24高三下·北京·开学考试)正方体ABCD -A 1B 1C 1D 1的棱长为1,动点M 在线段CC 1上,动点P 在平面A 1B 1C 1D 1上,且AP ⊥平面MBD 1.线段AP 长度的取值范围是()A.1,2B.62,3 C.62,2 D.62+∞ 【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算,代入计算,即可得到结果.【详解】以D 为坐标原点,以DA ,DC ,DD 1分别为x ,y ,z 轴的正半轴,建立如图所示的空间直角坐标系,设P a ,b ,1 ,M 0,1,t 0≤t ≤1 ,则A 1,0,0 ,B 1,1,0 ,D 10,0,1 ,则AP =a -1,b ,1 ,BD 1 =-1,-1,1 ,MD 1=0,-1,1-t ,因为AP ⊥平面MBD 1,所以AP ⊥BD 1,AP ⊥MD 1,即AP ⋅BD 1=1-a -b +1=0AP ⋅MD 1 =-b +1-t =0 ,解得a =t +1b =1-t ,所以AP =t ,1-t ,1 ,所以AP =t 2+1-t 2+1=2t -12 2+32,又0≤t ≤1,所以当t =12时,即M 是CC 1的中点时,AP 取得最小值62,当t =0或1,即M 与点C 或C 1重合时,AP取得最大值2,所以线段AP 长度的取值范围为62,2.故选:C4(2023·黑龙江哈尔滨·三模)已知四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD ,PD =AD ,点E 是线段PB 上的动点,则直线DE 与平面PBC 所成角的最大值为()A.π6B.π4C.π3D.π2【答案】C【分析】根据题意,建立空间直角坐标系,结合空间向量的坐标运算即可得到结果.【详解】由题意,因为ABCD 为正方形,且PD ⊥底面ABCD ,以D 为原点,DA ,DC ,DP 所在直线分别为x ,y ,z 轴,建立如图所示空间直角坐标系,设PD =AD =1,则D 0,0,0 ,B 1,1,0 ,C 0,1,0 ,P 0,0,1 ,所以PB =1,1,-1 ,PC =0,1,-1 ,设PE =λPB ,λ∈0,1 ,则PE =λ,λ,-λ ,所以E λ,λ,1-λ ,即DE =λ,λ,1-λ ,设平面PBC 的法向量为n=x ,y ,z ,则n ⋅PB=x +y -z =0n ⋅PC=y -z =0,解得x =0,y =z ,取y =z =1,所以平面PBC 的一个法向量为n=0,1,1 ,设直线DE 与平面PBC 所成角为θ,则sin θ=cos <n ,DE> =n ⋅DEn DE =12×2λ2+1-λ2=12×3λ-132+23,因为y =sin θ,θ∈0,π2单调递增,所以当λ=13时,sin θ=32最大,此时θ=π3,即直线DE 与平面PBC 所成角的最大值为π3.故选:C强化训练一、单选题1(2023·云南保山·二模)已知正方体ABCD -A 1B 1C 1D 1,Q 为上底面A 1B 1C 1D 1所在平面内的动点,当直线DQ 与DA 1的所成角为45°时,点Q 的轨迹为()A.圆B.直线C.抛物线D.椭圆【答案】C【分析】建系,利用空间向量结合线线夹角分析运算.【详解】以点D 为原点,DA ,DC ,DD 1为x ,y ,z 的正方向,建立空间直角坐标系,设正方体棱长为1,则D 0,0,0 ,A 11,0,1 ,设Q x ,y ,1 ,可得DQ =x ,y ,1 ,DA 1 =1,0,1 ,因为直线DQ 与DA 1的所成角为45°,则cos45°=DQ ⋅DA 1 DQ ⋅DA 1=x +1x 2+y 2+1×2=22,化简可得y 2=2x ,所以点Q 的轨迹为抛物线.故选:C .2(2023·全国·三模)在平面直角坐标系中,P 为圆x 2+y 2=16上的动点,定点A -3,2 .