八年级数学用函数观点看方程
- 格式:pdf
- 大小:1.42 MB
- 文档页数:10
八年级数学用函数观点看方程(组)与不等式人教实验版【本讲教育信息】一. 教案内容:1. 一次函数与一元一次方程的内在联系。
2. 一次函数与一元一次不等式的内在联系。
3. 一次函数与二元一次方程(组)。
二. 知识要点:1. 一次函数与一元一次方程将一次函数y=kx+b中的y值看作0,则kx+b=0即为一元一次方程,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值,从图像上看,相当于求已知直线y=kx+b与x轴的交点的横坐标的值。
例如,解方程2x-4=0,相当于求当y=2x-4的函数值为0的自变量的值,也相当于确定y=2x-4与x轴交点的横坐标的值。
也就是说,求得2x-4=0的解为x=2,就求得y=2x-4的函数值为0时自变量的值为2,也就知道y=2x-4与x轴交点的横坐标为2。
反过来,要求y=2x-4的函数值为0时自变量的值,就是求直线y=2x-4与x轴的交点的横坐标,就相当于解方程2x-4=0。
2. 任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,所以,解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
例如,解不等式2x-4>0,相当于求使y=2x-4的函数值大于0的自变量取值范围,也相当于y=2x-4在x轴上方部分对应的自变量取值范围。
也就是说,求得2x-4>0的解集为x>2,就得出当x>2时,函数y=2x-4的值大于0,也就得出当x>2时这条直线上的点在x 轴的上方。
如图所示。
反过来,求使y =2x -4函数值大于0的自变量的取值范围,要求y =2x -4在x 轴上方部分对应的自变量的取值范围,都相当于解不等式2x -4>0。
3. 二元一次方程与一次函数由于任意一个二元一次方程都可以转化为y =kx +b 的形式,所以每个二元一次方程都对应一个一次函数,于是也对应一条直线。
例如,二元一次方程2x -3y -6=0可以化为y =23x -2,所以方程2x -3y -6=0对应直线y =23x -2。
初二数学用函数观点看方程(组)与不等式通用版【本讲主要内容】用函数观点看方程(组)与不等式 1. 一次函数与一元一次方程的关系 2. 一次函数与一元一次不等式的关系 3. 一次函数与二元一次方程(组)的关系【知识掌握】【知识点精析】一. 一次函数与一元一次方程的关系由于任何一元一次方程都可以转化为ax b +=0(a b 、是常数,a ≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看这相当于已知直线y ax b =+,确定它与x 轴交点的横坐标的值.二. 一次函数与一元一次不等式的关系由于任何一元一次不等式都可以转化为ax b +>0或ax b +<0(a b 、是常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.从图象上看,解ax b +>0相当于已知直线y ax b =+在x 轴上方时,自变量x 相应的取值范围;解ax b +<0相当于已知直线y ax b =+在x 轴下方时,自变量x 相应的取值范围.三. 一次函数与二元一次方程(组)的关系每个二元一次方程组都对应两个一次函数,于是也对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线交点的坐标. 方程(组)、不等式与函数之间互相联系,用函数观点可以把它们统一起来,解决问题时,应根据具体情况灵活地、有机地把它们结合起来使用.【解题方法指导】例1. (2006年重庆市中考题)(课改实验区考生做)如图,已知函数y ax b y kx =+=和的图像交于点P ,则根据图像可得,关于x y 、的二元一次方程组y ax by kx =+=⎧⎨⎩的解是______.x答案:x y =-=-⎧⎨⎩42点评:本题考查了借助一次函数图象可求二元一次方程组解的知识,两个一次函数图象的交点的坐标,就是二元一次方程组的解.