机器人学_机器人雅可比矩阵
- 格式:ppt
- 大小:908.50 KB
- 文档页数:38
简述机器人雅可比矩阵的概念机器人雅可比矩阵是机器人控制理论中的一个重要概念,它描述了机器人末端执行器在关节空间和笛卡尔空间中的运动学关系。
本文将从机器人运动学的基本概念入手,介绍雅可比矩阵的定义、性质和应用,以及在机器人控制中的重要作用。
一、机器人运动学基本概念机器人运动学是研究机器人运动规律和运动参数的学科,它是机器人控制理论的重要组成部分。
机器人运动学主要分为正运动学和逆运动学两个部分。
正运动学是指通过机器人关节角度计算机器人末端执行器的位置和姿态,即把关节空间的运动状态转换为笛卡尔空间的运动状态。
逆运动学则是指通过机器人末端执行器的位置和姿态计算机器人关节角度,即把笛卡尔空间的运动状态转换为关节空间的运动状态。
正逆运动学是机器人控制中的基本问题,也是机器人实际应用中必须解决的问题。
机器人运动学中的基本概念包括机器人坐标系、机器人关节角度、机器人末端执行器的位置和姿态等。
机器人坐标系是机器人运动学中的一个基本概念,它是描述机器人运动状态的基础。
机器人坐标系可以分为基座坐标系和工具坐标系两种类型。
基座坐标系是机器人的固定参考系,通常与机器人底座相对应。
工具坐标系则是机器人末端执行器的参考系,通常与机器人末端执行器的位置和姿态相对应。
机器人关节角度是机器人运动学中的另一个基本概念,它是描述机器人关节运动状态的参数。
机器人关节角度通常用关节角度向量表示,例如q=[q1, q2, ..., qn]T,其中n是机器人关节数量。
机器人关节角度向量是机器人控制中的重要参数,它可以用来控制机器人的关节运动状态。
机器人末端执行器的位置和姿态是机器人运动学中的另一个基本概念,它是描述机器人末端执行器运动状态的参数。
机器人末端执行器的位置通常用位置向量表示,例如p=[x, y, z]T,其中x、y、z 是机器人末端执行器在笛卡尔空间中的位置坐标。
机器人末端执行器的姿态通常用姿态矩阵或欧拉角表示,例如R=[r11, r12, r13; r21, r22, r23; r31, r32, r33],其中r11、r12、r13、r21、r22、r23、r31、r32、r33是姿态矩阵的元素。
雅可比矩阵在机器人运动中的应用
1、什么是离散雅可比矩阵
离散雅可比矩阵(Discrete Jacobian Matrix)是一种矩阵,它可以用来在机器人运动中表征机器人关节的变化。
它的各元素表示的是每个关节的误差,当关节变动时它们之间以特定的函数或将坐标变换。
它是一个多列多行的矩阵,是一种具有变换性质的矩阵,具有不好求解的变换能力。
2、雅可比矩阵在机器人运动中的应用
a. 雅可比矩阵可用于机器人运动的运动规划。
例如,对于一个六轴机器人,可以利用雅可比矩阵计算出一组关节变换,实现机器人从起始点移动到目标点的运动规划。
b. 雅可比矩阵可以用来计算每个关节的变化,这有助于机器人可编程实现直线和曲线运动。
c. 雅可比矩阵可用于分析转动角速度和角度变化。
d. 雅可比矩阵可用于计算相关度,判断机械臂移动是否稳定。
e. 雅可比矩阵可用于某些运动学算法中,用来计算机器人关节的运动学参数,例如机械臂的位置,速度,加速度以及操纵力和力矩。
f. 雅可比矩阵可用于计算右手法则,以计算机器人操纵力和力矩及其变化。
3、雅可比矩阵的优缺点
a. 优点:雅可比矩阵具有变换性,可以用来计算任意一个关节变动所带来的影响,可实现微小调节以改变机器人空间位姿,有助于更好地控制和定位机器人,并为机器人运动规划提供可靠的参考值;
b. 缺点:离散雅可比矩阵的求解速度较慢,而且有时由于机器人17极空间非线性特征而造成求解精度偏差。