现将y 轴左侧半圆所在坐标平面沿y 轴翻折,与y 轴右侧半圆所在平面成2π3的二面角,使点A 翻折至A ,P 仍在右侧半圆和折起的左侧半圆上运动,则A ,P 两点间距离的取值范围是()A.13,35B.4-13,7C.4-13,35D.13,7【答案】B【分析】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,以及P 在圆的下端点时,分别取到A ,P 两点间距离的最值;若P ∈β,设P 4cos α,4sin α ,利用两点间的距离公式结合A 到β的距离,以及三角函数的有界性取到最值,进而得出答案.【详解】设A 所在平面为α,圆的另一半所在平面为β,若P ∈α,则P ,A ,O 三点共线时,PA 有最小值P 1A =R -OA =4-13;当P 在圆的下端点时,取到最大值P 2A =-3-02+2+4 2=32+62=35,即PA ∈4-13,35 ;若P ∈β,设P 4cos α,4sin α ,A 在β上的投影为距离为A 1,则A 到β面距离为AA 1 =-3 sin π3=332,又A 到y 轴的距离为3,∴A 1到y 轴的距离为9-274=32,而A 1到x 轴的距离为2,则PA =32+4cos α2+2-4sin α 2+3322=29+2035cos α-45sin α =29+20sin φ-α ,其中α∈-π2,π2 ,sin φ=35,cos φ=45,故PA min =13,当且仅当α=-π2时成立;PAmax =7,当且仅当α=φ-π2时成立;即PA ∈13,7 ;综上可得,PA∈4-13,7 ,故选:B3(2024·全国·模拟预测)如图,已知矩形ABCD 中,E 为线段CD 上一动点(不含端点),记∠AED =α,现将△ADE 沿直线AE 翻折到△APE 的位置,记直线CP 与直线AE 所成的角为β,则()A.cos α>cos βB.cos α<cos βC.cos α>sin βD.sin α<cos β【答案】B【分析】利用空间向量夹角余弦公式和向量数量积公式得到cos β=CE+EPcos αCP,由三角形三边关系得到cos β>cos α,求出答案.【详解】AB 选项,cos β=CP ⋅EA CP ⋅EA =CE +EP⋅EA CP ⋅EA =CE ⋅EA +EP ⋅EA CP ⋅EA=CE ⋅EA cos α+EP ⋅EA cos α CP ⋅EA =CE +EP ⋅EA cos αCP ⋅EA =CE +EP cos αCP,因为CE +EP >CP ,所以CE +EPCP>1,所以cos β>cos α,A 错误,B 正确;由于y =cos x 在x ∈0,π2上单调递减,故β<α,不确定cos α,sin β和sin α,cos β的大小关系,CD 错误.故选:B .4(2023·上海宝山·二模)在空间直角坐标系O -xyz 中,已知定点A 2,1,0 ,B 0,2,0 和动点C 0,t ,t +2 t ≥0 .若△OAC 的面积为S ,以O ,A ,B ,C 为顶点的锥体的体积为V ,则VS的最大值为()A.2155 B.155 C.4155 D.455【答案】C【分析】由已知OA =2,1,0 ,0B =0,2,0 ,OC =0,t ,t +2 ,设直线OA 的单位方向向量为u ,根据空间向量公式求出C 到直线OA 的距离,得到△OAC 的面积为S ,根据锥体体积公式得到以O ,A ,B ,C 为顶点的锥体的体积为V ,利用分离常数法和基本不等式求解即可得到最大值.【详解】由已知OA =2,1,0 ,0B =0,2,0 ,OC=0,t ,t +2 ,设直线OA 的单位方向向量为u ,则u =255,55,0,所以C 到直线OA 的距离h =OC 2-OC ⋅u 2=t 2+t +2 2-t 25=9t 2+20t +205,所以S =12×5×9t 2+20t +205=9t 2+20t +202,V =13S △OAB ⋅t +2 =13×12×2×2×t +2 =2t +2 3,则V S =2t +239t 2+20t +202=43⋅t +229t 2+20t +20=49⋅9t 2+36t +369t 2+20t +20=49⋅9t 2+20t +20+16t +169t 2+20t +20=49⋅1+16⋅t +19t 2+20t +20,令m =t +1m ≥1 ,则t =m -1,所以t +19t 2+20t +20=m 9m -1 2+20m -1 +20=m 9m 2+2m +9=19m +9m +2≤129m ⋅9m +2=120,当且仅当9m =9m即m =1时等号成立,所以V S≤49×1+16×120=4515,即V S的最大值为4515.