观察图象得该方程组的解为x y =-=-⎧⎨⎩42例2. (2006年陕西省中考题)甲、乙两车从A 地出发,沿同一条高速公路行驶至距A 地400千米的B 地.l l 12、分别表示甲、乙两车行驶路程y (千米)与时间x (时)之间的关系(如图所示).根据图象提供的信息,解答下列问题:(1)求l 2的函数表达式(不要求写出x 的取值范围);(2)甲、乙两车哪一辆先到达B 地?该车比另一辆车早多长时间到达B 地?解:(1)设l 2的函数表达式是y k x b =+2,则03440019422=+=+⎧⎨⎪⎪⎩⎪⎪k b k b解之,得k b 210075==-, ∴l 2的函数表达式为y x =-10075 (2)乙车先到达B 地. 30010075154=-∴=x x , 设l 1的函数表达式是y k x =1O图像过点()154300, ∴k 1=80.即y x =80当y =400时,400805=∴=x x ,∴-=519414(小时) ∴乙车比甲车早14小时到达B 地.例3. 某单位组织员工到外地旅游,人数估计在10—25人之间.甲乙两个旅行社的服务质量相同,价格都是每人200元,该单位联系时,甲旅行社表示每位游客七五折优惠;乙旅行社表示可以免去一位游客的费用,按八折优惠.问该单位应怎样选择,使其支付的旅游费用较少.解:设旅游人数为x 人,甲旅行社支付的旅游费用为y 1元,乙旅行社支付的旅游费用为y 2元y x y x y x 112200075150200081=⨯==⨯-..(),即;,即y x 2160160=-; 当y y 12=时,150********x x x =-∴=,(人) 当y y 12>时,150********x x x >-∴<,(人) 当y y 12<时,150********x x x <-∴>,(人)答:当人数为16人时,任选其一;当人数在10—15人之间选乙旅行社,人数在17—25人之间选甲旅行社. 点评:本题综合应用了一元一次方程、一元一次不等式和一次函数的知识解决实际问题.【考点突破】【考点指要】用函数观点看一次函数与方程(组)、不等式的应用题是近几年在中考中的新型题,这类问题取材于国情国策、环保生态、市场决策、经济核算、生产生活,具有很强的探索性和灵活性,对学生的数学能力提出了较高的要求,要顺利地解答它,一要具备扎实的数学基础知识和熟练的解题技巧;二是要有较强的阅读能力,能全面深刻地领会题意,特别是其中关键性词语;三要有一定的生产、生活常识,对当前市场经济条件下各种常见的现象有所了解,能抓住它们的本质和规律,恰当地构建出数学模型.【典型例题分析】例1. (2006年云南省课改实验区中考题)如图,直线l l 12与相交于点P ,l 1的函数表达式为y x =+23,点P 的横坐标为-1,且l 2交y 轴于点A (0,-1).求直线l 2的函数表达式.解:设点P 坐标为(-1,y ),代入y x =+23,得y =1 ∴点P (-1,1)设直线l 2的函数表达式为y kx b =+,把P (-1,1)、A (0,-1)分别代入y kx b =+得:11=-+-=⎧⎨⎩k b b ,∴=-=-⎧⎨⎩k b 21∴直线l 2的函数表达式为y x =--21点评:本题综合应用了二元一次方程组与一次函数的知识解决实际问题.例2. (2004年安徽省中考题)某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元,若要求每种广告播放不少于2次.问: (1)两种广告的播放次数有几种安排方式? (2)电视台选择哪种方式播放收益较大? 解:(1)设15秒广告播放x 次,30秒广告播放y 次,由题意得: 1530120x y += 则x y =-82x y ,为不小于2的正整数∴==⎧⎨⎩x y 42或x y ==⎧⎨⎩23∴有两种播放次数方式,即15秒广告播放4次,30秒广告播放2次;或15秒广告播放2次,30秒广告播放3次.