单 纯 型 层 次 型 结 构
.
14
Ø 按网络连接的拓扑结构分类:
Ø 互连型网络结构:网络中任意两个节点之 间都可能存在连接路径
局 部 互 连 型
.
15
人工神经网络的分类(C.)
Ø 按网络内部的信息流向分类:
Ø 前馈型网络:网络信息处理的方向是从输入层到各 隐层再到输出层逐层进行
前 馈 型 网 络
Ø 它是有指导训练的前馈多层网络训练算法,是靠调 节各层的权值,使网络学会由输入输出对组成的训 练组。其核心思想是将输出误差以某种形式通过隐 含层向输入层逐层反传,即:信号正向传播;误差 反向传播
Ø 执行优化的方法是梯度下降法
Ø 最常用的激活函数是Sigmoid函数
f
(x) .
1 1ex
21
Ø BP算法
PF:性能函数,默认函数为mse函数。
.
28
具体算法如下:
%%清空环境变量 clc clear %%输入样本数据 p1=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90; 1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08]; %Af p2=[1.14,1.82;1.18,1.96;1.20,1.86; 1.26,2.00;1.28,2.00;1.30,1.96]; %Apf p=[p1;p2]'; pr=minmax(p); %输入向量的最小值和最大值 %%输出样本数据 goal=[ones(1,9),zeros(1,6);zeros(1,9),ones(1,6)]; %%绘图 plot(p1(:,1),p1(:,2),'h',p2(:,1),p2(:,2),'o')