故选:C .5(23-24高三上·河北衡水·阶段练习)正三棱柱ABC -A 1B 1C 1中,AB =2,AA 1=3,O 为BC 的中点,M 为棱B 1C 1上的动点,N 为棱AM 上的动点,且MN MO =MOMA ,则线段MN 长度的取值范围为()A.364,7 B.62,477C.34,477D.3,6【答案】B【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱ABC -A 1B 1C 中,O 为BC 的中点,取B 1C 1中点Q ,连接OQ ,如图,以O 为原点,OC ,OA ,OQ 为x ,y ,z 轴建立空间直角坐标系,则O 0,0,0 ,A 0,3,0 ,B 1-1,0,3 ,C 11,0,3 ,因为M 是棱B 1C 1上一动点,设M a ,0,3 ,且a ∈[-1,1],所以OM ⋅OA=a ,0,3 ⋅0,3,0 =0,则OA ⊥OM ,因为ON ⊥AM ,且MN MO =MOMA 所以在直角三角形OMA 中可得:△OMN ~△AMO即MN =MO 2MA=a 2+3a 2+3 2+3 2=a 2+3a 2+6,于是令t =a 2+6,t ∈6,7 ,所以a 2+3a 2+6=t 2-3t =t -3t ,t ∈6,7 ,又符合函数y =t -3t 为增增符合,所以在t ∈6,7 上为增函数,所以当t =6时,t -3tmin =6-36=62,即线段MN 长度的最小值为62,当t =7时,t -3tmax=7-37=477,即线段MN 长度的最大值为477,故选:B .【点睛】关键点睛:1.找到△OMN ~△AMO ,再利用函数单调性求出最值.2.建系,设出动点M a ,0,3 ,利用空间向量法求出ON ⊥AM ,再结合线线关系求线段MN 的表达式,利用函数求最值即可.6(23-24高三下·山西·阶段练习)在棱长为4的正方体ABCD -A 1B 1C 1D 1中,E 是CD 的中点,F 是CC 1上的动点,则三棱锥A -DEF 外接球半径的最小值为()A.3B.23C.13D.15【答案】C【分析】取AE 的中点G ,根据题意分析可知:三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,设GO =n ,CF =m ∈0,4 ,建系,结合空间两点距离公式可得n =m 2+4m,进而利用基本不等式运算求解.【详解】连接AE ,取AE 的中点G ,可知G 为△ADE 的外心,过G 作平面ABCD 的垂线,可知三棱锥A -DEF 外接球的球心O 在该垂线上,设GO =n ,CF =m ∈0,4 ,以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴,建立空间直角坐标系,则D 0,0,0 ,A 4,0,0 ,E 0,2,0 ,G 2,1,0 ,O 2,1,n ,F 0,4,m ,因为OD =OF ,即4+1+n 2=4+9+m -n 2,整理得n =m 2+4m≥2m 2⋅4m =22,当且仅当m 2=4m,即m =22时,等号成立,所以三棱锥A -DEF 外接球半径的最小值为4+1+8=13.故选:C .