(2)若x y ==42,,则0641244..⨯+⨯=(万元) 若x y ==23,,则0621342..⨯+⨯=(万元)∴电视台选择15秒广告播放4次、30秒广告播放2次的方式,收益较大. 点评:本题综合应用了二元一次方程与一次函数的知识解决实际问题.例3. (2006年浙江省中考题)宁波市土地利用现状通过国土资源部验收,我市在节约集约用地方面已走在全国前列.1996~2004年,市区建设用地总量从33万亩增加到48万亩,相应的年GDP 从295亿元增加到985亿元.宁波市区年GDP y (亿元)与建设用地总量x (万亩)之间存在着如图所示的一次函数关系.(1)求y 关于x 的函数关系式.(2)据调查2005年市区建设用地比2004年增加4万亩,如果这些土地按以上函数关系式开发使用,那么2005年市区可以新增GDP 多少亿元?(3)按以上函数关系式,我市年GDP 每增加1亿元,需增建设用地多少万亩?(精确到0.001万亩)x )解:(1)设函数关系式为y kx b =+由题意得3329548985k b k b +=+=⎧⎨⎩解得k b ==-461223,∴该函数关系式为y x =-461223 (2)由(1)知2005年的年GDP 为4648412231169⨯+-=()(亿元)1169985184-=(亿元)∴2005年市区相应可以新增加GDP184亿元.(3)设连续两年建设用地总量分别为x 1万亩和x 2万亩,相应年GDP 分别为y 1亿元和y 2亿元,满足y y 211-=,则y x y x 1122461223461223=-=-⎧⎨⎩③④ ④③-得,y y x x 212146-=-() 即46121()x x -=∴-=≈x x 211460022.(万亩) 即年GDP 每增加1亿元,需增加建设用地约0.022万亩.例4. (2006年云南省中考题)云南省公路建设发展速度越来越快,通车总里程已位居全国第一,公路的建设促进了广大城乡客运的发展.某市扩建了市县际公路,运输公司根据实际需要计划购买大、中两型客车共10辆,大型客车每辆价格为25万元,中型客车每辆价格为15万元.(1)设购买大型客车x (辆),购车总费用为y (万元),求y 与x 之间的函数表达式; (2)若购车资金为180万元至200万元(含180万元和200万元),那么有几种购车方案?在确保交通安全的前提下,根据客流量调查,大型客车不能少于4辆,此时如何确定购车方案可使该运输公司购车费用最少? 解:(1)设购买大型客车x 辆,则购买中型客车()10-x 辆. 由题意得:y x x =+-251510(),即y x =+10150(2)1015018010150200x x +≥+≤⎧⎨⎩,解得x x ≥≤⎧⎨⎩35,∴≤≤35x且x 是非负整数,∴=x 345,,∴共有三种购车方案第一种:大型客车3辆,中型客车7辆; 第二种:大型客车4辆,中型客车6辆; 第三种:大型客车5辆,中型客车5辆;但大型客车不能少于4辆,故第一种方案不符合要求,舍去; 第二种方案的购车费用为:2⨯+⨯=54156190(万元); 第三种方案的购车费用为:255155200⨯+⨯=(万元)答:符合客流量要求并且购车费用较少的购车方案是大型客车4辆,中型客车6辆. 点评:本题是一道实际生活中的问题,不仅要求学生具有阅读理解文字的能力,而且要善于把实际问题转化为数学问题,从而解决实际问题并从中养成用数学的头脑去解决日常生活中的问题.【综合测试】一. 选择题:(2006年中考题)1. (山西省课改实验区)如图,是某函数的图象,则下列结论中正确的是( )A. 当y =1时,x 的取值是-325, B. 当y =-3时,x 的近似值是0,2C. 当x =-32时,函数值y 最大 D. 