第四章_快速傅里叶变换(FFT)
- 格式:pdf
- 大小:1.41 MB
- 文档页数:46
knN W N N第四章 快速傅里叶变换有限长序列可以通过离散傅里叶变换(DFT)将其频域也离散化成有限长 序列.但其计算量太大,很难实时地处理问题,因此引出了快速傅里叶变换 (FFT). 1965 年,Cooley 和 Tukey 提出了计算离散傅里叶变换(DFT )的快 速算法,将 DFT 的运算量减少了几个数量级。
从此,对快速傅里叶变换(FFT ) 算法的研究便不断深入,数字信号处理这门新兴学科也随 FFT 的出现和发 展而迅速发展。
根据对序列分解与选取方法的不同而产生了 FFT 的多种算 法,基本算法是基2DIT 和基2DIF 。
FFT 在离散傅里叶反变换、线性卷积 和线性相关等方面也有重要应用。
快速傅里叶变换(FFT )是计算离散傅里叶变换(DFT )的快速算法。
DFT 的定义式为N −1X (k ) = ∑ x (n )W NR N (k )n =0在所有复指数值 W kn 的值全部已算好的情况下,要计算一个 X (k ) 需要 N 次复数乘法和 N -1 次复数加法。
算出全部 N 点 X (k ) 共需 N 2次复数乘法和 N ( N − 1) 次复数加法。
即计算量是与 N 2成正比的。
FFT 的基本思想:将大点数的 DFT 分解为若干个小点数 DFT 的组合, 从而减少运算量。
W N 因子具有以下两个特性,可使 DFT 运算量尽量分解为小点数的 DFT运算:(1) 周期性:( k + N ) nN= W kn= W ( n + N ) k(2) 对称性:W( k + N / 2 )= −W kNN利用这两个性质,可以使 DFT 运算中有些项合并,以减少乘法次数。
例子:求当N=4 时,X(2)的值4 NNN3∑44444X (2) = n =0x (n )W 2 n = x (0)W 0 + x (1)W 2 + x (2)W 4 + x (3)W 6= [ x (0) + x (2)]W 0 + [ x (1) + x (3)]W 2(周期性)4=[ x (0) + x (2)]-[ x (1) + x (3)]W 04(对称性)通过合并,使乘法次数由 4 次减少到 1 次,运算量减少。
快速傅立叶变换(fft)快速傅里叶变换(FFT)是一种广泛应用于信号处理、图像处理、音频处理、科学数据处理等领域的数学算法。
它可以将时域信号(即时序信号)转换成频域信号,便于对信号进行分析和处理,以便更好地理解和应用信号的特征。
FFT算法的提出的历史非常悠久。
早在1809年,法国数学家Poisson和Laplace就提出了一些有关傅里叶级数的理论。
1965年,J.W. Cooley和J.W. Tukey等人发布了经典的Cooley-Tukey FFT算法,从而大幅提升了FFT的效率,使其利于实际应用。
FFT的原理是将一个离散的、周期性的时域信号,通过离散傅里叶变换(DFT,或称为“离散频谱分析”)、快速卷积公式等方法,转换成一个频域的信息序列,包含了原信号在复平面上的所有幅度、相位信息。
通过FFT转换后的频域信息,可以较容易地对信号进行频谱分析、滤波、变换和还原等处理过程。
FFT算法具有众多的优势。
首先,FFT算法可以将时间复杂度从O(N*N)大幅降低为O(N log N),大大提高了数据处理的速度。
其次,FFT算法在数字信号处理领域中拥有广泛的应用,如用于信号重构、信号滤波、降噪、音频处理等等。
此外,由于FFT所得到的频域信号表达了各个频率波形的信息,因此可以在多个领域中运用,例如图像的快速变换、高质量视频文件传输等等。
不过,FFT算法也存在不少的局限性,其中最常见的就是其对时间步骤的依赖,并且对于非周期信号的处理效果可能不够理想。
此外,FFT算法对于像素点的数量是有要求的,不能过少或过多,过少的话会导致数据量太少,过多的话会导致计算机内存爆炸,计算时间也会变得非常长。
综上所述,虽然FFT算法存在着一定的局限性,但是其作为一种广泛应用于信号处理、图像处理、音频处理、科学数据处理等领域的数学算法,其高速、准确、可靠等优点,还是使其得到了广泛的应用。
如果在使用FFT算法时能充分了解其原理和应用场景,遵循其设计规范,就可以更好地发挥出其优势,提高数据处理的效率,为人们生产生活带来更多便利。