【点睛】关键点点睛:根据题意分析可知三棱锥A -DEF 外接球的球心O 在过G 垂直于平面ABCD 的直线上,再以空间直角坐标系为依托,分析求解.7(2023·陕西咸阳·模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则以下不正确的是()A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45o 的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】D【分析】由底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离不变,可判定A 正确;以D 为原点,建立空间直角坐标系,设P (x ,2-x ,0),则D 1P =(x ,2-x ,-2),A 1C 1=(-2,2,0),结合向量的夹角公式,可判定B 正确;由直线AP 与平面ABCD 所成的角为45°,作PM ⊥平面ABCD ,得到点P 的轨迹,可判定C 正确;设P (m ,m ,0),求得平面CB 1D 1的一个法向量为n=(1,-1,-1),得到FP =2(x -1)2+6,可判定D 错误.【详解】对于A 中:底面正方形ADD 1A 1的面积不变,点P 到平面AA 1D 1D 的距离为正方体棱长,所以四棱锥P -AA 1D 1D 的体积不变,所以A 选项正确;对于B 中:以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴和z 轴,建立空间直角坐标系,可得A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),设P (x ,2-x ,0),0≤x ≤2,则D 1P =(x ,2-x ,-2),A 1C 1 =(-2,2,0),设直线D 1P 与A 1C 1所成角为θ,则cos θ=cos D 1P ,A 1C 1 =D 1P ⋅A 1C 1D 1P A 1C 1 =x -1(x -1)2+3,因为0≤x -1 ≤1,当x -1 =0时,可得cos θ=0,所以θ=π2;当0<x -1 ≤1时,cos θ=x -1(x -1)2+3=11+3x -12≤12,所以π3≤θ<π2,所以异面直线D 1P 与A 1C 1所成角的取值范围是π3,π2,所以B 正确;对于C 中:因为直线AP 与平面ABCD 所成的角为45°,若点P 在平面DCC 1D 1和平面BCC 1B 1内,因为∠B 1AB =45°,∠D 1AD =45°最大,不成立;在平面ADD 1A 1内,点P 的轨迹是AD 1=22;在平面ABB 1A 1内,点P 的轨迹是AB 1=22;在平面A 1B 1C 1D 1时,作PM ⊥平面ABCD ,如图所示,因为∠PAM =45°,所以PM =AM ,又因为PM =AB ,所以AM =AB ,所以A 1P =AB ,所以点P 的轨迹是以A 1点为圆心,以2为半径的四分之一圆,所以点P 的轨迹的长度为14×2π×2=π,综上,点P 的轨迹的总长度为π+42,所以C 正确;对于D 中,由B 1(2,2,2),D 1(0,0,2),C (0,2,0),F (2,1,2),设P (m ,n ,0),0≤m ≤2,0≤n ≤2,则CB 1 =(2,0,2),CD 1 =(0,-2,2),FP=(m -2,n -1,-2)设平面CB 1D 1的一个法向量为n=(a ,b ,c ),则n ⋅CD 1=-2b +c =0n ⋅CB 1=2a +2c =0,取a =1,可得b =-1,c =-1,所以n=(1,-1,-1),因为PF ⎳平面B 1CD ,所以FP ⋅n=(m -2)-(n -1)+2=0,可得n =m +1,所以FP=(m -2)2+(n -1)2+4=2m 2-4m +8=2(m -1)2+6≥6,当x =1时,等号成立,所以D 错误.故选:D .