当x >-3时,y 随x 的增大而增大2. (太原市)小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象l l 12、如图所示,他解的这个方程组是( )A. ⎪⎩⎪⎨⎧-=+-=1x 21y ,2x 2yB. y x y x =-+=-⎧⎨⎩22,C. ⎪⎩⎪⎨⎧-=-=3x 21y ,8x 3yD. y x y x =-+=--⎧⎨⎪⎩⎪22121,3. (贵阳市课改实验区)小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )4. (黄冈市课改实验区)如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程S (米)与时间t (秒)之间的函数关系图像分别为折线OABC 和线段OD ,下列说法正确的是( )A. 乙比甲先到达终点B. 乙测试的速度随时间增加而增大C. 比赛进行到29.4秒时,两人出发后第一次相遇D. 比赛全程甲的测试速度始终比乙的测试速度快二. 填空题:某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y (微克)随时间x (小时)的变化情况如图所示,当成人按规定剂量服用后,(1)服药后________小时,血液中含药量最高,达每毫升______毫克,接着逐步衰减; (2)服药5小时,血液中含药量_______毫克;(3)当x ≤2时,y 与x 之间的函数关系式是___________; (4)当x ≥2时,y 与x 之间的函数关系式是___________;(5)如果每毫升血液中含药量3毫克或3毫克以上时,治疗疾病最有效,那么这个有效时间是_________小时.三. (昆明市课改实验区)如图,直线l 1与l 2相交于点P ,l 1的函数表达式为y x =+23,点P 的横坐标为-1,且l 2交y 轴于点A (0,-1).求直线l 2的函数表达式.四. (河北省课改实验区)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m )与挖掘时间x (h )之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m 时,用了__________h .开挖6h 时甲队比乙队多挖了______m ; (2)请你求出:①甲队在06≤≤x 的时段内,y 与x 之间的函数关系式; ②乙队在26≤≤x 的时段内,y 与x 之间的函数关系式;(3)当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?五. (2004年黑龙江省中考题)某送奶公司计划在三栋楼之间建一个取奶站,三栋楼在同一条直线上,顺次为A 楼、B 楼、C 楼,其中A 楼与B 楼之间的距离为40米,B 楼与C 楼之间的距离为60米.已知A 楼每天有20人取奶,B 楼每天有70人取奶,C 楼每天有60人取奶,送奶公司提出两种建站方案.方案一:让每天所有取奶的人到奶站的距离总和最小;方案二:让每天A 楼与C 楼所有取奶的人到奶站的距离之和等于B 楼所有取奶的人到奶站的距离之和.(l )若按照方案一建站,取奶站应建在什么位置? (2)若按照方案二建站,取奶站应建在什么位置?(3)在(2)的情况下,若A 楼每天取奶的人数增加(增加的人数不超过22人),那么取奶站将离B 楼越来越远,还是越来越近?请说明理由.综合测试答案一. 选择题:1. B2. D3. C4. C二. 填空题:(1)2,6; (2)3 (3)y x =3(4)y x =-+8 (5)4三. 解:设点P 坐标为(-1,y ),代入y x =+23,得y =∴1,点P (-1,1)设直线l 2的函数表达式为y kx b =+,把P (-1,1)、A (0,-1)分别代入y kx b =+,得11=-+-=⎧⎨⎩k b b ∴=-=-⎧⎨⎩k b 21,∴直线l 2的函数表达式为y x =--21.四. 