【点睛】方法点拨:对于立体几何的综合问题的解答方法:(1)、立体几何中的动态问题主要包括:空间动点轨迹的判断,求解轨迹的长度及动角的范围等问题;(2)、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;(3)、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;(4)、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在.8(2023·吉林长春·模拟预测)四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥CD,2AB =BC=CD,BC⊥CD,侧面A1ABB1为正方形,设点O为四棱锥A1-CC1DD外接球的球心,E为DD1上的动点,则直线AE与OB所成的最小角的正弦值为()A.55B.255C.265D.15【答案】D【分析】建立空间直角坐标系,确定各点坐标,设球心O1,h,1 2,根据OA=OC得到h=34,设E2,0,a,根据向量的夹角公式结合二次函数性质计算最值得到答案.【详解】如图所示:以CD,CB,CC1分别为x,y,z轴建立空间直角坐标系,设AB=1,则A1,2,0,C0,0,0,B0,2,0,球心O在平面CDD1C1的投影坐标为1,0,1 2,则设球心O1,h,12,则OA =OC ,即1-12+h -2 2+122=12+h 2+122,解得h =34,则O 1,34,12.设E 2,0,a ,a ∈0,1 ,EA =-1,2,-a ,OB =-1,54,-12,cos EA ,OB=EA ⋅OB EA ⋅OB =1+52+12a a 2+5⋅355=72+12a a 2+5⋅354=14+2a 35×a 2+5设7+a =t ,则a =7-t ,t ∈7,8 ,则14+2a 35×a 2+5=2t35×t 2-14t +54=235×541t-7542+554,当t =547时,有最大值为235×554=265,此时直线AE 与OB 所成的角最小,对应的正弦值为1-2652=15.故选:D【点睛】关键点睛:本题考查了立体几何中的异面直线夹角问题,外接球问题,意在考查学生的计算能力,空间想象能力和综合应用能力,其中建立空间直角坐标系可以简化运算,是解题的关键.二、多选题9(23-24高三下·江苏苏州·开学考试)在正方体ABCD -A 1B 1C 1D 1中,点M 为棱AB 上的动点,则()A.平面ABC 1D 1⊥平面A 1DMB.平面BCD 1⎳平面A 1DMC.A 1M 与BC 1所成角的取值范围为π4,π3D.A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4【答案】ACD【分析】由面面垂直的判定定理可判断A 选项;取点M 与点B 重合,可判断B 选项;以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可判断CD 选项.【详解】对于A 选项,因为四边形AA 1D 1D 为正方形,则A 1D ⊥AD 1,在正方体ABCD -A 1B 1C 1D 1中,AB ⊥平面AA 1D 1D ,A 1D ⊂平面AA 1D 1D ,则A 1D ⊥AB ,因为AB ∩AD 1=A ,AB 、AD 1⊂平面ABC 1D 1,所以,A 1D ⊥平面ABC 1D 1,因为A 1D ⊂平面A 1DM ,故平面ABC 1D 1⊥平面A 1DM ,A 对;对于B 选项,当点M 与点B 重合时,平面BCD 1与平面A 1DM 有公共点,B 错;对于CD 选项,以点D 为坐标原点,DA 、DC 、DD 1所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,不妨设正方体的棱长为1,则A 1,0,0 、B 1,1,0 、C 0,1,0 、D 0,0,0 、A 11,0,1 、B 11,1,1 、C 10,1,1 、D 10,0,1 ,设点M 1,m ,0 ,其中0≤m ≤1,A 1M =0,m ,-1 ,BC 1 =-1,0,1 ,所以,cos A 1M ,BC 1 =A 1M ⋅BC 1A 1M ⋅BC 1 =12m 2+1 ∈12,22 ,设A 1M 与BC 1所成角为α,其中0≤α≤π2,则12≤cos α≤22,可得π4≤α≤π3,所以,A 1M 与BC 1所成角的取值范围为π4,π3,C 对;对于D 选项,由A 选项可知,平面ABC 1D 1的一个法向量为DA 1 =1,0,1 ,则cos A 1M ,DA 1 =A 1M ⋅DA 1A 1M ⋅DA 1 =12m 2+1 ∈12,22 ,设A 1M 与平面ABC 1D 1所成角为β,则0≤β≤π2,则12≤sin β≤22,可得π6≤β≤π4,所以,A 1M 与平面ABC 1D 1所成角的取值范围为π6,π4,D 对.故选:ACD .10(2023·全国·模拟预测)如图①,四边形ABCD 是两个直角三角形拼接而成,AB =1,BD =2,∠ABD =∠C =90°,∠BDC =45°.现沿着BD 进行翻折,使平面ABD ⊥平面BCD ,连接AC ,得到三棱锥A -BCD (如图②),则下列选项中正确的是()A.平面ABC ⊥平面ACDB.二面角B -AD -C 的大小为60°C.异面直线AD 与BC 所成角的余弦值为33D.三棱锥A -BCD 外接球的表面积为π【答案】ABC【分析】A 选项,面面垂直⇒线面垂直⇒CD ⊥平面ABC ⇒平面ABD ⊥平面ACD ;B 、C 选项,建立空间直角坐标系,利用直线方向向量和平面法向量求解;D 选项,三棱锥的外接球,寻求斜边中点(球心位置).【详解】A 项,平面ABD ⊥平面BCD ,交线为BD ,AB ⊥BD ,AB ⊂平面ABD ,所以AB ⊥平面BCD ,因为CD ⊂平面BCD ,所以AB ⊥CD .又BC ⊥CD ,且AB ∩BC =B ,所以CD ⊥平面ABC .因为CD ⊂平面ACD ,所以平面ABC ⊥平面ACD ,选项A 正确.C 选项,以B 为原点,过B 在平面BCD 内作BD 的垂线为x 轴,直线BD 为y 轴,直线AB 为z 轴,建立空间直角坐标系,则B 0,0,0 ,A 0,0,1 ,C 22,22,0,D 0,2,0 ,则AC =22,22,-1 ,AD =0,2,-1 ,BC =22,22,0.易知平面ABD 的一个法向量为n 1=1,0,0 .设平面ACD 的法向量为n2=x ,y ,z ,则n 2⋅AC =0,n 1⋅AD=0, 即22x +22y -z =0,2y -z =0,取z =2,则x =1,y =1,则n 2=1,1,2 ,由图可知二面角B -AD -C 为锐角,则二面角B -AD -C 的余弦值为cos n 1,n 2=n 1⋅n 2 n 1 n 2 =11×2=12,即二面角B -AD -C 的大小为60°,选项B 正确;cos AD ,BC =AD ⋅BCAD BC =0,2,-1 ⋅22,22,0 3×1=33,选项C 正确;D 项,取AD 的中点N ,因为△ABD 与△ACD 都是直角三角形,所以点N 到A ,B ,C ,D 的距离相等,即为三棱锥A -BCD 外接球的球心,球半径为32,则三棱锥A -BCD 外接球的表面积为4π×322=3π,选项D 错误.故选:ABC .11(2023·全国·模拟预测)如图1,矩形B 1BCC 1由正方形B 1BAA 1与A 1ACC 1拼接而成.现将图形沿A 1A 对折成直二面角,如图2.点P (不与B 1,C 重合)是线段B 1C 上的一个动点,点E 在线段AB 上,点F 在线段A 1C 1上,且满足PE ⊥AB ,PF ⊥A 1C 1,则()。
立体几何(12)—高端视野:动点问题高考数学研究动点问题1/3立体几何——(12)高端视野:动点问题在高考试题中,经常考查立体几何中的动点问题,在立体几何中常见的动点问题大致可分为以下几类:一是求动点轨迹问题;二是求动点与某点(或面)的距离问题;三是求直线与直线(或平面)垂直问题;四是求直线与直线(或平面)平行问题;五是平面与平面垂直问题。
举例说明这几个问题的解法。
一、求动点轨迹问题这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。
【例1】如图,定点A和B都在平面?内,定点??P,??PB,C是?内异于A和B的动点,且ACPC?。