解:(1)2,10;(2分)(2)①设甲队在06≤≤x 的时段内y 与x 之间的函数关系式为y k x =1, 由图可知,函数图像过点(6,60), ∴=6601k ,解得k y x 11010=∴=,(4分)②设乙队在26≤≤x 的时段内y 与x 之间的函数关系式为y k x b =+2, 由图可知,函数图像过点(2,30),(6,50),∴+=+=⎧⎨⎩23065022k b k b ,解得k b 2520==⎧⎨⎩,∴=+y x 520 (6分)(3)由题意,得10520x x =+,解得x h =4(). ∴当x 为4h 时,甲、乙两队所挖的河渠长度相等.五. 解:(1)设取奶站建在距A 楼x 米处,所有取奶的人到奶站的距离总和为y 米, ①当040≤≤x 时,y x x x x =+-+-=-+207040601001108800()()∴当x =40时,y 的最小值为4400②当40100<≤x 时,y x x x x =+-+-=+20704060100303200()(),此时,y 的值大于4400因此按方案一建奶站,取奶站应建在B 楼处 (2)设取奶站建在距A 楼x 米处,①当040≤≤x 时,20601007040x x x +-=-()()解得x =-<32030(舍去) ②当40100<≤x 时,20601007040x x x +-=-()()解得x =80因此按方案二建奶站,取奶站应建在距A 楼80米处 (3)设A 楼取奶人数增加a 人,①当040≤≤x 时,()()()20601007040++-=-a x x x ,解得x a =-+320030(舍去), ②当40100<≤x 时,()()()20601007040++-=-a x x x 解得x a=-∴8800110,当a 增大时,x 增大, ∴当A 楼取奶的人数增加时,按照方案二建奶站,取奶站仍建在B 、C 两楼之间,且随着人数的增加,离B 楼越来越远。
用函数观点看方程(组)与不等式【教学目标】1、能用函数观点看一次方程(组)、不等式;2、能用辩证的观点认识一次函数与一次方程、不等式的区别与联系;3、在解决简单的一次函数的问题过程中,建立数形结合的思想及转化思想.【知识梳理】1.一次函数与一元一次方程由于任何一元一次方程都可以转为(为常数,)的形式,所以解一元一次方程可转化为:当某一个函数的值为0时,求__________的值.从图像上看,这相当于已知直线,确定它与轴交点的横坐标的值.2.一次函数与不等式由于任何一元一次不等式都可以转为或(为常数,)的形式,所以解一元一次不等式可看作:当一次函数的值_________时,求自变量相应的取值范围.3.一次函数与二元一次方程组一般地,每个二元一次方程组都对应两个一次函数,于是对应两条直线.从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数的值相等,以及这个函数值是何值;从的“形”角度看,解方程组相当于确定两条直线_________的坐标.参考答案:1.相应的自变量2.大(小)于03.交点【典例精讲】1、解一次函数与一元一次方程【例1】一个物体现在的速度是5米/秒,其速度每秒增加2米/秒,再过几秒它的速度是17米/秒?【解析】应用一次函数的与一元一次方程的方法即可求解.解法1:设再过秒物体的速度是17米/秒,列方程得解法2:速度(单位:米/秒)是时间(单位:秒)的函数由∴由下图可看出直线与轴的交点为(6,0),得总结:解一元一次方程可转化为:当某一个函数的值为0时,求相应的自变量的值.从图像上看,这相当于已知直线,确定它与轴交点的横坐标的值.练1.将方程全部的解写成坐标的形式,那么用全部的坐标描出的点都在直线()上.A. B. C. D.【解析】将方程转化成直线的形式,即可求解.解:∵∴故选C.练2.一次函数和的图像的交点坐标是_____________.【解析】采用带入法,将其中一个一次函数带入另一个,即可求解坐标.解:将代入,得∴∴交点坐标为(2,-3).2.解一次函数与一元一次不等式【例2】用画函数图像的方法解不等式.【解析】化简不等式,再画出一次函数图像,结合图像即可求解.解法1:原不等式为,画出直线,可看出,当时这条直线上的点在轴的下方,即这时,所以不等式的解集为.解法2:将原不等式为的两边分别看作两个一次函数,画出直线与,可看出,它们的交点的横坐标为2,当时,对于同一个,直线上的点在直线上相应点的下方,这时,所以不等式的解集为.