那么,动点C在平面?内的轨迹是()A.一条线段,但要去掉两个点B.一个圆,但要去掉两个点C.一个椭圆,但要去掉两个点D.半圆,但要去掉两个点【解析】由三垂线定理的逆定理得∵AC⊥PC且PC在?内的射影为BC,∴AC⊥BC.∴∠ACB=900.∴C点的轨迹为以AB为直径圆,但除去A、B两点.二、动点与某点(面)的距离问题【例2】正方体1111DCBAABCD?中,棱长为a,E是1AA的中点,在对角面DDBB11上找一动点M,使AM+ME最小.【解析】,,,11BBBBDBBACBDAC.11DDBBAC面??设AC∩BD=O,则AO=CO.∴平面DDBB11是线段AC的垂直平分面,∴C是A关于平面DDBB11的对称点。
连CE交面DDBB11于M,则M就是要求的点,这时AM+ME最小。
又AM=CM,∴AM+ME的最小值就是CE的长,而2412222aaAEACCE=a23,此时AM+ME的最小值为a23.简评:本题先证明平面DDBB11是线段AC的垂直平分面,然后利用C是A关于平面DDBB11的对称点,所以AM=CM,AM+ME的最小值,即为CM+ME的最小值,即CE的长,所以M点为CE和平面DDBB11的交点。
三、直线与平面(或直线)垂直问题【例3】如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=3,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.【解析】(Ⅰ)建立如图所示的空间直角坐标系,则A、B、C、D、P、E的坐标为A(0,例1题图ABCPOE例2题图ABCDA1C1D1 B1M高考数学研究动点问题2/30,0)、B(3,0,0)、C(3,1,0)、D(0,1,0)、P(0,0,2)、E(0,21,1),从而).2,0,3(),0,1,3(PBAC设PBAC与的夹角为θ,则,1473723||||cosPBACPBAC?∴AC与PB所成角的余弦值为1473.(Ⅱ)由于N点在侧面PAB内,故可设N点坐标为(x,O,z),则)1,21,(zxNE,由NE⊥面PAC可得,.0213,01.0)0,1,3()1,21,( ,0)2,0,0()1,21,( .0,0xzzxzxACNEAPNE化简得即∴163zx即N点的坐标为)1,0,63(,从而N点到AB、AP的距离分别为1,63.简评:本题主要考查线面关系和四棱锥等基础知识,同时考查空间想象能力和推理运算能力.由于N点在侧面PAB内,故可设N点坐标为(x,O,z),然后利用NE⊥面PAC,有.0,0ACNEAPNE求得动点N的坐标为)1,0,63(.四、直线与平面(或直线)平行问题【例4】如图,已知在底面是菱形的四棱锥P-ABCD中,∠ABC=600,PA=AC=a,PB=PD=2a点E在PD上,且PE:ED=2:1.在棱PC上有一动点F,当动点F移动到何处时,使BF∥平面AEC?证明你的结论。
立体几何中的动点轨迹问题讲解
这类问题在高考中并不常见,或者说在高考中出现得并不明显,但在用空间向量求二面角时偶尔会遇到一种题目,即需要用到的点并不是一个确定的点,而是在一个面上的动点,且这个点还满足一些特定的值或平面几何关系,此时需要根据条件确定出动点所在的轨迹,在每年高考前的模拟题中也会遇到这种题目,若在选填中,则一般位于压轴或次压轴位置,求几何体中动点的轨迹或者与轨迹求值相关的问题,在解析几何中满足条件的动点都会有特定的轨迹,动点绝不是乱点,在几何体中依旧如此。
这种题目做法和平面几何求轨迹方程类似,因为点在面内(非平面),所求的轨迹一般有四种,即线段型,平面型,二次曲线型,球型,这四种情况没有过于明显的界限,知道就好,下列题目中就不再分门别类的去叙述了。
立体几何中与动点轨迹有关的题目归根到底还是对点线面关系的认知,其中更多涉及了平行和垂直的一些证明方法,在此类问题中要么很容易的看出动点符合什么样的轨迹(定义),要么通过计算(建系)求出具体的轨迹表达式,和解析几何中的轨迹问题并没有太大区别。
题目中可以找到与AM垂直且包含OP的平面,这样动点P的轨迹就知道了,从O点向底面作垂线,垂足为O',连接BO',可知AM⊥平面OO'B,即可得知P的轨迹。
但题目是在规则的正方体中,直线OP和AM为异面直线,两者成90°的特殊角度,根据射影法求异面直线的夹角方法,我们只需确定出OP在底面上的投影位置即可。
与上题类似,需要找到一个与BD1垂直且包含AP的平面,根据三垂线定理可知BD1⊥AC,BD1⊥AB1,所以BD1⊥平面ACB1,平面ACB1与有侧面的交线为B1C,所以点P的轨迹为线段B1C
与上两题不同,本题目有两个动点,求双动点中点的轨迹方程,这种题目在之前的解析几何中出现过。
此类问题的处理方法是把双动点中的一个看做定点,分别来求,本题目也是这样,先把P,Q两点中的一个当做是特殊定点,例如先把P看做定点,Q为动点,若点P为B点,此时Q 点在A1C1运动,PB的中点轨迹即为三角形BA1C1的中位线,中位线的两个端点分别位于平面A1B和平面BC1上,当点P为D点,此时的轨迹为三角形DA1C1的中位线,同理当点P为动点,Q为定点时也是如此,综上点M的轨迹图形为菱形,即上图中红线和蓝线所围成的菱形,面积为24,过程不再给出。
题目是十几年前的老题,考查的是空间几何中最基础的点线面的关系,求几何体内动点的轨迹转化到其中一个面上来,点P到C1D1的距离即点P到C1的距离,因此题目为动点P到定点C1的距离等于动点P到直线BC的距离,可知点P的轨迹为抛物线,但并不是完整的一个抛物线,而是其中的一小段。
如上图所示,建系设点即可,点P所在的曲线为双曲线,题目很简单,过程就不再给出,在题目中与动点有关的几何体通常都是规则几何体,可以通过建系来处理。
这种题目可变形之后出在立体几何大题的第一问中,问是否存在这样的点F使得满足线面平行,若直接证明线面平行,在平面D1AE中找不到与A1F平行的线,因此线面平行可转化为面面平行,将A1F置于一个平面内,使这个平面与D1AE平行即可,难度不大,但很有代表性。
题目和第五题类似,线线垂直转化为线面垂直,把PE放到一个面内证明定直线AC与之垂直,本题目中的解法是先找到一个明显与AC垂直的平面SBD,再找一个过PE且与平面SBD平行的平面,间接来证,其实也没有必要,AC与BD垂直,因此需要找CD的中点可得到AC⊥EG,再根据三垂线定理确定出SC的中点即可。
本题目用到了上次推送中正四面体的常用性质,这也是解题的关键,根据角度求出由动点P引发的两条线段长度比值为定值,根据定值的大小可判断出符合椭圆的定理(第二定义)。
与上题类似,本题目中也要用到正四面体中的常用结论,若正四面体的棱长为a,则对棱中点的连线即为对棱的公垂线,且长度为a/√2,本题目用到的思想和最后一个题目有关,若x,y轴上各有一动点,且两动点长度为定值,则两动点中点的轨迹为以中点为圆心,以两动点长度的一半为半径的圆,把两条互相垂直且相等的对棱放到正方体中,公垂线和动直线EF的长度为定值,找出中点,利用中位线可得到OP所在的直角三角形,接下来只需确定OP的长度为定值即可,题目很不错。
本题目中提到了线面角,首先根据垂直关系找出线面角的平面角,这两个平面角恰好在两个直角三角形中,利用角度相等可得到动点M和两个定点B,C之间线段的比例关系,根据阿波罗尼斯圆可确定出轨迹为一个圆,建系设点后可得出点M的轨迹方程,进而求得圆弧的长度。
M,Q为直线和平面内的两动点,但始终满足MD⊥DQ,且知道MQ的长度为2,因此在直角三角形MDQ中,DP=1,因此点P位于以D为球心,1为半径的球面上,若题目加一个问题,求动点P的轨迹与以D为顶点的正方体三个面所围成的几何体的体积,此时围成的几何体为八分之一的球体,可联想成把西瓜分成两半之后再横竖各一刀,就会出现三个两两垂直的面。
总的来说,与几何体有关的动点轨迹问题还是常见于高二同步课中,在高考中出现的频率很低,处理此类问题的关键是熟练掌握立体几何中的点线面垂直平行异面的关系,找到与包含未知点的量和已知量之间的等量关系或不等关系即可,总体来说难度不大,如果找不出,直接建系来处理即可。