总结把解不等式转化为比较直线上点的位置的高低,数形结合即可求解.练3.如图,直线与轴交于点(-4,0),则时,的取值范围是______.【解析】结合图象,满足时,即直线位于轴的上方部分,即可求解.解:∵直线与轴交于点(-4,0),结合图象特点,∴当时,.练4.一次函数的图象如下图,则当________时,.【解析】根据函数图象特殊点(-2,4),即可求解.解:由图象可知,直线过点(-2,4),∴当时,.3.一次函数与二元一次方程组【例3】一家电信公司给顾客提供上网费的两种计费方式:方式A以每分0.1元的价格按上网时间计费;方式B除收月基本费20元外,再以每分0.05元的价格按上网时间计费.上网时间为多少分,两种方式的计费相等?【解析】计费与上网时间有关,所以可设上网时间为分,分别写出两种计费方式的函数模型,然后再考虑自变量为何值时两个函数的值相等.解:设上网时间为分方式A的计费元;按方式B的计费元.在同一直角坐标系中分别画出这两个函数的图像.两个函数的图象交于点(400,40),这表示当时,两个函数的值都等于40.因此,上网时间为400分,两种方式的计费相等(都是40元).总结方程组、不等式与函数之间的相互联系,用函数观点可以把它们统一起来.解决问题时,应根据具体情况灵活地把它们结合起来考虑.练5.如下图,反映了某公司的销售收入与销售量的关系,反映了该公司产品的销售成本与销售量的关系,当该公司赢利(收入大于成本)时,销售量()A.小于3吨B.小于4吨C.大于3吨D.大于4吨【解析】根据图象两直线交点的坐标,赢利时即为的值大于的的值.解:由题意可知,要使得公司赢利,即的值大于的的值∴∴选D.练6.一次函数与的图象如下图,则当____时,;当_____时,;当_______时,.【解析】根据两个函数图象的交点坐标,即可求解.解:由图象可知,两函数的交点坐标为(1,-3)当时,;当时,;当时,.【例4】小亮用作图象的方法解二元一次方程组时,在同一直角坐标系内作出了相应的两个一次函数的图象L1,L2,如图所示,他解的这个方程组是().A.B.C.D.【解析】根据函数图象特殊点坐标,即可求解.解:由图象可知,两个函数均过点(2,-2)且直线L1过点(1,0),直线L2过点(-2,0)∴将点坐标带入选项中的一次函数,即可得,故选D.练7.如下图,已知函数和的图象交点为P,则不等式的解集为_____________.【解析】根据图象交点坐标,求出直线在直线上方的部分即可.解:由图象交点横坐标可知,时,两直线的值相等,∴当时,.练8.如图,一次函数的图象经过A,B两点,则的解集是().A. B. C. D.【解析】根据一次函数直线特殊点坐标,求出直线位于轴上方的部分,即可求解..解:由图象可知,直线过点A(-3,0),B(0,2)要使,即故选C.【例5】已知如图,一次函数的图象与轴交于点M,则点M的横坐标_______.(1)若,则当时,_____0;当时,_____0;(2)若,则当时,_____0;当时,_____0;【解析】根据函数图象,与轴交点坐标,及为当时,求出方程的解即可.解:由函数图象可知,当时,即,故(1)若,则当时,;当时,;(2)若,则当时,;当时,总结:利用一次函数直线与轴的交点坐标,即可求出与0的大小关系.练9.已知直线和,若它们的交点在第四象限内,求的取值范围.【解析】可以根据已知条件列出方程组解题.解:依题意有则解得因为两条直线的交点在第四象限内,∴∴,即的取值范围是练10.已知直线经过点,且与坐标轴围成的三角形的面积为,求该直线的函数解析式.【解析】由点在直线上,可以得到一个关于的方程,再求出直线与两坐标轴的交点坐标,由三角形面积为可列出第二个方程,由两个方程组成的方程组可以解出的值.解:∵直线过点,∴∵直线与轴、轴的交点坐标分别为(O为原点),∴,由①和②组成的方程组解得,∴,则所求直线的解析式为或.4.实际应用题【例6】.一个有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量(单位:升)与时间(单位:分)之间的关系如图所示.(1)求时随变化的函数关系式.(2)求时随变化的函数关系式.(3)每分钟进水、出水各多少升?【解析】根据容器内每分钟水量=进水量-出水量建立关系式,再根据前4分钟只有进水,即可得到进水的函数关系式,结合图象特殊点坐标,即可求解.解:由函数图象可知,(1)当时,直线过点(0,0)、(4,20);∴(2)当时,直线过点(4,20)、(12,30)∴(3)每分钟进水量=L;每分钟出水量=L.练11.如图,某公司专销A产品,第一批A产品上市40天内全部售完,该公司对第一批A产品上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中甲图中的折线表示的是市场日销售量与上市时间的关系;乙图中的折线表示的是每件A产品的销售利润与上市时间的关系.(1)试写出第一批A产品的市场日销售量与上市时间的关系式:(2)第一批A产品上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?【解析】根据图象特殊点坐标,对应的变化范围建立函数关系式,即可求解.解:(1)由甲图可知,图象过点(30,6)第一批A产品的市场日销售量与上市时间的关系式为:当时,当时,(2)结合甲、乙两图可知,∵日销售利润=日销售量×每件产品销售利润∴当时,(万元)..练12.某商场计划投入一笔资金购一批紧销商品,经过市场调查发现,如果月初出售,可获利15%,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售,可获利30%,但要付出仓库储存费用700元,请根据商场投资情况,分析如何购销获利较多?.【解析】根据题意建立一次函数关系式,再采用数形结合法,即可求解.解:设商场投资元,月初出售获利:∴月末出售获利:在直角坐标系中画出两个函数的图象:两图象的交点坐标为(20000,5300)∴方程组的的解是∴由图象可知:当时,,两种方式任意选;当时,,选择在月末出售.=3,即·|BQ|·|AO|=3,由|AO|=3,可知|BQ|=2,解:根据图象和已知条件有S△QAB=3,即·|PA|·|BO|=3,由|BO|=3,可知|PA|=2因为S△PQB再因为P、Q两点在直线AB同侧,所以P点坐标为(-5,0).设直线PQ的解析式为y=kx+b,则有则所以所求一次函数解析式为y=x+5.。
用函数观点看方程(组)与不等式艾细荣太阳中学【学习目标】1、进一步认识和理解一次函数,同时进一步巩固一元一次方程的解法。
2、弄通一次函数与x轴的交点与一元一次方程的解的关系。
【预习形成】1、解方程2x+4=02、自变量x为何值时函数y=2x+4的值为0?3、以上方程2x+4=0与函数y=2x+4有什么关系?4、是不是任何一个一元一次方程都可以转化为ax+b=0(a、b是常数,a≠0)?5、当某个一次函数y=ax+b的值为0时,求相应的自变量x的值。
从图像上看,相当于确定直线y=ax+b与x轴交点的横坐标的值。
6、仔细理解例1中的解法1与解法2有什么不同。
【学习流程】1、解方程ax+b=0(a、b为常数,a≠0)2、自变量x为何值时,一次函数y=ax+b的值为0,这句话与解方程ax+b=0(a、b为常数)到底有什么关系?3、探究问题一个物体现在的速度是3m/秒,其速度每秒增加2m/秒,再过几秒它的速度为11m/秒?1)、此问题用方程来解如何去解?2)、画出y=2x-8的函数图象如果速度y是时间x的函数,则上述问题与y=2x+3有什么关系?如何去解上述问题?4、知识巩固1)、当自变量x的取值满足什么条件时,函数y=3x+8的值满足于下列条件:①、y=0 ②、y=-7 2)、利用函数图象解5x-3=x+25、整体感知如何理解一次函数与x轴交点的横坐标与解方程的关系?【课堂检测】A、基础知识巩固1、当自变量x的取值满足什么条件时,函数y=5x+7的值满足下列条件(1)、y=0 (2)、y=20 B、能力提升当自变量x取何值时,函数y=+1与y=5x+17的值相等?。